JPH03245792A - Controlling method for motor - Google Patents

Controlling method for motor

Info

Publication number
JPH03245792A
JPH03245792A JP2039728A JP3972890A JPH03245792A JP H03245792 A JPH03245792 A JP H03245792A JP 2039728 A JP2039728 A JP 2039728A JP 3972890 A JP3972890 A JP 3972890A JP H03245792 A JPH03245792 A JP H03245792A
Authority
JP
Japan
Prior art keywords
phase
value
rotor
magnetomotive force
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2039728A
Other languages
Japanese (ja)
Other versions
JP2861202B2 (en
Inventor
Akira Ishizaki
石崎 彰
Takashi Mino
三野 高史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2039728A priority Critical patent/JP2861202B2/en
Publication of JPH03245792A publication Critical patent/JPH03245792A/en
Application granted granted Critical
Publication of JP2861202B2 publication Critical patent/JP2861202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To give quick-response properties equal to conventional vector control by a simple circuit by controlling the phase of three-phase ACs so as to keep a spatial angle formed by a position, where the value of the spatial distribution of armature reaction magnetomotive force is maximized, and the direct-axis of a rotor constant and controlling the instantaneous value of the amplitude of three-phase ACs. CONSTITUTION:In a method in which three-phase ACs made to flow through a three-phase winding are controlled by an inverter, the phase of the three-phase ACs controlled so that a spatial angle formed by a position, where the value of the spatial distribution of armature-reaction magnetomotive force generated by currents made to flow through the three-phase winding is maximized, and the direct-axis of said rotor is kept at a fixed value. The instantaneous value of the amplitude of the three-phase ACs is controlled directly apart from the control, thus controlling instantaneous torque.

Description

【発明の詳細な説明】 人、 産業上の利用分野 本発明は、同期電動機、内Sta石形永久磁石電動機及
びリラクタンスモーフ等の電動機の髄部方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing electric motors such as synchronous motors, internal Stastone permanent magnet motors, and reluctance smorphs.

B。B.

発明の概要 固定子鉄心に備えた三相巻線にインバータにより三相交
流を流すに当り、この三相交流による電機子反作用起磁
力の空間分布の値が最大となる位置と回転子の直轄との
空間角を一定にするように三相交流の位相を制訂し、し
かも三相交流の振幅の瞬時値を制御することにより、簡
単な回路で従来のベクトル制御と同等の連応性を持たせ
ると共に運転時の特性も改善したものである。
Summary of the Invention When three-phase alternating current is caused to flow through the three-phase winding provided in the stator core by an inverter, the position where the value of the spatial distribution of the armature reaction magnetomotive force due to this three-phase alternating current is maximum, and the position directly under the rotor. By regulating the phase of the three-phase AC so that the spatial angle of The operating characteristics have also been improved.

C1従来の技術とその課題 従来、直流電動機と同等のすぐれた開目性能を持つ交流
電動機の速度制卸方式としては、いわゆるベクトル開園
が広く用いられている。
C1 Conventional technology and its problems Conventionally, so-called vector opening has been widely used as a speed control method for AC motors that have excellent opening performance equivalent to that of DC motors.

このベクトル制御ζ:、磁束のベクトルを検出し磁束の
大きさが一定となるよう磁化電流を調整すると共に、所
要トルクに比例したトルク電流を磁束と直角となるよう
流すという原理に基づくもので、種々の回路定数から磁
束ベクトルや電流ベクトルの演算を行なっている。
This vector control ζ: is based on the principle of detecting the vector of magnetic flux, adjusting the magnetizing current so that the magnitude of the magnetic flux is constant, and flowing a torque current proportional to the required torque at right angles to the magnetic flux. Magnetic flux vectors and current vectors are calculated from various circuit constants.

しかしながら、このベクトル制御を行なうに当っては、
その過程にてdq変換や二相三相変換あるいは種々の演
算を行なうために、制卸回路が嫂雑で調整に手間がかか
るという問題を有する。
However, when performing this vector control,
In the process, dq conversion, two-phase three-phase conversion, or various calculations are performed, so there is a problem that the control circuit is complicated and adjustment is time-consuming.

