JPH0324604B2 - - Google Patents

Info

Publication number
JPH0324604B2
JPH0324604B2 JP57171383A JP17138382A JPH0324604B2 JP H0324604 B2 JPH0324604 B2 JP H0324604B2 JP 57171383 A JP57171383 A JP 57171383A JP 17138382 A JP17138382 A JP 17138382A JP H0324604 B2 JPH0324604 B2 JP H0324604B2
Authority
JP
Japan
Prior art keywords
signal
inspected
ray
detection means
line sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57171383A
Other languages
Japanese (ja)
Other versions
JPS5960345A (en
Inventor
Masaji Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57171383A priority Critical patent/JPS5960345A/en
Publication of JPS5960345A publication Critical patent/JPS5960345A/en
Publication of JPH0324604B2 publication Critical patent/JPH0324604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/16Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a moving sheet or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、連続して搬送される被検査物にX線
を照射し、その透視画像データから欠陥品を検出
するX線欠陥装置に関する。 〔発明の技術的背景とその問題点〕 従来、定形容器に収納された食品等の被検査物
内の異物検出は、例えばX線透視画像の目視判定
により行なわれていた。この場合、検査精度は、
目視検査員の検査能力に負うところ大であり、検
査スピードにも大きく影響される。したがつて、
検査スピードにも、検査精度にも限りがあつた。 また、予め基準パターンをメモリしておき、こ
の基準パターンと順次検査される被検査物のパタ
ーンとを比較する検査方法もある。この場合、精
度の向上、スピードアツプ等で有効であるが、予
め基準パターンを複数個記憶するために十分な容
量のメモリを必要とする、また被検査物の形状等
が異なつた場合の基準パターン選定手段等を必要
とし、複雑な構成となつていた。 〔発明の目的〕 本発明の目的は、大きな容量のメモリを必要と
することなく、簡単な構成で、精度よくかつ速や
かに被検査物の欠陥を自動判定することが可能な
X線欠陥装置を提供することにある。 [発明の概要] 上記の目的を達成するために本発明のX線欠陥
装置は、一方向のみに広がりを持ち、その方向と
直角な方向に薄い扇状のX線を放射するX線発生
装置と、X線発生装置と対向して配設され、その
扇状X線の広がり方向に長い視野を有するX線ラ
インセンサと、X線ラインセンサの視野内に被検
査物を連続的に通過させる搬送装置と、X線ライ
ンセンサからの透視データから被検査物の始端を
検知する検出手段と、検出手段からの被検査物始
端を基準に、異なる被検査物の透視画像データ同
志を比較して差信号を出力する減算器と、減算器
からの差信号を2値化した信号に変換するレベル
判定器と、レベル判定器からの差信号を入力し、
一定値以上の面積を有する信号のみ出力する面積
測定器と、面積測定器からの信号と検出手段から
の被検査物の到来信号とから欠陥品を判定する欠
陥品判定ユニツトとを備えて構成し、順次到来す
る被検査物から得られる透視画像データ同志を減
算して欠陥を検出するようにしている。 〔発明の実施例〕 以下、本発明の一実施例につき、第1図乃至第
5図を参照して説明する。 10はX線発生装置で、X線管11とフアンビ
ームコリメータ12とから構成され、一方向のみ
に広がりを持ち、その方向と直角な方向に薄い扇
状のX線13を放射するものである。 このX線13は、第4図に示すように搬送装置
14上の被検査物15は、その搬送方向に直交す
るように放射されている。16はX線ラインセン
サで、前記扇状のX線13を受けるのに十分な広
がりをもつ細長い視野を有している。このX線ラ
インセンサの出力は、搬送装置14の移動量を検
出するエンコーダ17からの信号が供給される制
御装置18により制御される画像処理装置20に
供給されている。 この画像処理装置は、第3図に示すように構成
されている。 21は、前記X線ラインセンサ16で電気信号
に変換された被検査物15の透視画像データを
AD変換するADCである。このADC21の出力
は、レベル判定器22及びビデオSW23へ供給
されている。このレベル判定器22は、被検査物
15の始端を検出し、ビデオSW23を閉じる働
きをする。すなわち、被検査物15がX線視野内
に到来すると、X線ラインセンサ16に入射する
X線量が減少するので、X線量減少時点をもつて
被検査物15の到来と判断し、ビデオSW23を
閉じ被検査物15の透視画像データを後段に送出
させる。 このビデオSW23の出力は、メモリ25a、
メモリ25b及び減算器26へ供給されている。
この両メモリ25a,25bはメモリ制御部24
により制御されている。このメモリ制御部24
は、前記レベル判定器22からの被検査物始端信
号及び前記制御装置18を介して供給される搬送
装置14の移動量信号から、前記両メモリ25
a,25bを制御するものである。すなわち、こ
のメモリ制御部24は、一定移動量毎に前記X線
ラインセンサ16の1ライン毎の透視画像データ
を前記メモリ25aもしくはメモリ25bへの書
込みを行なわせるものである。 また、前記減算器26は、ビデオBW23を通
過した透視画像データと、前記メモリ25a,2
5bにメモリされた前回の透視画像データとを減
算するものである。このメモリ25a,25bの
読出しは、前記メモリ制御部24の信号により行
なわれる。この際の読出し開始は、前記レベル判
定器22からの被検査物始端信号を受け行なわれ
る。 また、この減算器26の差信号は、レベル判定
器27を介して面積測定器28に供給される。こ
の面積測定器28は、小面積部を除去し、ある一
定以上の面積をもつデータのみ欠陥品判定ユニツ
ト29へ送出するものである。すなわち、この面
積測定器28は、被検査物15の小さなバラつき
や、ライン走査間隔分のずれ等の誤差分を除去す
る役目をするものである。 また、前記欠陥品判定ユニツト29は、前記レ
ベル判定器22からの被検査物15到来信号及び
面積測定器28からの出力信号で、下表1の論理
にしたがい欠陥品の判定を行なう。
[Technical Field of the Invention] The present invention relates to an X-ray defect apparatus that irradiates X-rays onto continuously transported inspection objects and detects defective products from the fluoroscopic image data. [Technical Background of the Invention and Problems Therewith] Conventionally, detection of foreign matter in an object to be inspected, such as food stored in a regular container, has been performed, for example, by visual judgment of an X-ray fluoroscopic image. In this case, the inspection accuracy is
A lot depends on the inspection ability of the visual inspector, and it is also greatly influenced by the inspection speed. Therefore,
There were limits to both testing speed and accuracy. There is also an inspection method that stores a reference pattern in advance and compares this reference pattern with patterns of objects to be inspected that are sequentially inspected. In this case, it is effective for improving accuracy and increasing speed, but it requires a memory with sufficient capacity to store multiple reference patterns in advance, and it is also necessary to use reference patterns when the shape of the object to be inspected is different. It required a selection method, etc., and had a complicated structure. [Object of the Invention] The object of the present invention is to provide an X-ray defect apparatus that is capable of automatically determining defects in an object to be inspected accurately and quickly with a simple configuration and without requiring a large capacity memory. It is about providing. [Summary of the Invention] In