JPH03246514A - Method for supplying liquid crystal to substrate for liquid crystal display element - Google Patents

Method for supplying liquid crystal to substrate for liquid crystal display element

Info

Publication number
JPH03246514A
JPH03246514A JP4244190A JP4244190A JPH03246514A JP H03246514 A JPH03246514 A JP H03246514A JP 4244190 A JP4244190 A JP 4244190A JP 4244190 A JP4244190 A JP 4244190A JP H03246514 A JPH03246514 A JP H03246514A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
nozzle
amount
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4244190A
Other languages
Japanese (ja)
Inventor
Mitsuru Nakada
充 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP4244190A priority Critical patent/JPH03246514A/en
Publication of JPH03246514A publication Critical patent/JPH03246514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To accurately control the amount of supplied liquid crystal in a small unit and to supply a proper amount of liquid crystal which is neither excessive nor deficient onto a substrate by dripping the liquid crystal on the substrate with a liquid crystal supply nozzle which discharges the liquid crystal by the vibration of the piezoelectric element. CONSTITUTION:The liquid crystal supply nozzle 10 which discharges a specific amount of liquid crystal supplied from a liquid crystal tank 320 by the vibration of the piezoelectric element 18 is used to drip the liquid crystal discharged from this nozzle on the substrate 1 plural times. The amount of liquid crystal from the liquid crystal supply nozzle 10 is therefore determined by the area and amplitude of the vibration part of the nozzle 10 and the amplitude of this vibration part is controlled with a voltage applied to the piezoelectric element 18, so the amount of liquid crystal dripped from the nozzle 10 each time is controllable to an extremely small amount. Consequently, the amount of liquid crystal which is supplied can accurately be controlled in small units and the liquid crystal can be supplied onto the substrate by the proper amount which is neither excessive nor deficient.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶表示素子用基板への液晶供給方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for supplying liquid crystal to a substrate for a liquid crystal display element.

〔従来の技術〕[Conventional technology]

従来、液晶表示素子は、透明電極および配向膜等を形成
した一対の基板をシール材により接着して液晶セルを組
立てた後、前記シール材の一部にあらかじめ形成してお
いた液晶注入口から真空注入法によってセル内に液晶を
注入充填し、この後液晶注入口を封止する方法で製造さ
れている。
Conventionally, in a liquid crystal display element, after a liquid crystal cell is assembled by bonding a pair of substrates on which transparent electrodes, an alignment film, etc. are formed using a sealing material, the liquid crystal is injected through a liquid crystal injection port previously formed in a part of the sealing material. It is manufactured by injecting liquid crystal into the cell using a vacuum injection method, and then sealing the liquid crystal injection port.

しかし、この製造方法では、真空注入法によるセル内へ
の液晶の注入に際してセルの液晶注入口を形成した側面
を液晶皿に浸漬しなければならないため、セルの側面に
液晶が付着してこの液晶が無駄になってしまうし、また
液晶の注入後に、セルの側面に付着した液晶の洗浄およ
び液晶注入口の封止を行なわなければならないため、液
晶表示素子の製造が面倒であった。
However, with this manufacturing method, when injecting liquid crystal into the cell using the vacuum injection method, the side surface of the cell where the liquid crystal injection port is formed must be immersed in a liquid crystal dish, which may cause liquid crystal to adhere to the side surface of the cell and cause the liquid crystal to be injected into the cell. In addition, after the liquid crystal is injected, it is necessary to clean the liquid crystal adhering to the side surface of the cell and seal the liquid crystal injection port, which makes manufacturing the liquid crystal display element troublesome.

このため、最近では、セルを組立てる前に、その一方の
基板上に適量の液晶を供給し、この後−対の基板を真空
中で重°合接着してセルを組立てる製造方法が考えられ
ており、この方法によれば、液晶を無駄にすることなく
、かつ能率的に液晶表示素子を製造することができる。
For this reason, recently, a manufacturing method has been devised in which before assembling the cell, an appropriate amount of liquid crystal is supplied onto one of the substrates, and then the opposite substrate is polymerized and bonded in vacuum to assemble the cell. According to this method, a liquid crystal display element can be efficiently manufactured without wasting liquid crystal.

この方法で液晶表示素子を製造する場合、従来は、液晶
を供給する基板面にシール材(エポキシ系樹脂等の熱硬
化性接着剤)を枠状に印刷してこのシール材を半硬化さ
せた後、この基板の枠状シ−ル材で囲まれた液晶封入領
域に、エアー圧で液晶を押出すエアー押出型デイスペン
サによって液晶を滴下供給している。
When manufacturing liquid crystal display elements using this method, conventionally, a frame-shaped sealing material (thermosetting adhesive such as epoxy resin) was printed on the surface of the substrate supplying the liquid crystal, and the sealing material was semi-cured. Thereafter, the liquid crystal is dripped into the liquid crystal enclosed area of the substrate surrounded by the frame-shaped sealing material using an air extrusion type dispenser that extrudes the liquid crystal using air pressure.

なお、前記基板上に滴下供給された液晶は、この基板と
もう1枚の基板とを重ね合わせてその間隔が所定のセル
ギャップとなるように加圧することにより、シール材で
囲まれた領域全体に押し広げられる。また、重合された
一対の基板は、その加圧後に前記シール材を硬化させる
ことによって接着される。
Note that the liquid crystal dropwise supplied onto the substrate is applied to the entire area surrounded by the sealing material by overlapping this substrate and another substrate and applying pressure so that the interval between them becomes a predetermined cell gap. It is pushed out. Further, the pair of polymerized substrates is bonded together by curing the sealing material after applying pressure.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしながら、エアー押出型デイスペンサによって基板
上に液晶を滴下する従来の液晶供給方法は、デイスペン
サの1回当りの液晶の滴下量が多いため、液晶の供給量
を精度よく制御できないという問題をもっている。
However, the conventional liquid crystal supply method in which liquid crystal is dropped onto a substrate using an air extrusion dispenser has a problem in that the amount of liquid crystal dropped per dispenser is large, and the amount of liquid crystal supplied cannot be precisely controlled.