本発明は、同期電動機や内部磁石形永久磁石電動機ある
いはリラクタンスモータを対象として上五己ベクトル制
御より簡単な回路にてベクトル制御と同等の遠志性を持
つとともに運転特性を改善した電動機の側部方法の提供
を目的とする。
The present invention is directed to a method for controlling a synchronous motor, an internal magnet type permanent magnet motor, or a reluctance motor, which uses a simpler circuit than the above-mentioned vector control, has the same long-range performance as vector control, and has improved operating characteristics. The purpose is to provide.

D、 課題を解決するための手段 上述の目的を達成する本発明は、固定子鉄心に三相巻線
を備えた固定子と、界磁巻線による磁極を備えた回転子
、回転子鉄心内部に磁極として永久磁石を埋め込んだ回
転子、及び磁極を備えず直轄と横軸との磁気抵抗が異な
る回転子のいずれか一方の回転子とを有して、上記三相
巻線に流す三相交流をインバータによって制御する方法
において、上記三相巻線に流す電流により生ずる電機子
反作用起磁力の空間分布の値が最大となる位置と上記回
転子の直軸とのなす空間角を一定値に保つように上記三
相交流の位相を制訂し、かっこの制御とは独立に上記三
相交流の振幅の瞬時値を直接制御することにより瞬時ト
ルクを制御することを特徴とする。
D. Means for Solving the Problems The present invention, which achieves the above-mentioned objects, comprises a stator having a three-phase winding in the stator core, a rotor having magnetic poles formed by field windings, and A three-phase motor that has a rotor with permanent magnets embedded as magnetic poles in the rotor, and one rotor that does not have magnetic poles and has different magnetic reluctance between the direct axis and the horizontal axis, and the three-phase winding has In the method of controlling alternating current using an inverter, the spatial angle formed between the position where the value of the spatial distribution of the armature reaction magnetomotive force generated by the current flowing in the three-phase winding is maximum and the direct axis of the rotor is set to a constant value. The present invention is characterized in that the instantaneous torque is controlled by regulating the phase of the three-phase alternating current so as to maintain the amplitude of the three-phase alternating current, and directly controlling the instantaneous value of the amplitude of the three-phase alternating current independently of the parenthesis control.

E、 作用と原理 電機子反作用起磁力の空間分布の値が最大となる位置と
回転子の直轄とのなす空間角φを一定に保つように位相
ωtを求め、この位相ωt″と指令角速度ωJに基づく
電流振幅18′とにより三相巻線電流1:、 1,7 
、 、gを得てインバータを制御することにより、電動
機の瞬時トルクを制御することができる。
E. Action and Principle The phase ωt is determined so as to keep constant the spatial angle φ between the position where the value of the spatial distribution of the armature reaction magnetomotive force is maximum and the direct control of the rotor, and this phase ωt'' and the command angular velocity ωJ With the current amplitude 18' based on the three-phase winding current 1:, 1,7
By obtaining , , g and controlling the inverter, the instantaneous torque of the electric motor can be controlled.

ここで、上記作用を更に具体化して本発明の原理を第1
図を参照しつつ以下に説明する。
Here, the principle of the present invention will be explained as follows by further embodying the above-mentioned effect.
This will be explained below with reference to the figures.

第1図は同期機の起磁力とギャップ磁束密度との関係を
示す説明図で、下部分は回転子の一部を示し、上部分は
回転子上にとった座標θ2においてq軸(横軸)d軸(
直轄)に対する起磁力等の関係を示している。第1図に
おいて、Flは電機子電流による反作用起磁力であって
回転子と同期して回転するもの、Fは回転子起磁力の基
本波成分、Bgは起磁力FとF2との合成起磁力によっ
て生ずるギャップ磁束密度の基本波成分、&Cは電機子
電流密度分布である。このうち、d軸とギャップ磁束密
度Bgのピークとのなす角δが内部相差角であり、この
内部相差角とをパラメータとして従来ては同期機理論が
構成される。
Figure 1 is an explanatory diagram showing the relationship between the magnetomotive force and the gap magnetic flux density of a synchronous machine.The lower part shows a part of the rotor, and the upper part shows the q-axis (horizontal axis ) d axis (
It shows the relationship between magnetomotive force, etc. In Fig. 1, Fl is the reaction magnetomotive force due to the armature current and rotates in synchronization with the rotor, F is the fundamental wave component of the rotor magnetomotive force, and Bg is the composite magnetomotive force of the magnetomotive force F and F2. The fundamental wave component of the gap magnetic flux density caused by &C is the armature current density distribution. Among these, the angle δ between the d-axis and the peak of the gap magnetic flux density Bg is the internal phase difference angle, and conventionally, the synchronous machine theory is constructed using this internal phase difference angle as a parameter.