order to achieve the above object, the X-ray defect device of the present invention has an X-ray generating device that spreads in only one direction and emits thin fan-shaped X-rays in a direction perpendicular to that direction. , an X-ray line sensor that is disposed facing the X-ray generator and has a long field of view in the direction in which the fan-shaped X-rays spread, and a conveyance device that allows the object to be inspected to continuously pass through the field of view of the X-ray line sensor. and a detection means for detecting the starting edge of the object to be inspected from the fluoroscopic data from the X-ray line sensor; a subtracter that outputs , a level determiner that converts the difference signal from the subtracter into a binary signal, and inputs the difference signal from the level determiner,
It is composed of an area measuring device that outputs only a signal having an area of a certain value or more, and a defective product determination unit that determines a defective product from the signal from the area measuring device and the arrival signal of the inspected object from the detection means. , defects are detected by subtracting the fluoroscopic image data obtained from the inspected objects that arrive one after another. [Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5. Reference numeral 10 denotes an X-ray generator, which is composed of an X-ray tube 11 and a fan beam collimator 12, and has a spread in only one direction, and emits thin fan-shaped X-rays 13 in a direction perpendicular to that direction. As shown in FIG. 4, the X-rays 13 are emitted from the inspection object 15 on the transport device 14 so as to be orthogonal to the transport direction thereof. Reference numeral 16 denotes an X-ray line sensor, which has a long and narrow field of view that is wide enough to receive the fan-shaped X-rays 13. The output of this X-ray line sensor is supplied to an image processing device 20 controlled by a control device 18 to which a signal from an encoder 17 that detects the amount of movement of the transport device 14 is supplied. This image processing device is configured as shown in FIG. 21 receives the fluoroscopic image data of the object to be inspected 15 converted into an electric signal by the X-ray line sensor 16.
It is an ADC that performs AD conversion. The output of this ADC 21 is supplied to a level determiner 22 and a video SW 23. This level determiner 22 functions to detect the starting end of the object to be inspected 15 and close the video SW 23. That is, when the inspected object 15 arrives within the X-ray field of view, the amount of X-rays incident on the X-ray line sensor 16 decreases, so it is determined that the inspected object 15 has arrived at the time when the X-ray dose decreases, and the video SW 23 is activated. The fluoroscopic image data of the closed inspection object 15 is sent to the subsequent stage. The output of this video SW23 is the memory 25a,
The signal is supplied to the memory 25b and the subtracter 26.
Both memories 25a and 25b are connected to the memory control unit 24.
controlled by. This memory control unit 24
is calculated from both memories 25 based on the inspection object start end signal from the level determiner 22 and the movement amount signal of the transport device 14 supplied via the control device 18.
a, 25b. That is, the memory control section 24 causes the fluoroscopic image data of each line of the X-ray line sensor 16 to be written into the memory 25a or the memory 25b every fixed movement amount. Further, the subtracter 26 uses the perspective image data that has passed through the video BW 23 and the memories 25a and 2.
This is to subtract the previous fluoroscopic image data stored in 5b. Reading from the memories 25a and 25b is performed by a signal from the memory control section 24. At this time, the readout is started in response to the test object start signal from the level determiner 22. Further, the difference signal from the subtracter 26 is supplied to the area measuring device 28 via the level determining device 27. This area measuring device 28 removes small area portions and sends only data having an area of a certain value or more to a defective product determination unit 29. In other words, the area measuring device 28 serves to remove errors such as small variations in the inspected object 15 and deviations in line scanning intervals. Further, the defective product determination unit 29 uses the arrival signal of the inspected object 15 from the level determiner 22 and the output signal from the area measuring device 28 to determine whether the product is defective according to the logic shown in Table 1 below.