すなわち、上記エアー押出型デイスペンサには、エアー
圧のみて液晶を押出すものと、液晶の押出孔にニードル
を設け、このニードルをソレノイドにより上下動させて
液晶を押出すようにしたものとがあり、ニードルを備え
たデイスペンサは比較的少量滴下が可能であるが、それ
でも、1回当りの液晶の滴下量は最少で1 mg±10
%程度である。
That is, the above-mentioned air extrusion type dispensers include those that extrude the liquid crystal using only air pressure, and those that extrude the liquid crystal by providing a needle in the extrusion hole of the liquid crystal and moving the needle up and down with a solenoid. Although a dispenser equipped with a needle is capable of dispensing a relatively small amount, the amount of liquid crystal dispensed each time is still at least 1 mg ± 10.
It is about %.

そして、基板への液晶の供給は、基板の液晶封入領域の
面積および液晶供給後に組立てられるセルのセルギャッ
プに応じて所要回数(例えば小画面の液晶表示素子に用
いる基板の場合は1〜数回)液晶を滴下する方法で行わ
れるが、上記従来の液晶供給方法では、ニードルを備え
たデイスペンサを使用しても、1回当りの液晶の滴下量
が上述したように1 mg±10%程度と大きいため、
基板への液晶の供給量は1 mg±10%の大きな単位
でしか制御することができない。
The liquid crystal is supplied to the substrate the required number of times (for example, once to several times in the case of a substrate used for a small screen liquid crystal display element), depending on the area of the liquid crystal sealing area of the substrate and the cell gap of the cells assembled after supplying the liquid crystal. ) However, in the conventional liquid crystal supply method described above, even if a dispenser equipped with a needle is used, the amount of liquid crystal dropped per time is about 1 mg ± 10% as described above. Because it is large,
The amount of liquid crystal supplied to the substrate can only be controlled in large units of 1 mg±10%.

このため、従来の液晶供給方法では、液晶の供給量が不
足して、組立てられたセル中に空隙ができたり、液晶の
供給量が多すぎて、セルの組立時に液晶がシール材を乗
越えてしまうことがあった。
For this reason, with conventional liquid crystal supply methods, the amount of liquid crystal supplied may be insufficient, creating gaps in the assembled cell, or the amount of liquid crystal supplied may be too large, causing the liquid crystal to overcome the sealing material during cell assembly. Sometimes I put it away.

しかも、上記従来の液晶供給方法では、1回当りの液晶
の滴下量が多く、したがって基板上に滴下された液晶の
液滴も大きいため、液晶を基板面のシール材から離れた
箇所に滴下しても、その液滴が表面張力に打ち勝って広
範囲に流れ広がってシール材に触れ、そのために基板上
に供給された液晶が劣化してしまうという問題もあった
。これは、基板上への液晶の供給時はシール材が未硬化
(半硬化)状態であるためてあり、未硬化のシール材に
液晶を長時間(基板上への液晶供給時から一対の基板を
重合加圧後してシール材2を硬化させるまでの時間)触
れさせておくと、シール材からの不純物の混入および液
晶の分解によって液晶が変質し、その特性か劣化してし
まう。
Moreover, in the above-mentioned conventional liquid crystal supply method, the amount of liquid crystal dropped per time is large, and the droplets of liquid crystal dropped on the substrate are also large. However, there is a problem in that the droplets overcome the surface tension and spread over a wide range and touch the sealing material, thereby deteriorating the liquid crystal supplied on the substrate. This is because the sealant is in an uncured (semi-cured) state when liquid crystal is supplied onto the substrate, and liquid crystal is applied to the uncured sealant for a long period of time (from the time liquid crystal is supplied onto the substrate to when the pair of substrates If the liquid crystal is left in contact with the liquid crystal (for a period of time after polymerization and pressurization until the sealing material 2 is cured), the quality of the liquid crystal will change due to the introduction of impurities from the sealing material and decomposition of the liquid crystal, and its properties will deteriorate.

本発明は上記のような実情にかんがみてなされたもので
あって、その目的とするところは、液晶の供給量を小さ
い単位で精度良く制御して過不足のない適量の液晶を基
板上に供給することができ、しかも基板上に滴下された
液晶の流れ広がりもほとんどなくして、未硬化のシール
材に液晶が触れることによる液晶の劣化も防ぐことがで
きる、液晶表示素子用基板への液晶供給方法を提供する
ことにある。
The present invention was made in view of the above-mentioned circumstances, and its purpose is to precisely control the supply amount of liquid crystal in small units to supply an appropriate amount of liquid crystal on a substrate. Supplying liquid crystal to a substrate for a liquid crystal display element, which can also prevent liquid crystal from deteriorating due to contact with uncured sealant by almost eliminating the flow and spreading of liquid crystal dropped onto the substrate. The purpose is to provide a method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の液晶表示素子用基板への液晶供給方法は、液晶
タンクから供給される液晶を圧電素子の振動によって所
定量吐出する液晶供給ノズルを用い、このノズルから吐
出される液晶を基板上に複数回滴下することを特徴とす
るものである。
The method of supplying liquid crystal to a substrate for a liquid crystal display element of the present invention uses a liquid crystal supply nozzle that discharges a predetermined amount of liquid crystal supplied from a liquid crystal tank by vibration of a piezoelectric element, and a plurality of liquid crystals discharged from this nozzle are placed on a substrate. It is characterized by being dropped multiple times.

