JPH03245748A - Air gap armature winding - Google Patents

Air gap armature winding

Info

Publication number
JPH03245748A
JPH03245748A JP2041266A JP4126690A JPH03245748A JP H03245748 A JPH03245748 A JP H03245748A JP 2041266 A JP2041266 A JP 2041266A JP 4126690 A JP4126690 A JP 4126690A JP H03245748 A JPH03245748 A JP H03245748A
Authority
JP
Japan
Prior art keywords
conductor
corner
double
armature winding
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2041266A
Other languages
Japanese (ja)
Inventor
Toshikazu Matsumoto
松本 壽和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2041266A priority Critical patent/JPH03245748A/en
Publication of JPH03245748A publication Critical patent/JPH03245748A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To prevent an insulting reliability from decreasing without increasing the thickness of a main insulator by interposing a charging space having a sufficiently large corner between a double dislocation conductor and the insulator, and further forming an equipotential surface covering the periphery with a semiconductive member. CONSTITUTION:A double dislocation conductor 1 is formed by bundling strands 3, twisting them to compress primary twisted wire 2 in a rectangular shape. A charging spacer (insulating spacer) 4 having a sufficiently large corner as compared with the corner of the conductor 1 is inserted between the conductor 1 and a main insulating layer 7, the periphery is covered with a semiconductive member 6 to form an equipotential surface. When the equipotential surface is disposed, it becomes equal potential to the conductor 1 to form an equipotential surface along the corner of the spacer 4 disposed at the corner of the conductor. Accordingly, the conductor angle can be substantially increased. Therefore, the concentration of the electric field at the corner of the conductor is alleviated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、主として超電導発電機の固定子電機子巻線に
用いられる空隙電機子巻線の絶縁信頼性向上に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to improving the insulation reliability of a gap armature winding mainly used in a stator armature winding of a superconducting generator.

(従来の技術) 従来の常電導発電機の固定子電機子巻線は鉄心のスロッ
ト内に配置され、電機子巻線としては平角銅線を矩形に
配列し転位を行った電機子導体にマイカ・ガラステープ
層を樹脂にて固めた主絶縁を施したものが一般に用いら
れている。
(Prior art) The stator armature winding of a conventional normal conduction generator is placed in a slot in the iron core, and the armature winding consists of rectangular copper wires arranged in a rectangular shape and a mica conductor with transposed armature conductors.・Those with main insulation made of a glass tape layer hardened with resin are generally used.

(発明が解決しようとする課題) 一方超電導発電機の固定子においては、磁束密度が大き
く、従来の常電導発電機の固定子の様に鉄心スロット構
造では、スロットとスロットの間の鉄心ティース部の磁
束密度が飽和領域となり過熱を引き起すため空隙電機子
巻線構造が採用される。
(Problems to be Solved by the Invention) On the other hand, in the stator of a superconducting generator, the magnetic flux density is large, and if the stator of a conventional normal-conducting generator has an iron core slot structure, the iron core teeth between the slots An air-gap armature winding structure is adopted because the magnetic flux density reaches the saturation region and causes overheating.

空隙電機子巻線構造とは、絶縁物によりスロットを構成
しスロット内に電機子巻線を配置するものである。
The air-gap armature winding structure is one in which a slot is formed of an insulator and the armature winding is arranged within the slot.

従来の鉄心スロット方式では、界磁磁束は鉄心ティース
部を通るため、スロット内電機子導体への界磁磁束の影
響は小さい。しかし、空隙電機子巻線構造の場合、絶縁
物スロット内の電機子導体も磁路となり、強力な回転界
磁の交流磁界の影響を直接受ける。交流磁界により電機
子導体に誘起される渦電流損を低減するため、空隙電機
子巻線構造の電機子導体には二重転位導体が用いられる
In the conventional iron core slot method, the field magnetic flux passes through the iron core teeth, so the influence of the field magnetic flux on the armature conductor in the slot is small. However, in the case of an air-gap armature winding structure, the armature conductor within the insulator slot also becomes a magnetic path and is directly affected by the alternating magnetic field of the strong rotating field. In order to reduce the eddy current loss induced in the armature conductor by an alternating magnetic field, a double dislocation conductor is used in the armature conductor of the air-gap armature winding structure.

二重転位導体とは、通常、直径1mm程度の素線(銅線
)を束ねて撚り、圧縮平角成形してなる一次撚線を矩形
に配列し、更に一次撚線間を撚って転位を行ったもので
ある。
A double dislocation conductor is usually made by bundling and twisting strands (copper wires) with a diameter of about 1 mm, compressing them into rectangular shapes, arranging the primary strands in a rectangular shape, and then twisting between the primary strands to eliminate dislocations. That's what I did.