【表】 (ただし、アルフアベツトは第3図に示す各部の
信号を示し、また算用数字は被検査物の番号であ
る。) 次に、第4図及び第5図を用いてライン毎のX
線データ及び各ラインの走査についての説明をす
る。 第4図はX線13の各ライン毎の被検査物15
の透視画像データを説明するもので、符号1,2
…n、n+1は、X線のライン番号を示し、符号
1′,2′…n′,n′+1は各ライン毎の透過画像デ
ータの波形を示すものである。図中、Aは被測定
物15内に混入された異物で、またaはその異物
A部分のデータを示している。 また、波形3′は被検査物15の始端がX線視
野内に到来したときの波形で、前記レベル判定器
22は、この波形3′から被検査物15の始端を
検出し、前記ビデオSW23を閉じる。 また、波形7′には、異物Aのデータaが示さ
れている。したがつて、この波形7′のデーータ
と、前回のこの波形7′に相当する被検査物デー
タとが前記減算器26で減算されることにより異
物Aの存在が検出される。 また、第5図は各ラインの走査について示した
もので、(a)は前記エンコーダ17からの搬送装置
14の移動量に相当するパルス信号を示すもので
あり、(b)はこのエンコーダ17からの信号を受
け、一定移動量毎に前記制御装置18から前記X
線ラインセンサ16へ送出される走査パルスを示
すものである。また、(c)はこの走査パルスを受け
たX線ラインセンサ16の各ライン毎の透視画像
データを示すものである。 また、1つの被検査物に対するライン数は、そ
の被検査物の大きさ等により一義的に決定しても
良いし、前記レベル判定器22により被検査物終
端を検知することにより、1つの被検査物15の
データ取込みを終了するようにしても良い。 なお、第6図に示すようにX線発生装置60か
ら2本の扇状のX線62,63を被検査物15の
搬送路に照射し、同時に2個の被検査物15,1
5から透視画像データを得、両者を減算しても前
記一実施例同様の効果を得ることができる。すな
わち、夫々のX線62,63に対向し細長い2つ
のX線ラインセンサ64,65を配置し、各X線
透過量を電気信号に変換し、前記同様レベル判定
器22(図示せず)からの被検査物始端信号をも
とに減算器26により減算することにより欠陥検
出を行なうことができる。尚、66は両センサ6
4,65の感度を補正するための感度補正回路で
あり、その他は、前記実施例と同様に構成される
ものである。 本実施例は以上のように構成したので、以下の
如く多大の効果を奏する。 (1) X線ラインセンサを使用し被検査物の進行方
向に対し直角に信号を取り出すように構成した
ので、被検査物の到来を検知し透視画像データ
の取込みを制御することが可能となつた。 (2) 面積測定器で小面積の透視画像データ部分を
除去しているため、被検査物個々の多少のばら
つきやライン走査間隔分のずれによる誤動作が
なくなり、適正に欠陥品の判定ができる。 (3) 前回データと次回データとの比較で欠陥判定
を行なわせているため、複雑な辞書パターンの
記憶が不要となる。 (4) 同一チヤンネル同志で比較判定を行なうた
め、チヤンネル間の感度較正を必要としない。 (5) 被検査物の始端、終端で透視画像データの開
始、終了を検知することが可能となるので、メ
モリ量を大幅に少なくでき、かつノイズ混入確
率も少なくなる。 以上説明したように本発明によれば、大きな容
量のメモリを必要とすることなく、簡単な構成
で、精度よくかつ速やかに被検査物の欠陥を自動
判定することが可能なX線欠陥装置が提供でき
る。
[Table] (Alphabet indicates the signal of each part shown in Fig. 3, and arithmetic numbers are the numbers of the objects to be inspected.) Next, use Figs. 4 and 5 to calculate the X for each line.
Line data and scanning of each line will be explained. Figure 4 shows the object 15 to be inspected for each line of the X-ray 13.
This explains the perspective image data of 1 and 2.
...n, n+1 indicate X-ray line numbers, and symbols 1', 2'...n', n'+1 indicate the waveform of transmitted image data for each line. In the figure, A indicates a foreign substance mixed into the object to be measured 15, and a indicates data for the part A of the foreign substance. Further, a waveform 3' is a waveform when the starting edge of the inspected object 15 comes within the X-ray visual field, and the level determiner 22 detects the starting edge of the inspecting object 15 from this waveform 3', and the video SW 23 detects the starting edge of the inspected object 15. Close. Furthermore, data a of the foreign substance A is shown in the waveform 7'. Therefore, the presence of the foreign substance A is detected by subtracting the data of this waveform 7' and the previous inspected object data corresponding to this waveform 7' in the subtracter 26. Further, FIG. 5 shows the scanning of each line, in which (a) shows a pulse signal corresponding to the amount of movement of the conveyance device 14 from the encoder 17, and (b) shows the pulse signal from this encoder 17. The control device 18 receives the signal X at every fixed movement amount.
It shows the scanning pulse sent to the line sensor 16. Moreover, (c) shows the fluoroscopic image data for each line of the X-ray line sensor 16 that received this scanning pulse. Further, the number of lines for one object to be inspected may be uniquely determined based on the size of the object to be inspected, or the number of lines for one object to be inspected may be determined uniquely by the size of the object to be inspected, or by detecting the end of the object to be inspected by the level determiner 22. The data acquisition of the inspection object 15 may be ended. Note that, as shown in FIG. 6, two fan-shaped X-rays 62 and 63 are irradiated from the X-ray generator 60 onto the conveyance path of the object 15 to be inspected, and the two objects 15 and 1 to be inspected are simultaneously exposed.