〔作用〕[Effect]

すなわち、本発明は、基板上への液晶の滴下を、圧電素
子の振動によって液晶を吐出する液晶供給ノズルによっ
て行なうもので、この液晶供給ノズルからの液晶の吐出
量は、ノズルの振動部の面積と振幅によって決まり、ま
たこの振動部の振幅は圧電素子に印加する電圧によって
制御できるから、ノズルからの1回当りの液晶の滴下量
を、極く微少な量とすることができる。したがって、本
発明によれば、液晶の供給量を小さい単位で精度良く制
御して過不足のない適量の液晶を基板上に供給すること
ができる。また、本発明によれば、基板上に滴下される
液晶の液滴が小さいため、基板上に滴下されだ液滴はそ
の表面張力によって滴状態を保つから、この液滴を、基
板上で互いにくっつき合って大きな滴とならないように
位置をずらして滴ドすれば、基板上に滴ドされた液晶の
流れ広がりもほとんどなくして、未硬化のシール材に液
晶か触れることによる液晶の劣化も防ぐことができる。
That is, in the present invention, liquid crystal is dropped onto a substrate by a liquid crystal supply nozzle that discharges liquid crystal by vibration of a piezoelectric element, and the amount of liquid crystal discharged from this liquid crystal supply nozzle is determined by the area of the vibrating part of the nozzle. Since the amplitude of this vibrating portion can be controlled by the voltage applied to the piezoelectric element, the amount of liquid crystal dropped from the nozzle per drop can be made extremely small. Therefore, according to the present invention, it is possible to accurately control the supply amount of liquid crystal in small units and supply an appropriate amount of liquid crystal on the substrate without excess or deficiency. Further, according to the present invention, since the liquid crystal droplets dropped on the substrate are small, the droplets dropped on the substrate maintain a droplet state due to their surface tension. By shifting the positions of the drops so that they do not stick together and forming large drops, the liquid crystal that has been dropped onto the substrate will hardly flow and spread, and it will also prevent deterioration of the liquid crystal caused by the liquid crystal touching uncured sealant. be able to.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第8図を参照して説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8.

第1図は本実施例による基板上への液晶供給状態を示し
たもので、図中1はガラス板等からなる液晶表示素子用
の透明基板であり、この基板1面には、ITO等からな
る透明電極と配向処理膜(いずれも図示せず)が形成さ
れるとともに、液晶封入領域を囲んで、熱硬化性接着剤
からなる枠状のシール材2が印刷されている。なお、こ
のシール材2は、その硬化温度より低い温度で、前記基
板1ともう1枚の基板とを重ね合わせて加圧したときに
その圧力で潰れ変形する程度の硬度に半硬化されている
。10は前記基板1の枠状シール材2で囲まれた液晶封
入領域に液晶aを供給する液晶供給ノズルである。
FIG. 1 shows the state of supplying liquid crystal onto a substrate according to this embodiment. In the figure, 1 is a transparent substrate for a liquid crystal display element made of a glass plate, etc., and one surface of this substrate is coated with ITO, etc. A transparent electrode and an alignment film (both not shown) are formed, and a frame-shaped sealing material 2 made of a thermosetting adhesive is printed surrounding the liquid crystal enclosed area. Note that this sealing material 2 is semi-cured at a temperature lower than its curing temperature to such a degree that when the substrate 1 and another substrate are stacked and pressurized, the sealing material 2 is crushed and deformed by the pressure. . Reference numeral 10 denotes a liquid crystal supply nozzle that supplies liquid crystal a to the liquid crystal sealed area surrounded by the frame-shaped sealing material 2 of the substrate 1.

この液晶供給ノズル10は、第3図〜第5図に示すよう
に、縦形箱状をなす中空のノズル本体11の一面に圧電
素子18を設けたもので、ノズル本体11内は垂直な仕
切板11bによって前面側と背面側とに区画されており
、背面側の空間は液晶溜室12とされ、前面側の空間は
液晶吐出室13とされている。そして、このノズル本体
11の背面の上端部には、液晶溜室12内に連通する液
晶補給口14が設けられており、また、仕切板11bの
上端部と下端部には、液晶溜室12と液晶吐出室13の
上端部゛を連通ずる液晶吸入口15゜16が設けられて
いる。この液晶吸入口15゜16のうち、上端側の吸入
口15は大径孔とされ、補助吸入口16は小径孔とされ
ている。また、前記液晶吐出室13の底部には、ノズル
本体11の下面に開口する小径の液晶吐出口17が設け
られている。さらに、ノズル本体11の前面、つまり液
晶吐出室13の前面板は、金属薄板からなる振動板11
cとされており、前記圧電素子18はこの振動板11c
の外面に接着されている。なお、前記ノズル本体11は
、液晶溜室12となる凹入部と前記液晶補給口14とを
形成した背面板11aと、液晶吐出室13となる凹入部
と前記液晶吸入口15.16および液晶吐出口17を形
成した仕切板11bと、前記振動板11cとを接着した
ものである。
As shown in FIGS. 3 to 5, this liquid crystal supply nozzle 10 has a piezoelectric element 18 provided on one side of a vertical box-shaped hollow nozzle body 11, and inside the nozzle body 11 is a vertical partition plate. It is divided into a front side and a back side by 11b, the space on the back side is a liquid crystal reservoir chamber 12, and the space on the front side is a liquid crystal discharge chamber 13. A liquid crystal supply port 14 communicating with the liquid crystal reservoir 12 is provided at the upper end of the back surface of the nozzle body 11, and a liquid crystal supply port 14 communicating with the liquid crystal reservoir 12 is provided at the upper and lower ends of the partition plate 11b. Liquid crystal inlets 15 and 16 are provided which communicate with the upper end of the liquid crystal discharge chamber 13. Among the liquid crystal suction ports 15 and 16, the suction port 15 on the upper end side is a large diameter hole, and the auxiliary suction port 16 is a small diameter hole. Further, at the bottom of the liquid crystal discharge chamber 13, a small diameter liquid crystal discharge port 17 that opens at the lower surface of the nozzle body 11 is provided. Furthermore, the front surface of the nozzle body 11, that is, the front plate of the liquid crystal discharge chamber 13, is a diaphragm 11 made of a thin metal plate.
c, and the piezoelectric element 18 is connected to this diaphragm 11c.
is glued to the outside surface of the The nozzle body 11 includes a back plate 11a in which a recessed portion that becomes the liquid crystal storage chamber 12 and the liquid crystal supply port 14 are formed, a recessed portion that becomes the liquid crystal discharge chamber 13, the liquid crystal suction port 15, 16, and the liquid crystal discharge port 14. A partition plate 11b in which an outlet 17 is formed and the diaphragm 11c are bonded together.