本発明で;よd軸と電機子電流起磁力Fのピークとの位
相差φをパラメータとして理論を構成する。そして、こ
の基準となるd軸二ま回転子起磁力F2のピーク位置で
もあるので、φは再起磁力F1とF2との位相差(起磁
力相差角という)でもある。
In the present invention, a theory is constructed using the phase difference φ between the d-axis and the peak of the armature current magnetomotive force F as a parameter. Since this is also the peak position of the reference d-axis birotor magnetomotive force F2, φ is also the phase difference (referred to as magnetomotive force phase difference angle) between the re-magnetic forces F1 and F2.

この起磁力相差角φを用いてトルクを表わすに、同期機
の固定子三相巻線に次式(1)の振幅17で示す三相交
流l。、11.lを流した場合の発生トルクTは(2)
式となる。
To express the torque using this magnetomotive force phase difference angle φ, a three-phase alternating current l shown by the amplitude 17 of the following equation (1) is applied to the stator three-phase winding of the synchronous machine. , 11. The generated torque T when l is flowing is (2)
The formula becomes

・・(2) この場合、Pは極対数、Kは設計諸元できまる定数、B
f、は界磁起磁力によって生ずるギャップ磁束密度の基
本波成分のピーク値、L、6は直轄電機子反作用インダ
クタンス、L soは横軸電機子反作用インダクタンス
である。
...(2) In this case, P is the number of pole pairs, K is a constant determined by the design specifications, and B
f, is the peak value of the fundamental wave component of the gap magnetic flux density generated by the field magnetomotive force, L, 6 is the direct armature reaction inductance, and Lso is the horizontal axis armature reaction inductance.

この(2)式であるトルクTは、全ての同期機に対して
成立する一般式てあり、式中第1項は界磁磁束によるト
ルク、第2項は突極形のようにd軸とq軸とが異なる磁
気抵抗を持つ場合にのみ存在する反作用トルクである。
This equation (2), torque T, is a general equation that holds true for all synchronous machines. This is a reaction torque that exists only when the q-axis has a different magnetic resistance.

したがって、円筒形回転子の場合第2項は存在せず、リ
ラクタンスモータの場合第2項のみとなる。そして、式
から判明するように、起磁力相差角φを一定に保つよう
に電流位相を制御すれば、トルクTは電流振幅の瞬時値
l。
Therefore, in the case of a cylindrical rotor, the second term does not exist, and in the case of a reluctance motor, only the second term exists. As can be seen from the equation, if the current phase is controlled to keep the magnetomotive force phase difference angle φ constant, the torque T will be the instantaneous value l of the current amplitude.

に依存することになる。It will depend on.

ここで、空間角をすべて電気角で表わし、回転子の角速
度〜も電気角を用いる場合、電機子反作用起磁力F、が
回転子と同期して回転するためには、電流式(1)のω
は吐に等しくなければならない。
Here, if all spatial angles are expressed in electrical angles and the angular velocity ~ of the rotor is also expressed in electrical angles, in order for the armature reaction magnetomotive force F to rotate in synchronization with the rotor, the current equation (1) must be ω
must be equal to vomit.

また、固定子においてU相巻線の巻線軸を原点として、
電気角で表わした固定子座標を考九るとき、この座標系
でのd軸位置θ6とすると、φが一定の運転状態では次
式(3)を得ろ。
Also, in the stator, with the winding axis of the U-phase winding as the origin,
When considering the stator coordinates expressed in electrical angles, and assuming that the d-axis position θ6 in this coordinate system is the d-axis position, the following equation (3) can be obtained in an operating state where φ is constant.

θ=ωを一φ    ・・(3) よって、この(3)式によればθ6をセンサにて検出し
一定に保つへきφをφ゛とした場合、(4)式となる。
θ=ω is −φ (3) Therefore, according to this equation (3), if θ6 is detected by the sensor and kept constant and φ is set to φ′, then the equation (4) is obtained.