Even if the perspective image data is obtained from No. 5 and subtracted from both, the same effect as in the above embodiment can be obtained. That is, two elongated X-ray line sensors 64 and 65 are arranged facing the respective X-rays 62 and 63, and the amount of each X-ray transmitted is converted into an electrical signal, which is then output from the level determiner 22 (not shown) as described above. Defect detection can be performed by subtracting using the subtracter 26 based on the starting point signal of the object to be inspected. In addition, 66 is both sensors 6
This is a sensitivity correction circuit for correcting the sensitivities of No. 4 and 65, and the other structures are the same as those of the previous embodiment. Since this embodiment is configured as described above, it has many effects as described below. (1) An X-ray line sensor is used to extract signals perpendicular to the direction of movement of the object to be inspected, making it possible to detect the arrival of the object and control the acquisition of fluoroscopic image data. Ta. (2) Since the small-area fluoroscopic image data portion is removed using the area measuring device, malfunctions due to variations in individual inspected objects or deviations in line scanning intervals are eliminated, allowing for accurate determination of defective products. (3) Since defects are determined by comparing the previous data and the next data, it is not necessary to memorize complex dictionary patterns. (4) Comparative judgment is made between the same channels, so there is no need for sensitivity calibration between channels. (5) Since it is possible to detect the start and end of the fluoroscopic image data at the beginning and end of the object to be inspected, the amount of memory can be significantly reduced and the probability of noise contamination is also reduced. As explained above, according to the present invention, there is provided an X-ray defect apparatus that is capable of automatically determining defects in an object to be inspected accurately and quickly with a simple configuration and without requiring a large capacity memory. Can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明の一実施例を説明す
るためのもので、第1図は概略構成を示す平面
図、第2図は同側面図、第3図は回路構成図、第
4図は各チヤンネル毎の透視画像データを示す説
明図、第5図はX線ラインセンサの走査周期を説
明するための波形図、第6図は本発明の他の実施
例を示す概略構成図である。 10,60……X線発生装置、13,62,6
3……X線、14……搬送装置、15……被検査
物、16,64,65……X線ラインセンサ、2
0……画像処理装置、22……レベル判定器、2
4……メモリ制御部、25a,25b……メモ
リ、26……減算器、27……レベル判定器、2
8……面積測定器、29……欠陥品判定ユニツ
ト。
1 to 5 are for explaining one embodiment of the present invention, in which FIG. 1 is a plan view showing a schematic configuration, FIG. 2 is a side view of the same, FIG. 3 is a circuit configuration diagram, and FIG. FIG. 4 is an explanatory diagram showing fluoroscopic image data for each channel, FIG. 5 is a waveform diagram for explaining the scanning cycle of the X-ray line sensor, and FIG. 6 is a schematic configuration diagram showing another embodiment of the present invention. It is. 10,60...X-ray generator, 13,62,6
3...X-ray, 14...Transfer device, 15...Object to be inspected, 16, 64, 65...X-ray line sensor, 2
0... Image processing device, 22... Level determiner, 2
4...Memory control unit, 25a, 25b...Memory, 26...Subtractor, 27...Level determiner, 2
8...area measuring device, 29...defective product determination unit.