そして、上記液晶供給ノズル10は、第1図に示すよう
に、液晶吐出口17を下にして基板搬入位置の上方に垂
直に設置されており、この液晶供給ノズル10の液晶補
給口14には液晶タンク20に接続した液晶供給ホース
21が接続され、また圧電素子18には発振回路19が
接続されている。
As shown in FIG. 1, the liquid crystal supply nozzle 10 is installed vertically above the substrate loading position with the liquid crystal discharge port 17 facing down. A liquid crystal supply hose 21 connected to the liquid crystal tank 20 is connected, and an oscillation circuit 19 is connected to the piezoelectric element 18.

この実施例の液晶供給方法は、上記のような液晶供給ノ
ズル10を用い、この液晶供給ノズル10の下に搬入し
た基板1を一方向に水平移動させるとともに、この基板
1の移動方向と直交する方向にノズル10を走査移動さ
せながら、基板1上に液晶aを滴下供給するもので、液
晶供給ノズル10からの液晶aの滴下は、このノズル1
0の振動板11Cを圧電素子18によって振動させるこ
とによって行なう。
The liquid crystal supply method of this embodiment uses the liquid crystal supply nozzle 10 as described above, and horizontally moves the substrate 1 carried under the liquid crystal supply nozzle 10 in one direction, and also horizontally moves the substrate 1 in one direction orthogonal to the moving direction of the substrate 1. The liquid crystal a is dripped onto the substrate 1 while the nozzle 10 is scanned in the direction shown in FIG.
This is done by vibrating the diaphragm 11C of No. 0 using the piezoelectric element 18.

第6図〜第8図は上記液晶供給ノズル10の液晶吐出動
作を示したもので、第6図は初期状態であり、ノズル1
0の液晶溜室12および液晶吐出室13には、液晶タン
ク20から供給された液晶aが満たされている。なお、
液晶タンク20からノズル10内への液晶aの供給は、
液晶タンク20をノズル10より高い位置に設置して重
力により液晶aをノズル10内に供給するか、あ′るい
は、液晶タンク20内°を所定の気圧に加圧してその圧
力で液晶aをノズル10内に供給する方法で行なう。ま
た、この場合、ノズル10内の液晶aには液晶タンク2
0からの供給圧がかかっているため、液晶吐出室13の
液晶aはその圧力で吐出口17内にも押込まれるが、吐
出口17内の液晶aは、その先端の表面張力とノズル1
0内の液晶aの圧力とが釣り合ったところでその位置に
止まるから、液晶タンク20からの供給圧を、吐出口1
7内の液晶aを外部に押出してしまわない程度の圧力に
設定しておけば、吐出口17内の液晶aが漏れ落ちてし
まうことはない。
6 to 8 show the liquid crystal discharging operation of the liquid crystal supply nozzle 10. FIG. 6 shows the initial state, and the nozzle 1
The liquid crystal reservoir chamber 12 and liquid crystal discharge chamber 13 of No. 0 are filled with liquid crystal a supplied from the liquid crystal tank 20. In addition,
The supply of liquid crystal a from the liquid crystal tank 20 into the nozzle 10 is as follows:
Either the liquid crystal tank 20 is installed at a higher position than the nozzle 10 and the liquid crystal a is supplied into the nozzle 10 by gravity, or the inside of the liquid crystal tank 20 is pressurized to a predetermined atmospheric pressure and the liquid crystal a is supplied with that pressure. This is done by supplying it into the nozzle 10. In addition, in this case, the liquid crystal tank 2 is in the liquid crystal a in the nozzle 10.
Since the supply pressure from 0 is applied, the liquid crystal a in the liquid crystal discharge chamber 13 is also pushed into the discharge port 17 by the pressure, but the liquid crystal a in the discharge port 17 is affected by the surface tension of its tip and the nozzle 1.
It stops at that position when the pressure of liquid crystal a in the liquid crystal tank 20 is balanced with the pressure of the liquid crystal a in the liquid crystal tank 20.
If the pressure is set to a level that does not push out the liquid crystal a in the discharge port 17, the liquid crystal a in the discharge port 17 will not leak out.

第7図および第8図は液晶の吐出状態および吐出停止状
態を示しており、ノズル10内に液晶aを満たした状態
で圧電素子18に発振回路19から所定周波数の駆動信
号(電圧信号)を印加すると、この圧電素子18によっ
てノズル10の振動板11cが振動する。そして、圧電
素子18に電圧が印加され、この圧電素子18により振
動板11Cが第7図に示すように内側に振れると、液晶
吐出室13の容積が小さくなってその内圧が高くなり、
この圧力で液晶吐出室13内の液晶aが吐出口17から
吐出される。この液晶aの吐出量は、液晶吐出室13の
容積の減少量と同じであり、このノズル10からの1回
当りの液晶aの吐出量は、振動板11cの面積と振幅に
よって決まる。
7 and 8 show the liquid crystal discharge state and the discharge stop state, in which a drive signal (voltage signal) of a predetermined frequency is applied to the piezoelectric element 18 from the oscillation circuit 19 with the nozzle 10 filled with liquid crystal a. When applied, the piezoelectric element 18 causes the vibration plate 11c of the nozzle 10 to vibrate. Then, when a voltage is applied to the piezoelectric element 18 and the vibration plate 11C swings inward as shown in FIG. 7, the volume of the liquid crystal discharge chamber 13 becomes smaller and its internal pressure increases.
With this pressure, the liquid crystal a in the liquid crystal discharge chamber 13 is discharged from the discharge port 17. The amount of liquid crystal a discharged is the same as the amount of decrease in the volume of liquid crystal discharge chamber 13, and the amount of liquid crystal a discharged from nozzle 10 per time is determined by the area and amplitude of diaphragm 11c.