(ωtビ=鳴t=θ。+φ1   ・・(4)こうして
指令値(ωtどを得ることができる。
(ωt Bi=Nailt=θ.+φ1...(4) In this way, the command value (ωt, etc.) can be obtained.

したがって、(1)式の(ωt)が(4)式の(ωtど
となるように三相巻線に流す電流位相を制御すれば、電
機子反作用起磁力F1は、そのピーク値とd軸との間に
φ“の角を保ちつつ回転子と同期して角速度へにて回転
することができる。
Therefore, if the phase of the current flowing through the three-phase winding is controlled so that (ωt) in equation (1) becomes (ωt) in equation (4), the armature reaction magnetomotive force F1 will be equal to its peak value and the d-axis It is possible to rotate at an angular velocity in synchronization with the rotor while maintaining an angle of φ" between the rotor and the rotor.

この結果、電流の位相髄部によってφを一定に保つこと
ができ、このとき(2)式から電流振幅の瞬時値1、に
依存してトルクの瞬時値が決まることになる。したがっ
て、固定子の三相巻線に流す電流の瞬時値1.、l9.
lが次の(5)式となるようにイシバータを制植すれば
、電動機の瞬時トルクを制御することができろ。
As a result, φ can be kept constant by the phase core of the current, and at this time, from equation (2), the instantaneous value of the torque is determined depending on the instantaneous value 1 of the current amplitude. Therefore, the instantaneous value of the current flowing through the three-phase windings of the stator is 1. , l9.
The instantaneous torque of the electric motor can be controlled by arranging the ishiverter so that l satisfies the following equation (5).

F。F.

実施例 ここで、本発明による剥製方法の一実施例を具体的制卸
回路を参照しつつ説明する。電流髄部形インバータ20
により電動機21が制御されるが、この電動機21に備
えられる:−タリエンコーダ等の位置検圧藝22では、
回転子のd軸位置θ。が得られる。電流位相演算回g8
23では、あらかしめ設定された起磁力相差角指令値φ
9にもとづいて作成された二つのROMテーブルから、
入力されたθに出す。
Embodiment Here, one embodiment of the taxidermy method according to the present invention will be described with reference to a specific control circuit. Current medullary type inverter 20
The electric motor 21 is controlled by the position detecting device 22, which is equipped with the electric motor 21.
The rotor's d-axis position θ. is obtained. Current phase calculation circuit g8
23, the preset magnetomotive force phase difference angle command value φ
From two ROM tables created based on 9,
Output at the input θ.

一方、位置検出器22からの信号をFV変t!11.器
24にて変換して回転角速度信号ω6が得られる。この
速度信号へと速度指令値ωEとを比較して、PI制園器
25を介して必要なトルクを得るための電流振幅l!を
得ろ。
On the other hand, the signal from the position detector 22 is changed to FV t! 11. The rotational angular velocity signal ω6 is obtained by converting the signal in the converter 24. This speed signal is compared with the speed command value ωE, and the current amplitude l! is used to obtain the necessary torque via the PI controller 25! Get it.

この振幅1:とマルチプライング形り/A変挾¥j26
にてD/A変換されたcao(θ、+φ゛)及の電流指
令値1:及びl:が得られる。そして、i + i −
’、 i =Oの関係を用いて1:演算回路27から、
V相電流指令値19′が得られる。
This amplitude 1: and multiplying form/A change¥j26
The current command values 1: and l: of cao (θ, +φ゛) and D/A converted are obtained. And i + i −
', using the relationship i = O 1: From the arithmetic circuit 27,
A V-phase current command value 19' is obtained.

指令値l:、l;、l:どおり電流を電動機21に供給
するように電圧形インバータ20を制御すれば、負荷ト
ルクが変動してもω!の角速度で安定な運転を行なうこ
とができろ。
If the voltage source inverter 20 is controlled to supply current to the motor 21 according to the command values l:, l;, l:, even if the load torque fluctuates, ω! Be able to operate stably at an angular velocity of

また、トルクTの式は周波数に無関係であるので、PI
制御器の出力側にリミッタ28を設け、加速及び減速時
には、一定電流値を流すことによって一定トルクを発生
させることができろ。
Also, since the formula for torque T is independent of frequency, PI
A limiter 28 is provided on the output side of the controller, and a constant torque can be generated by flowing a constant current value during acceleration and deceleration.