空隙電機子巻線は、第4図に示すように二重転位導体1
の周囲にマイカ・ガラステープ層を樹脂にて固めた主絶
縁7を施してなる。
The air-gap armature winding consists of double transposed conductors 1 as shown in FIG.
A main insulation 7 made of a mica/glass tape layer hardened with resin is applied around the main insulation 7.

ここで、空隙電機子巻線主絶縁の絶縁信頼性に注目する
。主絶縁層には、電機子導体に誘起される電圧に対応し
て電界ストレスがかかるが、一般に導体角部は電界集中
によりストレスが高くなる。
Here, we will focus on the insulation reliability of the air-gap armature winding main insulation. Electric field stress is applied to the main insulating layer in response to the voltage induced in the armature conductor, and stress generally increases at the corners of the conductor due to electric field concentration.

主絶縁層の平均ストレスに対する。導体角部の電界集中
による最大ストレスの比は、第3図のようになる。すな
わち、同−主絶縁厚においては、導体角部の角Rが小さ
いと電界集中による最大ストレスが大きくなり絶縁信頼
性の低下を招く。導体角Rには、従来の電機子巻線の場
合、平角銅線の角R(ion程度)が相当するのに対し
、空隙電機子巻線の場合、−次撚線を構成する直径1m
程度以下の素線の角R(0,5mm程度以下)が相当す
る。
For the average stress of the main insulation layer. The ratio of maximum stress due to electric field concentration at the corner of the conductor is as shown in FIG. That is, for the same main insulation thickness, if the corner radius of the conductor corner is small, the maximum stress due to electric field concentration will increase, leading to a decrease in insulation reliability. In the case of a conventional armature winding, the conductor angle R corresponds to the angle R (about ion) of a rectangular copper wire, whereas in the case of an air-gap armature winding, it corresponds to a diameter of 1 m constituting the −th order stranded wire.
This corresponds to the angle R of the strands of about 0.5 mm or less (about 0.5 mm or less).

したがって空隙電機子巻線においては、導体角部の電界
集中が大きく、絶縁信頼性の低下を招く。
Therefore, in the air-gap armature winding, electric field concentration at the corners of the conductor is large, leading to a decrease in insulation reliability.

本発明は、空隙電機子巻線において、大きな導体角Rを
確保することにより導体角部電界集中を緩和し、主絶縁
厚を増大することなく絶縁信頼性の低下を防ぐことを目
的とする。
An object of the present invention is to ensure a large conductor angle R in an air-gap armature winding to alleviate electric field concentration at the corners of the conductor, and to prevent a decrease in insulation reliability without increasing the main insulation thickness.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため本発明においては、細い導線を
束ねて撚り圧縮平角成形してなる一次撚線を矩形に配列
し、更にこの一次撚線間を撚って転位を行った二重転位
導体に主絶縁を施してなる空隙電機子巻線において、前
記二重転位導体と主絶縁との間に二重転位導体の角部よ
り充分に大きな角部を有する充填スペーサを介入して成
形し、更にその周囲を半導電性の角部より充分に大きな
角部を形成する。また、前記二重転位導体と主絶縁との
間に二重転位導体の角部より充分に大きな角部を有する
半導電性の充填スペーサを介入しても上記目的を達成で
きる。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, primary stranded wires made by bundling thin conductive wires, twisting them and forming them into a rectangular shape are arranged in a rectangular shape, and the primary strands are further twisted between the primary stranded wires. In an air-gap armature winding formed by applying main insulation to a double-transposed conductor that has undergone translocation, there is a corner between the double-transposed conductor and the main insulation that is sufficiently larger than the corner of the double-transposed conductor. A filling spacer is inserted and formed, and a corner portion sufficiently larger than the semiconductive corner portion is formed around the filled spacer. Further, the above object can also be achieved by interposing a semiconductive filling spacer having a corner portion sufficiently larger than the corner portion of the double dislocation conductor between the double dislocation conductor and the main insulation.

(作 用) 本発明は上記のように構成されており、空隙電機子巻線
において、等電位面を配置しない場合、二重転位導体を
構成する最小導体である素線の角R(0,5m程度以下
)が導体角Rとなるが、等電位面を配置すると当該等電
位面は二重転位導体と同電位となり、導体角部に配置し
た絶縁スペーサの角Rに沿って等電位面を形成すること
となるため、実質的に導体角Rを大きく確保することが
可能である。従って導体角部の電界集中は緩和され、絶
縁信頼性の低下を防止することができる。
(Function) The present invention is configured as described above, and when equipotential surfaces are not arranged in the air-gap armature winding, the angle R (0, 5 m or less) becomes the conductor angle R. However, when an equipotential surface is placed, the equipotential surface has the same potential as the double dislocation conductor, and the equipotential surface is placed along the corner R of the insulating spacer placed at the corner of the conductor. Therefore, it is possible to substantially secure a large conductor angle R. Therefore, electric field concentration at the corners of the conductor is alleviated, and a decrease in insulation reliability can be prevented.