この振動板11cの振幅は、圧電素子18に印加する駆
動信号の振幅(電圧)によって制御できる。
The amplitude of this diaphragm 11c can be controlled by the amplitude (voltage) of the drive signal applied to the piezoelectric element 18.

なお、この実施例では、ノズル10からの1回当りの液
晶aの吐出量を、Q 、  i、 mg 〜0 、 0
1 rngの範囲で制御するようにしている。
In this example, the amount of liquid crystal a discharged from the nozzle 10 per time is Q, i, mg ~ 0, 0
It is controlled within the range of 1 rng.

また、圧電素子18の振動によって振動板11Cが第8
図に示すように復帰すると、液晶吐出室13の容積が元
に戻ってその内圧が負圧となり、液晶溜室12内の液晶
aが液晶吸入口15゜16から液晶吐出室13に吸入さ
れるとともに、液晶タンク20からの供給液晶aが液晶
補給口14から液晶溜室12に補給される。このとき、
吐出口17内の液晶aは、液晶吐出室13内が負圧とな
ることによって一時的に第8図に示すように液晶吐出室
13側に゛吸引されるが、液晶吐出室13内にはその下
端部の補助吸入口16からも液晶aが吸入されるため、
吐出口17内の液晶aが完全に液晶吐出室13内に入っ
てしまうことはなく、したがって、液晶吐出室〕3内の
下端部に空気か吸入されてこの空気溜りにより次の液晶
aの吐出が不能となることはない。また、液晶吐出室1
3内に吐出量分の液晶aが吸入されてその内圧が初期の
圧力(液晶タンク20からの供給圧)になると、吐出口
17内の液晶aは、第6図に示す初期−状態のレベルに
戻る。
Also, the vibration of the piezoelectric element 18 causes the diaphragm 11C to move to the eighth position.
When it is restored as shown in the figure, the volume of the liquid crystal discharge chamber 13 returns to its original value and its internal pressure becomes negative pressure, and the liquid crystal a in the liquid crystal reservoir chamber 12 is sucked into the liquid crystal discharge chamber 13 from the liquid crystal suction port 15° 16. At the same time, the liquid crystal a supplied from the liquid crystal tank 20 is replenished into the liquid crystal reservoir 12 from the liquid crystal replenishment port 14. At this time,
The liquid crystal a in the discharge port 17 is temporarily sucked toward the liquid crystal discharge chamber 13 as shown in FIG. 8 due to negative pressure in the liquid crystal discharge chamber 13; Since the liquid crystal a is also sucked in from the auxiliary suction port 16 at the lower end,
The liquid crystal a in the discharge port 17 does not completely enter the liquid crystal discharge chamber 13, so that some air is sucked into the lower end of the liquid crystal discharge chamber]3, and this air pocket prevents the next liquid crystal a from being discharged. is not impossible. In addition, the liquid crystal discharge chamber 1
When the discharge amount of liquid crystal a is sucked into the discharge port 17 and its internal pressure becomes the initial pressure (supply pressure from the liquid crystal tank 20), the liquid crystal a in the discharge port 17 reaches the initial state level shown in FIG. Return to

以下は、上記動作の繰返しであり、液晶供給ノズル10
は、発振回路19から圧電素子18に印加される駆動信
号の周波数に応じた周期で、液晶aを吐出する。
The following is a repetition of the above operation, and the liquid crystal supply nozzle 10
The liquid crystal a is ejected at a period corresponding to the frequency of the drive signal applied from the oscillation circuit 19 to the piezoelectric element 18.

そして、基板1を一方向に水平移動させるとともに、こ
の基板1の移動方向と直交する方向にノズル10を走査
移動させながら、所定周期て上記ノズル10から液晶a
を吐出させると、このノズル10から吐出された液晶a
が、第1図および第2図に示すように、基板1上のシー
ル材2で囲まれた液晶封入領域にそのほぼ全域にわたっ
て点在させて滴下される。なお、この基板1上への液晶
aの滴下回数は、ノズル10からの1回当りの液晶aの
吐出量と、基板1上に供給しようとする目標供給量に応
じて決定すればよい。また、基板1上への液晶aの滴下
範囲は、第2図に鎖線で示した、シール材2の近傍を避
けた範囲とする。この滴下範囲は、ノズル10の走査振
幅およびノズル10の液晶吐出開始および停止タイミン
グを、シール材2の内周縁よりある程度小さい面積に合
わせて設定しておくことで規制することができる。
Then, while horizontally moving the substrate 1 in one direction and scanningly moving the nozzle 10 in a direction perpendicular to the moving direction of the substrate 1, the liquid crystal a is ejected from the nozzle 10 at a predetermined period.
When the liquid crystal a is discharged from this nozzle 10,
As shown in FIGS. 1 and 2, the droplets are scattered over almost the entire area of the liquid crystal sealed area surrounded by the sealant 2 on the substrate 1. The number of drops of the liquid crystal a onto the substrate 1 may be determined according to the amount of liquid crystal a discharged from the nozzle 10 per time and the target supply amount to be supplied onto the substrate 1. Further, the dropping range of the liquid crystal a onto the substrate 1 is set to the range shown by the chain line in FIG. 2, avoiding the vicinity of the sealing material 2. This dropping range can be regulated by setting the scanning amplitude of the nozzle 10 and the liquid crystal ejection start and stop timing of the nozzle 10 to match an area that is somewhat smaller than the inner peripheral edge of the sealing material 2.