Claims (1)

【特許請求の範囲】 1 一方向のみに広がりを持ち、その方向と直角
な方向に薄い扇状のX線を放射するX線発生装置
と、 前記X線発生装置と対向して配設され、その扇
状X線の広がり方向に長い視野を有するX線ライ
ンセンサと、 前記X線ラインセンサの視野内に被検査物を連
続的に通過させる搬送装置と、 前記X線ラインセンサからの透視データから被
検査物の始端を検知する検出手段と、 前記検出手段からの被検査物始端を基準に、異
なる被検査物の透視画像データ同志を比較して差
信号を出力する減算器と、 前記減算器からの差信号を2値化した信号に変
換するレベル判定器と、 前記レベル判定器からの差信号を入力し、一定
値以上の面積を有する信号のみ出力する面積測定
器と、 前記面積測定器からの信号と前記検出手段から
の被検査物の到来信号とから欠陥品を判定する欠
陥品判定ユニツトと、 を備えて成ることを特徴とするX線欠陥装置。
[Claims] 1. An X-ray generator that extends in only one direction and emits thin fan-shaped X-rays in a direction perpendicular to that direction; An X-ray line sensor having a long field of view in the direction in which the fan-shaped X-rays spread; a transport device that allows the object to be inspected to pass continuously within the field of view of the X-ray line sensor; a detection means for detecting the starting edge of the inspection object; a subtracter for comparing fluoroscopic image data of different inspection objects with reference to the starting edge of the inspection object from the detection means and outputting a difference signal; a level determiner that converts the difference signal from the level determiner into a binary signal; an area measuring device that inputs the difference signal from the level determining device and outputs only a signal having an area of a certain value or more; and from the area measuring device. An X-ray defect apparatus comprising: a defective product determination unit that determines a defective product based on a signal from the detection means and an arrival signal of the object to be inspected from the detection means.
JP57171383A 1982-09-30 1982-09-30 Defective detecting device by x-ray Granted JPS5960345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171383A JPS5960345A (en) 1982-09-30 1982-09-30 Defective detecting device by x-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171383A JPS5960345A (en) 1982-09-30 1982-09-30 Defective detecting device by x-ray