(実施例) 本発明の一実施例を第1図を用いて説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

二重転位導体1は、直径1■の素線3(ホルマル銅線)
を数十本束ねて撚り圧縮平角成形した一次撚線2が矩形
に配列され、更に一次撚線間を撚って転位を行ったもの
である。
The double transposed conductor 1 is a strand 3 (formal copper wire) with a diameter of 1
Several dozen primary strands 2 are bundled together, twisted and compressed to form a rectangular shape, and are arranged in a rectangular shape, and the primary strands are further twisted to perform transposition.

二重転位導体1の上下面には、絶縁スペーサ4が配置さ
れている。絶縁スペーサ4には充填マイカ等を用いる。
Insulating spacers 4 are arranged on the upper and lower surfaces of the double dislocation conductor 1. Filled mica or the like is used for the insulating spacer 4.

絶縁スペーサの角Rは21111程度に成形される。The corner radius of the insulating spacer is approximately 21111 mm.

さらに半導電性テープまたはシート等からなる半導電性
部材層6で二重転位導体1および絶縁スペーサ4を包み
こむように周囲を覆うようにする。
Further, the double dislocation conductor 1 and the insulating spacer 4 are wrapped and surrounded by a semiconductive member layer 6 made of a semiconductive tape or sheet.

その上に、マイカ・ガラステープ層7をエポキシ等の樹
脂にて固めた主絶縁が施される。
On top of that, main insulation is applied, which is a mica/glass tape layer 7 hardened with a resin such as epoxy.

本実施例においては、絶縁スペーサの角Rを21程度と
ったことによりこれに沿って等電位面が形成されるため
、主絶縁層に対する導体角Rは2−程度となる。主絶縁
厚を5mとすると、第3図のグラフから、導体角部の平
均ストレスに対する最大ストレスの比は1.8程度であ
る。
In this embodiment, since the angle R of the insulating spacer is set to about 21, an equipotential surface is formed along this angle, so that the conductor angle R with respect to the main insulating layer is about 2-. Assuming that the main insulation thickness is 5 m, the graph in FIG. 3 shows that the ratio of the maximum stress to the average stress at the corner of the conductor is about 1.8.

一方、従来の構成においては、導体角Rは素線半径0.
5m+ となり、主絶縁厚を同じ<5W11とすると、
第3図のグラフから導体角部最大ストレスの平均ストレ
スに対する比は2.9程度にもなる。
On the other hand, in the conventional configuration, the conductor angle R is 0.5 mm in radius of the wire.
5m+, and if the main insulation thickness is the same <5W11,
From the graph of FIG. 3, the ratio of the maximum stress at the corner of the conductor to the average stress is about 2.9.

次に他の実施例について、第2図を用いて説明する。Next, another embodiment will be described using FIG. 2.

第1図と同様に構成された二重転位導体1の上下面にカ
ーボン等を含んだ充填マイカ等からなる半導電性スペー
サ5が配置され、当該半導電性スペーサの角部は角R2
+w++程度に加工される。その上にマス力・ガラステ
ープ層をエポキシ等の樹脂にて固めた主絶1i#7が施
される。
A semiconductive spacer 5 made of filled mica containing carbon or the like is arranged on the upper and lower surfaces of a double dislocation conductor 1 configured in the same manner as shown in FIG.
Processed to about +w++. On top of that is applied a layer of mass strength/glass tape hardened with a resin such as epoxy.

この場合も、半導電性スペーサは二重転位導体と同電位
となり、主絶縁層に対する導体角Rは2m程度となる。
In this case as well, the semiconductive spacer has the same potential as the double dislocation conductor, and the conductor angle R with respect to the main insulating layer is about 2 m.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば空隙電機子巻線の主
絶縁層への導体角部電界集中が緩和され、主絶縁厚を増
大することなく絶縁信頼性低下を防止することができる
As described above, according to the present invention, electric field concentration at the corners of the conductor on the main insulating layer of the air gap armature winding is alleviated, and deterioration in insulation reliability can be prevented without increasing the main insulation thickness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による空隙電機子巻線の要部
横断面図、第2図は他の実施例による空隙電機子巻線の
要部横断面図、第3図は導体角部の電界集中度を示す特
性図、第4図は従来の空隙電機子巻線の要部横断面図で
ある。
FIG. 1 is a cross-sectional view of a main part of an air-gap armature winding according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a main part of an air-gap armature winding according to another embodiment, and FIG. 3 is a conductor angle FIG. 4 is a cross-sectional view of a main part of a conventional air-gap armature winding.

Claims (2)

【特許請求の範囲】[Claims] (1)細い導線を束ねて撚り圧縮平角成形してなる一次
撚線を矩形に配列し、更にこの一次撚線間を撚って転位
を行った二重転位導体に主絶縁を施してなる空隙電機子
巻線において、 前記二重転位導体と主絶縁との間に二重転位導体の角部
より充分に大きな角部を有する充填スペーサを介入して
成形し、更にその周囲を半導電性部材で覆い等電位面を
形成したことを特徴とする空隙電機子巻線。
(1) A void formed by arranging primary stranded wires made by bundling thin conductive wires, twisting them and compressing them into a rectangular shape, and applying main insulation to a double transposed conductor which is further twisted between the primary stranded wires to perform dislocation. In the armature winding, a filling spacer having a corner that is sufficiently larger than the corner of the double transposition conductor is inserted and formed between the double transposition conductor and the main insulation, and a semiconductive member is further formed around the spacer. An air-gap armature winding characterized by being covered with an equipotential surface to form an equipotential surface.
(2)細い導線を束ねて撚り圧縮平角成形してなる一次
撚線を矩形に配列し、更にこの一次撚線間を撚って転位
を行った二重転位導体に主絶縁を施してなる空隙電機子
巻線において、 前記二重転位導体と主絶縁との間に二重転位導体の角部
より充分に大きな角部を有する半導電性の充填スペーサ
を介入したことを特徴とする空隙電機子巻線。
(2) A void formed by arranging primary stranded wires made by bundling thin conductive wires, twisting them and compressing them into a rectangular shape, and applying main insulation to a double-translocated conductor in which the primary strands are further twisted and transposed between the primary stranded wires. An air-gap armature characterized in that, in the armature winding, a semiconductive filling spacer having a corner portion that is sufficiently larger than a corner portion of the double-transposed conductor is interposed between the double-transposed conductor and the main insulation. winding.
JP2041266A 1990-02-23 1990-02-23 Air gap armature winding Pending JPH03245748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041266A JPH03245748A (en) 1990-02-23 1990-02-23 Air gap armature winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041266A JPH03245748A (en) 1990-02-23 1990-02-23 Air gap armature winding

Publications (1)

Publication Number Publication Date
JPH03245748A true JPH03245748A (en) 1991-11-01

Family

ID=12603645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041266A Pending JPH03245748A (en) 1990-02-23 1990-02-23 Air gap armature winding

Country Status (1)

Country Link
JP (1) JPH03245748A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331860A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri High voltage rotating electric machine
US6404092B1 (en) 1998-04-18 2002-06-11 Abb Research Ltd. Winding bar for the high-voltage winding of an electric machine, and a method for producing such a winding bar
US6768240B2 (en) * 2002-01-31 2004-07-27 General Electric Company Method of making a dynamoelectric machine conductor bar and method of making a conductor bar dynamoelectric machine, the bar and the machine
JP2013240160A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Armature and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331860A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri High voltage rotating electric machine
US6404092B1 (en) 1998-04-18 2002-06-11 Abb Research Ltd. Winding bar for the high-voltage winding of an electric machine, and a method for producing such a winding bar
US6768240B2 (en) * 2002-01-31 2004-07-27 General Electric Company Method of making a dynamoelectric machine conductor bar and method of making a conductor bar dynamoelectric machine, the bar and the machine
JP2013240160A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Armature and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP3721359B2 (en) Stepped electric field insulation system for dynamoelectric machine
US5574325A (en) Impregnatable configuration of a carrier body and winding elements
US3496504A (en) Terminal assembly for encapsulated electric coil
JPH03245748A (en) Air gap armature winding
JP2930273B2 (en) Manufacturing method for windings of electromagnetic induction equipment
JPS5830115A (en) Power transformer
JPS63198309A (en) High frequency transformer
JPH07110129B2 (en) Stator winding of superconducting generator
JPH0211777Y2 (en)
JPH0135567Y2 (en)
JPH0510528Y2 (en)
JP2002184244A (en) Twisted multiple conductor
JPS6215803A (en) Superconductive coil
CA1077147A (en) Composite sheet winding for an electromagnetic induction apparatus
JPH03277147A (en) Armature coil winding
JPS61110410A (en) Lead wire of transformer
JPS5910148A (en) Fixing device for stator coil
JPS61218123A (en) Stationary induction electric apparatus winding
JP2540132Y2 (en) Winding structure of gas-insulated electrical equipment
JPH04261003A (en) Insulation structure of electronic device
JP2607832Y2 (en) Thin transformer
JPH058641Y2 (en)
JPH054265Y2 (en)
JPS6062843A (en) Winding mounting structure of ac rotary machine
JP2000100638A (en) Transformer