すなわち、上記液晶供給方法は、−面を振動板11aで
構成するとともにこの振動板11aに圧電素子18を取
付けた液晶供給ノズル10を用い、このノズル10の振
動板11aを圧電素子18によって振動させることによ
り、ノズル10内の液晶aの吐出および液晶タンク20
から供給される液晶aのノズル10内への吸入を所要回
数繰返して、ノズル10から吐出される液晶aを基板1
上に位置をずらしながら滴下するもので、液晶供給ノズ
ル10からの液晶aの吐出量は、振動板11Hの面積と
振幅によって決まり、またこの振動板11aの振幅は圧
電素子18に印加する電圧によって制御できるから、ノ
ズル10からの1回当りの液晶aの滴下量を、極く微少
な量(上記実施例では、0.1mg〜0.01+ng)
とすることができる。
That is, the liquid crystal supply method described above uses a liquid crystal supply nozzle 10 whose negative side is constituted by a diaphragm 11a and a piezoelectric element 18 is attached to this diaphragm 11a, and causes the diaphragm 11a of this nozzle 10 to be vibrated by the piezoelectric element 18. By this, the liquid crystal a in the nozzle 10 is discharged and the liquid crystal tank 20
The liquid crystal a supplied from the nozzle 10 is sucked into the nozzle 10 a required number of times, and the liquid crystal a discharged from the nozzle 10 is transferred to the substrate 1.
The amount of liquid crystal a discharged from the liquid crystal supply nozzle 10 is determined by the area and amplitude of the diaphragm 11H, and the amplitude of the diaphragm 11a is determined by the voltage applied to the piezoelectric element 18. Since it can be controlled, the amount of liquid crystal a dropped each time from the nozzle 10 can be reduced to an extremely small amount (0.1 mg to 0.01+ng in the above example).
It can be done.

したかって、この液晶供給方法によれば、液晶aの供給
量を、エアー押出型デイスペンサを用いる従来の供給方
法に比べてはるかに小さい単位(上記実施例の場合で1
/10〜1/100の単位)で精度良(制御して、過不
足のない適量の液晶aを基板1上に供給することができ
るから、従来の供給方法のように、液晶の供給量が不足
して、組立てられたセル中に空隙ができたり、液晶の供
給量が多すぎて、セルの組立時に液晶がシール材を乗越
えてしまうことはない。
Therefore, according to this liquid crystal supply method, the supply amount of liquid crystal a can be supplied in much smaller units (1 in the case of the above example) than in the conventional supply method using an air extrusion type dispenser.
Since it is possible to control and supply an appropriate amount of liquid crystal a onto the substrate 1 with a unit of 1/10 to 1/100), the amount of liquid crystal supplied is There is no possibility that a gap will be created in the assembled cell due to an insufficient amount of liquid crystal, or that the liquid crystal will not exceed the sealing material during cell assembly due to an excessive supply of liquid crystal.

また、この液晶供給方法によれば、基板1上に滴下され
る液晶aの液滴が小さいため、基板1上に滴下された液
滴はその表面張力によって滴状態を保つから、この液滴
を、基板1上で互いにくっつき合って大きな滴とならな
いような間隔で位置をずらして滴下すれば、基板1上に
滴下された液晶aの流れ広がりもほとんどなくして、未
硬化のシール材2に液晶aが触れることによる液晶aの
劣化も防ぐことができる。
Furthermore, according to this liquid crystal supply method, since the droplets of liquid crystal a dropped onto the substrate 1 are small, the droplets dropped onto the substrate 1 maintain a droplet state due to their surface tension. If the drops are placed on the substrate 1 at different positions at intervals so that they do not stick together and form large drops, the liquid crystal a dropped on the substrate 1 will hardly flow and spread, and the liquid crystal will be placed on the uncured sealing material 2. Deterioration of the liquid crystal a due to contact with the liquid crystal a can also be prevented.

ただし、基板1上に供給した液晶aは、この基板1とも
う1枚の基板(図示せず)とを重ね合わせてその間隔が
所定のセルギャップとなるように加圧したときに、シー
ル材2で囲まれた液晶封入領域全体に押し広げられるた
め、このときに液晶aが未硬化(半硬化)状態のシール
材2に触れるが、重合された一対の基板は、その加圧後
、直ちにシール材2を硬化させることによって接着され
るから、液晶aが未硬化のシール材2に触れている時間
は極く僅かであり、したがってこの間に液晶aがこれを
劣化させるような影響を受けることはない。
However, when the liquid crystal a supplied onto the substrate 1 is overlaid on this substrate 1 and another substrate (not shown) and pressurized so that the interval between them becomes a predetermined cell gap, the sealing material 2, the liquid crystal a touches the uncured (semi-cured) sealing material 2, but the pair of polymerized substrates immediately Since the liquid crystal a is bonded by curing the sealing material 2, the time that the liquid crystal a is in contact with the uncured sealing material 2 is extremely short, and therefore, during this time, the liquid crystal a is not affected to deteriorate it. There isn't.