更ニこの実施例でi、tヒステリンスコンバレータ29
によって、(ωJ−ω、、)の符号の正負に従って、こ
れが正の場合にはφ″の値も正として電動機運転で加速
し、逆に負の場合にはφ”の値も負として発電機運転で
回生制動を行うようになっている。
Further, in this embodiment, the i and t hysteresis converters 29
According to the sign of (ωJ-ω,,), if it is positive, the value of φ'' is also assumed to be positive and the motor is accelerated, and if it is negative, the value of φ'' is also assumed to be negative and the generator is accelerated. It uses regenerative braking when driving.

本実施例では、同期電動機及びリラクタンスモータの構
造を持つすべての回転機に適用できるが、その構造に応
じてφの最適値を選定する。この場合、ピークトルクを
生ずるφの値に近い値にて、効率、力率等が良好な特性
を有するφの値を選定する。また、瞬時過負荷の時には
、相応する電流を流せるように電源電圧を設定すること
で対応できる。
Although this embodiment can be applied to all rotating machines having the structure of a synchronous motor or a reluctance motor, the optimum value of φ is selected depending on the structure. In this case, a value of φ is selected that is close to the value of φ that produces peak torque and has good characteristics such as efficiency and power factor. Additionally, instantaneous overload can be handled by setting the power supply voltage so that a corresponding current can flow.

G。G.

発明の詳細 な説明の如く本発明によれば次の効果を有する。Details of the invention As explained above, the present invention has the following effects.

(1)  ベクトル割目にくらべて著しく簡単な制御方
法で瞬時トルクの制御を行なうことが出来ろ。
(1) It should be possible to control instantaneous torque using a significantly simpler control method than vector division.

(2)  従来の同期電動機;よ始動、同期引入れ、説
謂等を考慮してダンパー巻線が設けられているが、本方
法;二回転子の位置を検出して制御しているため、これ
等の問題は全く無い。従ってダンパー巻線:、を必要と
しないので構造が簡単となる。また従来の同期電動機で
は税調を考慮してピークトルクの1/1.5〜1/2程
度のトルクを定格トルクとしているが、本方法ではピー
クトルクに近いトルクを定格トルクとすることができる
ので電動機を小型化でき;S。
(2) Conventional synchronous motors: A damper winding is provided in consideration of starting, synchronous pull-in, and explanation, but this method detects and controls the position of the two rotors, so There are no problems like this at all. Therefore, no damper winding is required, which simplifies the structure. In addition, in conventional synchronous motors, the rated torque is approximately 1/1.5 to 1/2 of the peak torque in consideration of tax regulations, but with this method, the rated torque can be set to a torque close to the peak torque. The electric motor can be made smaller;S.

(3)  また効率、力率等の運転特性も従来の同期機
にくらべて向上させることができる。
(3) Operating characteristics such as efficiency and power factor can also be improved compared to conventional synchronous machines.

以上のことがらから明らかなように、本方法は簡単な制
御回路ですぐれた特性を有することができ、また省資源
、省エネルギーの効果をあげることができろ。
As is clear from the above, this method can have excellent characteristics with a simple control circuit, and can also save resources and energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は本発明の実施に
供する制御回路図である。 図   中、 Fl::電機子電流起磁力、 L;よ回転子起磁力、 Bはギャップ磁束密度、 21は電動機、 23は電流位相計算回路、 24はF/V変換器である。
FIG. 1 is a diagram explaining the principle of the present invention, and FIG. 2 is a control circuit diagram for implementing the present invention. In the figure, Fl: armature current magnetomotive force, L: rotor magnetomotive force, B is gap magnetic flux density, 21 is a motor, 23 is a current phase calculation circuit, and 24 is an F/V converter.