Publications (2)

Publication Number Publication Date
JPS5960345A JPS5960345A (en) 1984-04-06
JPH0324604B2 true JPH0324604B2 (en) 1991-04-03

Family

ID=15922155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171383A Granted JPS5960345A (en) 1982-09-30 1982-09-30 Defective detecting device by x-ray

Country Status (1)

Country Link
JP (1) JPS5960345A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2587804B1 (en) * 1985-09-23 1988-06-17 Commissariat Energie Atomique PARADISE CONTROL, PARTS, BY PENETRATING RADIATION SYSTEM
US4980902A (en) * 1985-12-30 1990-12-25 Measurex Corporation Aperture measuring system for cord reinforced tire fabric
JP2009270866A (en) * 2008-05-01 2009-11-19 Ishida Co Ltd X-ray inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118146A (en) * 1980-07-30 1982-07-22 Kuronzu Ag Heruman Kuronsederu Container inspection method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118146A (en) * 1980-07-30 1982-07-22 Kuronzu Ag Heruman Kuronsederu Container inspection method and apparatus

Also Published As

Publication number Publication date
JPS5960345A (en) 1984-04-06

Similar Documents

Publication Publication Date Title
JP2000292371A (en) X-ray inspection device
JPH0324604B2 (en)
US7230229B2 (en) Method and device for the detection of surface defects on the outer wall of a transparent or translucent object
JPH11153549A (en) Surface inspection method and apparatus using the same
EP0008010A1 (en) Method of detecting flaws on surfaces
JPS6329202B2 (en)
JPS60256034A (en) Industrial ct scanner
JP2007212366A (en) Method and device for inspecting thickness of inspected part
JP3273969B2 (en) Inspection device for uneven density of sheet
JPH10318951A (en) Apparatus for inspection of wood by nuclear magnetic resonance and x-ray
JP3536685B2 (en) Radiation detector
JPH01297772A (en) Defective foreign matter detector
JP3779956B2 (en) X-ray foreign object detection device
JPH04213007A (en) Method and apparatus for measuring shape of circular body
JPH0431056B2 (en)
JPH08247722A (en) Dimension measuring instrument
JP3615870B2 (en) X-ray liquid level inspection system
JP2000055834A (en) Method for inspecting filled state of conductive paste of via hole
JPS58127153A (en) X-ray fluoroscopic inspecting device
JPH03189508A (en) Inspection device for round rod body
JPS6319793Y2 (en)
JPS6122279Y2 (en)
JPH0578399B2 (en)
JPH02136708A (en) Inspection method for bend of lead in semiconductor device
JPS631041A (en) Semiconductor leg curve inspecter