なお、上記実施例では、基板1上に液晶aを点在させて
滴下するのに、基板1を一方向に水平移動させるととも
に、この基板1の移動方向と直交する方向にノズル10
を走査移動させているが、この液晶aの点在滴下は、基
板1またはノズル10だけを前後左右に水平移動させて
行なってもよいし、また、複数のノズル10を使用し、
この各ノズル10を基板1の移動方向と交差する方向に
並べておいて、基板1を一方向に水平移動させながら行
なってもよい。また、上記実施例では、液晶表示素子1
個分の基板1に液晶aを供給する例を示したが、本発明
は、セルの組立て後に個々の素子に分離される、液晶表
示素子複数個分の面積の大型基板の各素子部分に液晶を
供給するのにも適用できる。さらに上記実施例では、液
晶供給ノズル10を、液晶溜室12と液晶吐出室13と
を白゛するものとしたが、この液晶供給ノズルは、−面
を振動板で構成した1つの液晶室だけをもち、この液晶
室に液晶吸入口と吐出口を設けるとともに、前記振動板
に圧電素子を取付けたものとしてもよい。
In the above embodiment, in order to drop the liquid crystal a on the substrate 1, the substrate 1 is moved horizontally in one direction, and the nozzle 10 is moved in a direction perpendicular to the moving direction of the substrate 1.
This dotted dropping of the liquid crystal a may be performed by horizontally moving only the substrate 1 or the nozzle 10 back and forth, left and right, or by using a plurality of nozzles 10.
The nozzles 10 may be arranged in a direction intersecting the moving direction of the substrate 1, and the step may be performed while the substrate 1 is horizontally moved in one direction. Further, in the above embodiment, the liquid crystal display element 1
Although an example has been shown in which liquid crystal a is supplied to individual substrates 1, the present invention provides liquid crystal display for each element portion of a large substrate with an area equivalent to a plurality of liquid crystal display elements, which is separated into individual elements after cell assembly. It can also be applied to supply. Furthermore, in the above embodiment, the liquid crystal supply nozzle 10 has a white liquid crystal reservoir chamber 12 and a liquid crystal discharge chamber 13, but this liquid crystal supply nozzle only has one liquid crystal chamber whose negative side is constituted by a diaphragm. The liquid crystal chamber may be provided with a liquid crystal inlet and an outlet, and a piezoelectric element may be attached to the vibration plate.

〔発明の効果〕〔Effect of the invention〕

本発明は、基板上への液晶の滴下を、圧電素子の振動に
よって液晶を吐出する液晶供給ノズルによって行なうも
のであるから、ノズルからの1回当りの液晶の滴下量を
、極く微少な量とすることかでき、したがって、液晶の
供給量を小さい単位で精度良く制御して過不足のない適
量の液晶を基板上に供給することができる。また本発明
によれば、基板上に滴下される液晶の液滴が小さいため
、基板上に滴下された液滴はその表面張力によって滴状
態を保つから、この液滴を、基板上で互いにくっつき合
って大きな滴とならないように位置をずらして滴下すれ
ば、基板上に滴下された液晶の流れ広がりもほとんどな
くして、未硬化のシール材に液晶が触れることによる液
晶の劣化も防ぐことができる。
In the present invention, the liquid crystal is dropped onto the substrate using a liquid crystal supply nozzle that discharges the liquid crystal by the vibration of a piezoelectric element. Therefore, the amount of liquid crystal dropped from the nozzle at one time can be reduced to an extremely small amount. Therefore, the supply amount of liquid crystal can be precisely controlled in small units to supply an appropriate amount of liquid crystal onto the substrate. Further, according to the present invention, since the liquid crystal droplets dropped on the substrate are small, the droplets dropped on the substrate maintain their droplet state due to their surface tension, so that the droplets stick to each other on the substrate. By shifting the position of the droplets so that they do not overlap and form large droplets, the liquid crystals dropped onto the substrate will hardly spread out and will prevent deterioration of the liquid crystals due to contact with uncured sealant. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第8図は本発明の一実施例を示したもので、第
1図は基板上への液晶供給状態を示す側面図、第2図は
液晶を供給された基板の平面図、第3図は液晶供給ノズ
°ルの正面図、第4図および第5図は第3図のTV−T
V線およびV−V線に沿う断面図、第6図〜第8図は液
晶供給ノズルの液晶吐出動作図である。 1・・・基板、2・・・シール材、a・・・液晶、1o
・・・液晶供給ノズル、11・・・ノズル本体、llc
・・・振動板、12・・・液晶溜室、13・・・液晶吐
出室、14・・・液晶補給口、15.16・・・液晶吸
入口、17・・・液晶吐出口、 1 ・・・振動板、 ・・・発振回路、 り 0・・・液晶タンク、 ク ト ・・液晶供給ホース。
FIGS. 1 to 8 show an embodiment of the present invention, in which FIG. 1 is a side view showing a state in which liquid crystal is supplied onto a substrate, FIG. 2 is a plan view of a substrate supplied with liquid crystal, Figure 3 is a front view of the liquid crystal supply nozzle, Figures 4 and 5 are the TV-T shown in Figure 3.
The sectional views taken along the V line and the V-V line, and FIGS. 6 to 8 are diagrams of the liquid crystal discharging operation of the liquid crystal supply nozzle. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Sealing material, a...Liquid crystal, 1o
...Liquid crystal supply nozzle, 11...Nozzle body, llc
...Vibration plate, 12...Liquid crystal reservoir chamber, 13...Liquid crystal discharge chamber, 14...Liquid crystal supply port, 15.16...Liquid crystal suction port, 17...Liquid crystal discharge port, 1.・・Vibration plate, ・・Oscillation circuit, ・・LCD tank, ・・・LCD supply hose.

Claims (1)

【特許請求の範囲】[Claims] 液晶表示素子用基板の枠状シール材で囲まれた液晶封入
領域に液晶を供給する方法において、液晶タンクから供
給される液晶を圧電素子の振動によって所定量吐出する
液晶供給ノズルを用い、このノズルから吐出される液晶
を前記基板上に複数回滴下することを特徴とする液晶表
示素子用基板への液晶供給方法。
In a method of supplying liquid crystal to a liquid crystal enclosure area surrounded by a frame-shaped sealing material of a substrate for a liquid crystal display element, a liquid crystal supply nozzle that discharges a predetermined amount of liquid crystal supplied from a liquid crystal tank by vibration of a piezoelectric element is used. 1. A method for supplying liquid crystal to a substrate for a liquid crystal display element, comprising dropping liquid crystal discharged from the substrate onto the substrate multiple times.
JP4244190A 1990-02-26 1990-02-26 Method for supplying liquid crystal to substrate for liquid crystal display element Pending JPH03246514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4244190A JPH03246514A (en) 1990-02-26 1990-02-26 Method for supplying liquid crystal to substrate for liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4244190A JPH03246514A (en) 1990-02-26 1990-02-26 Method for supplying liquid crystal to substrate for liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH03246514A true JPH03246514A (en) 1991-11-01

Family

ID=12636164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4244190A Pending JPH03246514A (en) 1990-02-26 1990-02-26 Method for supplying liquid crystal to substrate for liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH03246514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004334221A (en) * 2003-05-09 2004-11-25 Lg Phillips Lcd Co Ltd Apparatus and method for dripping liquid crystal
US7096911B2 (en) 2000-11-30 2006-08-29 Fujitsu Limited Apparatus for manufacturing bonded substrate
KR100701442B1 (en) * 2001-05-10 2007-03-30 엘지.필립스 엘시디 주식회사 Application Method of Liquid Crystal using ink jet system
US7316750B2 (en) 2000-03-29 2008-01-08 Sharp Kabushiki Kaisha Method for manufacturing liquid crystal display
US8493542B2 (en) * 1995-01-11 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Method and system for fabricating liquid crystal cells

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593614B2 (en) 1995-01-11 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method and system for fabricating liquid crystal cells
US8493542B2 (en) * 1995-01-11 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Method and system for fabricating liquid crystal cells
US7316750B2 (en) 2000-03-29 2008-01-08 Sharp Kabushiki Kaisha Method for manufacturing liquid crystal display
US7621310B2 (en) 2000-11-30 2009-11-24 Fujitsu Limited Apparatus for manufacturing bonded substrate
US7300532B2 (en) 2000-11-30 2007-11-27 Fujitsu Limited Method for manufacturing bonded substrate
US7513966B2 (en) 2000-11-30 2009-04-07 Fujitsu Limited Apparatus for manufacturing bonded substrate
KR100942466B1 (en) * 2000-11-30 2010-02-12 후지쯔 가부시끼가이샤 Apparatus for dropping liquid crystal
US7681522B2 (en) 2000-11-30 2010-03-23 Fujitsu Limited Apparatus for manufacturing bonded substrate
US7703494B2 (en) 2000-11-30 2010-04-27 Fujitsu Limited Apparatus for manufacturing bonded substrate
US7819165B2 (en) 2000-11-30 2010-10-26 Fujitsu Limited Apparatus for manufacturing bonded substrate
US8128768B2 (en) 2000-11-30 2012-03-06 Fujitsu Limited Apparatus for manufacturing bonded substrate
US7096911B2 (en) 2000-11-30 2006-08-29 Fujitsu Limited Apparatus for manufacturing bonded substrate
KR100701442B1 (en) * 2001-05-10 2007-03-30 엘지.필립스 엘시디 주식회사 Application Method of Liquid Crystal using ink jet system
JP2004334221A (en) * 2003-05-09 2004-11-25 Lg Phillips Lcd Co Ltd Apparatus and method for dripping liquid crystal
JP4578856B2 (en) * 2003-05-09 2010-11-10 エルジー ディスプレイ カンパニー リミテッド Liquid crystal dropping device and liquid crystal dropping method

Similar Documents

Publication Publication Date Title
KR100679959B1 (en) Liquid crystal display device manufacturing method and liquid crystal display device manufacturing system
KR100526931B1 (en) Formation apparatus and method of thin film, manufacturing apparatus and method of liquid crystal device, liquid crystal device, manufacturing apparatus and method of thin film structure, thin film structure, and electronic equipment
KR100932297B1 (en) Apparatus of dispensing liquid crystal using the ultrasonic wave
US7308913B2 (en) Liquid filling method, liquid filling apparatus, and discharge apparatus
JP2001133799A (en) Method of producing liquid crystal display device
CN100501537C (en) Liquid-crystal distributor with nozzle cleaner
JPH06148657A (en) Method and device for manufacturing cell for liquid crystal display
KR101222958B1 (en) A dropping apparatus of liquid crystal for a liquid crystal display device
JP2004272086A (en) Device for manufacturing electrooptical device, electrooptical device and electronic appliance
TWI284756B (en) Liquid crystal ejecting method and apparatus, liquid crystal device and producing method thereof and electronic apparatus
JP2003241208A (en) Liquid crystal dropping device and method of manufacturing liquid crystal display panel
JPH03246514A (en) Method for supplying liquid crystal to substrate for liquid crystal display element
KR100511350B1 (en) A liquid crystal dispensing apparatus with a nozzle protecting device
JP2004298787A (en) Plotting system, electro-optical apparatus and electronic equipment
KR102338163B1 (en) Nozzle module for dispenser, dispenser, and dispensing method using the same
KR20070081771A (en) Droplet ejection apparatus, method for forming functional film, apparatus for forming liquid crystal alignment film, method for forming liquid crystal alignment film of liquid crystal display, and liquid crystal display
KR101665051B1 (en) Apparatus for measuring LC weight and LC dispenser including the same
CN100359393C (en) Liquid crystal dispensing unit
KR100479841B1 (en) Liquid crystal applicator and liquid crystal application method, and apparatus for manufacturing liquid crystal panel
JP2004272087A (en) Method for manufacturing electrooptical device, electrooptical device and electronic appliance
US20120105794A1 (en) Liquid crystal ejector, ejection device, and liquid crystal ejection method
JPH06273779A (en) Method for injecting liquid crystal
JP2005040653A (en) Method for applying liquid material, apparatus for applying liquid material, and liquid crystal apparatus
JP2005028223A (en) Method and equipment for discharging droplet, device and manufacturing method therefor, and electronic equipment
JP2005028212A (en) Method and equipment for discharging droplet, device and manufacturing method therefor, and electronic equipment