Claims (1)

【特許請求の範囲】 固定子鉄心に三相巻線を備えた固定子と、界磁巻線によ
る磁極を備えた回転子、回転子鉄心内部に磁極として永
久磁石を埋め込んだ回転子、及び磁極を備えず直軸と横
軸との磁気抵抗が異なる回転子のいずれか一方の回転子
とを有して、上記三相巻線に流す三相交流をインバータ
によって制御する方法において、 上記三相巻線に流す電流により生ずる電機子反作用起磁
力の空間分布の値が最大となる位置と上記回転子の直軸
とのなす空間角を一定値に保つように上記三相交流の位
相を制御し、かつこの制御とは独立に上記三相交流の振
幅の瞬時値を直接制御することにより瞬時トルクを制御
することを特徴とする電動機の制御方法。
[Claims] A stator with a three-phase winding in the stator core, a rotor with magnetic poles formed by field windings, a rotor with permanent magnets embedded as magnetic poles inside the rotor core, and magnetic poles. In the method of controlling the three-phase alternating current flowing through the three-phase winding with an inverter, the three-phase alternating current flowing through the three-phase winding is controlled by an inverter. The phase of the three-phase alternating current is controlled so that the spatial angle between the position where the value of the spatial distribution of the armature reaction magnetomotive force generated by the current flowing through the windings is maximum and the direct axis of the rotor is maintained at a constant value. , and controlling instantaneous torque by directly controlling the instantaneous value of the amplitude of the three-phase alternating current independently of this control.
JP2039728A 1990-02-22 1990-02-22 Motor control method Expired - Fee Related JP2861202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039728A JP2861202B2 (en) 1990-02-22 1990-02-22 Motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039728A JP2861202B2 (en) 1990-02-22 1990-02-22 Motor control method

Publications (2)

Publication Number Publication Date
JPH03245792A true JPH03245792A (en) 1991-11-01
JP2861202B2 JP2861202B2 (en) 1999-02-24

Family

ID=12561040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039728A Expired - Fee Related JP2861202B2 (en) 1990-02-22 1990-02-22 Motor control method

Country Status (1)

Country Link
JP (1) JP2861202B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387195A (en) * 1986-09-29 1988-04-18 Nissan Motor Co Ltd Controller for synchronous motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387195A (en) * 1986-09-29 1988-04-18 Nissan Motor Co Ltd Controller for synchronous motor

Also Published As

Publication number Publication date
JP2861202B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
Jahns et al. Interior permanent-magnet synchronous motors for adjustable-speed drives
Jain et al. Modeling and field oriented control of salient pole wound field synchronous machine in stator flux coordinates
Bose A high-performance inverter-fed drive system of an interior permanent magnet synchronous machine
Tuovinen et al. Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives
JP3899668B2 (en) Drive control device for field winding synchronous machine
Kronberg Design and simulation of field oriented control and direct torque control for a permanent magnet synchronous motor with positive saliency
JP3765437B2 (en) Control system for synchronous motor for machine tool spindle drive
Umanand Pole changing wide speed range induction motor drive for electric vehicles
JP2018057077A (en) Motor control device and drive system
JP3353781B2 (en) Motor control device
Shi et al. Field oriented control of five-phase synchronous reluctance motor drive with flexible 3/sup rd/harmonic current injection for high specific torque
EP0503879A2 (en) Synchronous motor with permanent magnets and motor system
Cervone et al. A Constrained Optimal Model Predictive Control for Mono Inverter Dual Parallel PMSM Drives
JP2002142488A (en) Control method of claw-pole synchronous machine
Morimoto et al. Variable speed drive system of interior permanent magnet synchronous motors for constant power operation
Liu et al. Analysis of indirect rotor field oriented control-based induction machine performance under inaccurate field-oriented condition
Haque et al. Improved trajectory control for an interior permanent magnet synchronous motor drive with extended operating limit
Roos et al. Analysis, simulation and practical evaluation of torque vector control strategies for medium power highly responsive PMSM drives
Nguyen et al. The preliminary results on direct torque control for an fractional-slot concentrated winding interior permanent magnet synchronous machine
Kioskeridis et al. Energy efficiency optimisation in synchronous reluctance motor drives
JPH03245792A (en) Controlling method for motor
Yu et al. MTPA control strategy for six-phase DC-biased hybrid excitation Vernier reluctance machines
Dalal et al. Wide Speed Range Control of PMSM Based on MTPA and Flux-Weakening Control
JP7489294B2 (en) Synchronous motor control device
Nguyen et al. Sensorless direct torque control of a fractional-slot concentrated winding interior permanent magnet synchronous machine using extended rotor flux model

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees