JPH03244663A - Transparent antibacterial sheet - Google Patents

Transparent antibacterial sheet

Info

Publication number
JPH03244663A
JPH03244663A JP4111990A JP4111990A JPH03244663A JP H03244663 A JPH03244663 A JP H03244663A JP 4111990 A JP4111990 A JP 4111990A JP 4111990 A JP4111990 A JP 4111990A JP H03244663 A JPH03244663 A JP H03244663A
Authority
JP
Japan
Prior art keywords
antibacterial
sheet
weight
rolling
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4111990A
Other languages
Japanese (ja)
Inventor
Junichiro Yokota
純一郎 横田
Susumu Arase
荒瀬 進
Hiroshi Takasu
高須 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP4111990A priority Critical patent/JPH03244663A/en
Publication of JPH03244663A publication Critical patent/JPH03244663A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an antibacterial sheet excellent in transparency by mixing a crystalline thermoplastic resin with a specified amount of solid zeolite particles holding metallic ions having an antibacterial action and rolling the mixture at a temperature below the melting point of the resin. CONSTITUTION:100 pts.wt. crystalline thermoplastic resin (A) (e.g. polypropylene or nylon 6) is mixed with 0.05-3 pts.wt. solid zeolite particles (B) holding metallic ions having an antibacterial action (e.g. copper ions). The obtained resin composition is rolled at a temperature below the melting point of component A to give a transparent antibacterial sheet having a resin layer with a haze of 15% or less. Since this sheet is transparent and has a function of preventing the occurrence of bacterial or microbial decay, contamination, etc., it can be widely used in applications, e.g. as the raw material and packaging material of foods, optical instruments, liquid crystal, etc.

Description

【発明の詳細な説明】 【産業上の利用分野J 本発明は透明性に優れ、かつ抗菌性を有しながら、生体
に対して有害作用を及ぼさない透明抗菌シート状物に関
する。 [従来の技術] 従来、プラスチック製の抗菌シート状物は食品包装を中
心に食品加工関係、日用雑貨関係、環境設備・資材関係
、医療・医薬関係、電子・工学関係での細菌や微生物に
よる腐敗、製品劣化などの微生物災害を防除するために
使用されている。 これらシート状物に抗菌性を付与する手段としては、次
の様なものが既に知られている:・抗菌性有機化合物を
配合する ・抗菌性を示す重金属の粉末、繊維又は編織物を配合す
る: ・抗菌性の重金属化合物粉末又は粒子を配合する・樹脂
を変性して抗菌性を付与する。 これらの中で、有機化合物が配合された組成物は該化合
物の溶出、揮発又は昇華による抗菌性低下を伴い易い、
しかも、抗菌性重金属粉末等の配合は樹脂との大きな密
度差に妨げられて均一に行なわれにくい外に、金属粉末
等の表面に対する樹脂の低親和性に起因する透明性低下
を往々にして生ずる。抗菌性の重金属化合物粉末等の配
合物にも同様な問題が屡々伴う、また、樹脂を変性する
手段は原料樹脂の長所を損なう場合もあって、適用範囲
が極めて限定される。 【発明が解決しようとする課題】 上記の各従来技術の殆どにおいては、抗菌性物質を結晶
性熱可塑性樹脂に混練してシート状物を製造しているが
、結晶性に起因する透明性不足が該シート状物の用途を
開発して行く上で用途先によっでは大きな障害になって
いる。 本発明者等は抗菌性を有し、さらに結晶性熱可塑性樹脂
でありながらも透明性に優れたシート状物を得る方策に
ついて鋭意研究を行なった。 [課題を解決するための手段] その結果、ゼオライト系抗菌剤を特定の割合で含む結晶
性熱可塑性樹脂組成物に圧延加工を施すと、シート状物
の透明性が格段に改良され、しかも抗菌性を有するシー
ト状物が得られることを見出し、この知見に基づいて本
発明を完成した。 以上の記述から明らかな様に、本発明の目的は透明性に
優れ、十分な抗菌性を有する透明抗菌シート状物及びそ
の製造方法を提供することにある。 すなわち、本発明は結晶性熱可塑性樹脂100重量部お
よび抗菌作用を示す金属イオンを保持するゼオライト系
固体粒子0.05〜3重量部から主として構成される樹
脂組成物が圧延加工によって透明化されていることを特
徴とする透明抗菌シート状物(シート及びフィルムを包
括する概念)及び該透明抗菌シート状物からなっている
。 本発明においてゼオライトとしては、天然ゼオライト及
び合成ゼオライトの何れをも用いることができる。ゼオ
ライトとは、一般に三次元骨格構造を有するアルミノシ
リケートの総称であり、含有金属rMJの原子価に応じ
て次の一般式の何れかで表示される: mMio・A1tOs’pSfO1qHaO(Mは1価
の金H)mMllAlxOs・psiolqHzo  
 (Mは2価の金属)mMaolAlaOs・psi0
1qH*o  (Mは3価の金属)(ここで、Mはイオ
ン交換可能なイオンを表し、通常は1または2価の金属
のイオンである。m及びpは金属酸化物及びシリカそれ
ぞれの係数、qは結晶水の数を表わす、) ゼオライトの具体例としては、A−型ゼオライド、X−
型ゼオライド、Y−型ゼオライド、T−型ゼオライド、
高シリカゼオライト、ソーダライト、モルデナイト、ア
之ルサイム、クリノプチロライト、チャバサイト、エリ
オナイト等を挙げることができるが、これらに限定され
るものではない。 本発明の抗菌作用を示す金属イオンを保持するゼオライ
ト系固体粒子とは、上記ゼオライト中のイオン交換可能
な金属イオン、例えばナトリウムイオン、カルシウムイ
オン、カリウムイオン、マグネシウムイオン、鉄イオン
等の一部または全部を抗菌性金属イオンで置換したもの
である。抗菌性金属イオンの例としては、銀、銅、鉛、
錫、クロム、カドミウム、亜鉛、ビスマス又はタリウム
のイオン、好ましくは銀、銅又は亜鉛イオンである。 ゼオライトの総量(無水ゼオライト重量基準)に対する
殺菌作用を示す各金属の含有割合は次の通りである: 銀については、30重量%以下、好ましくは、0、00
1〜5重量%; 銅又は亜鉛の場合には35重量%以下、好ましくは0.
01〜15重量%; 銀、銅及び亜鉛イオンの2種類以上を併用する場合には
、それらの和が0.001〜15重量%の範囲にあるこ
とが好ましい。 また、銀、銅又は亜鉛イオン以外の金属イオン例えば、
ナトリウム、カリウム、カルシウム等のイオンあるいは
アンモニウムイオンが殺菌効果を妨げない程度の量で共
存していても、何等差し支え無い。 本発明の透明抗菌シート状物中の抗菌性金属イオンを保
持している抗菌性ゼオライト系固体粒子の含有重量部(
無水ゼオライト基準)は結晶性樹脂の重量%に対して0
.05〜3重量部、好ましくは0.1〜2重量部、更に
好ましくは0.2〜1重量部の範囲に設定する。 抗菌性金属イオンを保持している抗菌性ゼオライト系固
体粒子の量が0,05重量部よりも少ないシートの場合
には十分な抗菌性が発揮されず、3重量部を越える量で
は圧延中にシートに白化が生じたり、穴があいたり又は
切断したりする傾向が無視し難くなることから、透明な
シート状物を得にくくなる。 本発明において用いられる結晶性熱可塑性樹脂としては
、次の様なものを例示できる:高密度ポリエチレン(H
DPE)、中密度ポリエチレン(MDPE)又は線状低
密度ポリエチレン(L−LDPE)又は超高分子量ポリ
エチレン(UHMW−PE)  ;単独重合ポリプロピ
レン又は共重合ポリプロピレン;ポリ−1−ブテン等の
他に、エチレン又はプロピレンを主成分とし、これと他
のα−オレフィン又は極性モノマーとの共重合体等のポ
リオレフィン系樹脂; ナイロン−6、ナイロン−6,6、ナイロン−11、ナ
イロン−12等のポリアミド系樹脂;ポリエチレンテレ
フタレート、ポリブチレンテレフタレート等のポリエス
テル系樹脂;ポリアセクール樹脂;及び これらの樹脂の2種類以上の混合物等の何れであっても
、結晶性を有する熱可塑性樹脂であればよく、原料樹脂
の種類による制限は無い。中でも実用性、加工容易性等
の点から、結晶性ポリオレフィン系樹脂が好ましい。 また、上記樹脂にマレイン酸、アクリル酸、フマル酸等
の不飽和カルボン酸、その酸無水物又はエステル等の誘
導体を共重合もしくはグラフトさせた改質樹脂、上記樹
脂を電離性放射線処理したり、架橋剤によって架橋させ
た改質樹脂も用途に応じて用いることができる。 本発明において、上記結晶性熱可塑性樹脂にその透明性
を実質的に低下させない程度の量で各種のフィラー(又
は補強材)を添加することもできる。用いられるフィラ
ーとしては、ガラス繊維、炭素繊維、ビニロン繊維等の
繊維状補強材、マイカ、タルク等のフレーク状フィラー
、ガラスピーズなどの球状のフィラー、炭酸カルシウム
、木片又は木粉等の不定形フィラーが挙げられる。 これらのフィラー(又は補強材)の表面には、配合され
る樹脂に対する親和性を付与する処理が施されているこ
とが好ましい。この様な処理としては、例えば不飽和カ
ルボン酸もしくはその酸無水物等付加、不飽和アミン付
加又はゴム質被覆等を挙げることができる。 また、これらのフィラーの他に、吸湿剤、増量剤、着色
剤、難燃剤、劣化防止剤、帯電防止剤又は潤滑剤等をも
必要に応じて添加することができる。 本発明では、該結晶性熱可塑性樹脂と抗菌作用を示す金
属イオンを保持するゼオライト系固体粒子とを例えば溶
融混練し、Tダイ法やインフレーション法などの公知の
成形方法によって製膜し、得られた圧延用シート状物に
対して圧延処理を行なう。 本発明における圧延とは、前記の結晶性熱可塑性樹脂の
融点(後に定義)以下の温度で一対以上のロール間で行
うことが必要である。結晶性熱可塑性樹脂の融点よりも
高い温度で該シートに圧延処理を試みた場合には、該シ
ート状物が溶融する結果、圧延が行なわれず、従って透
明性が向上しない他、溶融樹脂がロール面に付着するな
どの事態を引き起こす。 本発明の圧延処理における樹脂の融点とは、JIS K
7121に準拠してDSC(示差走査型熱量計)を用い
て得られた該樹脂の熱挙動曲線の最大ピークが位置する
温度をいう。 また、必要に応じて圧延操作を繰り返したり、圧延前に
シート状物を予熱することも差し支えない。 本発明の透明抗菌シート状物を作成する為に使用する圧
延ロールの表面粗度はシート状物の透明性を良くする為
に、通常IS以下、好ましくは0.5S以下、更に好ま
しくは0.2S以下に設定する。 本発明で圧延条件の1要件である圧下率(r:%)とは
、圧延前の材料樹脂の厚さ(hl)と圧延後のシートの
厚さ(h2)から、次式で表すことができる。 r=100”  (hi   ha )/h+  (%
)該圧延フィルム又はシート(シート状物)の最終圧下
率は50%以上、90%以下の範囲に設定することが好
ましく、更に好ましくは60%以上、85%以下とする
。 本発明の透明抗菌シート状物はASTM  DIO03
に従って測定した曇り度が15%以下、好ましくは8%
以下、更に好ましくは5%以下のものである。 [実施例] 以下に、実施例及び比較例をもって本発明をさらに具体
的に説明するが、本発明はこれらによって限定されるも
のではない。 実施例で用いた抗菌作用を示す金属イオンを保持するゼ
オライト系固体粒子(以下「抗菌剤」と略する)は商品
名「バクテキラーBM103J(鑵紡■製)として市販
されているものである。 これはA型−ゼオライドに銀3.5重量%を保有させた
もので、粒径的2μmの粉体である。 なお、溶融混練と圧延による製膜とを行うときは、前以
て該抗菌剤を含む結晶性熱可塑性樹脂を120℃の加熱
オーブン中で8時間以上加熱してから処理に供した。 圧延適性の評価は圧延工程中のシート状物に白化、穴空
き、破断などが生じた場合には×、均一な透明シートが
得られた場合を○とした。 抗菌性は以下に示す方法で測定した生菌の死滅率から評
価した。死滅率が90%以上の結果を「○」、90%未
満の結果を「×」と表わした。 試料菌液は試験菌株として、大腸菌(Escheric
h−ia coil IFO3301)又は黄色ブドウ
球菌(Staphylo−coccus aureus
IFo 13276)を用い、普通ブイヨン培地で37
℃において、1夜培養した後に、滅菌生理食塩水を用い
て11Ill当りの菌数が約10’〜10’個になる様
に希釈調製する。その菌液を試料シートの片面に一定量
噴霧し、噴霧直後と35℃で18時間放置した後とのそ
れぞれについて試料シートの表面を滅菌ガーゼで拭き取
る。このガーゼに付着した試験菌を5CDLPブイヨン
培地で抽出して試験液とし、この試験液の生菌数を5C
DLP寒天培地による通常の混釈平板培養法(37℃、
2日間培養)で測定し、噴霧直後と18時間経過後の試
料表面に付着する生菌数から死滅率を算出する。 実施例1〜3及び比較例1〜3 ポリプロピレンホモポリマー(PPと略す、メルトフロ
ーレート 1.0g710分、密度0.90 g /c
c、融点162℃)100重量部と前記抗菌剤0.5重
量部、1重量部又は2.5重量部とからなる各組成物を
造粒機で溶融混練し、Tダイ法で厚さ1.5ma+X幅
250mmで抗菌剤濃度を異にする3種類の圧延用シー
ト(jlつ度74%)を作成した。 ロール径300mmX幅400mmの上下一対の圧延ロ
ールに上記圧延用シートを供給し、ロール温度110℃
で圧延して、厚さ0.40mmで、抗菌剤濃度を異にす
る3種類の圧延シートを得た(圧下率73%)。 該各シートの透明性(Ilkり度)と抗菌性とを表1に
示す。 また、比較例1.2及び3として、抗菌剤を含まない場
合と抗菌剤を0.02重量部含む場合又は10重量部含
む場合との各結果を表1に示す。 実施例4〜6及び比較例4〜5 エチレン−プロピレンランダムコポリマー(rR−PP
Jと略す。メルトフローレート 2.2g710分、密
度0.90 g / cc、融点142℃、エチレン含
有量4モル%及びプロピレン含有量96モル%)100
重量部と前記抗菌剤0.5重量部、1重量部又は1.5
重量部とからなる各組成物を造粒機で溶融混練した後、
Tダイ法で厚さ1.5mmX幅250+amで抗菌剤濃
度を異にする3種類の圧延用シート(曇り度29%)を
製膜した。 ロール径300mm、幅400mmの圧延ロールに上記
各シートを供給し、ロール温度90℃で圧延して、厚さ
0.42mmで、抗菌剤濃度を異にする3種類の圧延シ
ート(透明化シート)を得た(圧下率72%)。 該各シートの透明性と抗菌性とを表1に示す。 また、比較例4及び5として、抗菌剤を含まない場合と
抗菌剤を0.02重量部含んだ場合との各結果をそれぞ
れ表1に示す。 実施例7及び比較例6 エチレンーブロビレンブロツクコボリマー[rB−PP
Jと略す。メルトフローレート(MFR) 0.5g/
 10分、密度0.91g/cc、融点160℃、エチ
レン含有量8モル%及びプロピレン含有量92モル%]
 100重量部と前記抗菌剤1重量部とからなる組成物
を造粒機で混練し、Tダイ法で厚さ 2.3mmX幅2
50mmのシートを製膜して圧延用シート(曇り度80
%)を作成した。このシートを実施例1と同様に圧延し
て、厚さ0.35mmのフィルムを得た(圧下率85%
)。 該フィルムの透明性と抗菌性とを表1に示す。 また、比較例6として、抗菌剤を含まない場合の結果を
それぞれ表1に示す。 実施例8及び9並びに比較例7 高密度ポリエチレンホモポリマーからなる[rPEJと
略す。メルトインデックス(M I )0.8g710
分、密度0.94 g / cc、融点130℃110
0重量部と前記抗菌剤1重量部又は2重量部とを造粒機
で混練し、Tダイ法で厚さ2.2mmX幅250mmの
2種類の圧延用シート(!lり度92%)を作成した0
両シートを圧延温度90℃で実施例1と同様に圧延して
、厚さ0.45mmの圧延シートを得た(圧下率80%
)。 該両シートの透明性と抗菌性とを表1に示す。 また、比較例7として抗菌剤を含まない場合の結果を表
1に併せ示す。 [発明の効果] 本発明のシート状物は抗菌性を有し、結晶性熱可塑性樹
脂で形成されながらも、透明である。 本発明によるシートは透明な上に、細菌や微生物による
腐敗、製品劣化・汚染等の発生を予防する機能を備えて
いるという長所によって、今までの不透明シートでは使
用できなかった各種用途、例えば光学機器関係、精密写
真関係、食品関係、液晶関係、医療関係等の資材又は包
装等の用途に幅広く使用することができる
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a transparent antibacterial sheet material that has excellent transparency and antibacterial properties, but does not have any harmful effects on living organisms. [Conventional technology] Conventionally, antibacterial sheet materials made of plastic have been used mainly in food packaging, food processing, daily necessities, environmental equipment/materials, medical care/pharmaceuticals, electronics/engineering, etc. It is used to prevent microbial disasters such as spoilage and product deterioration. The following methods are already known for imparting antibacterial properties to these sheet materials: ・Blending antibacterial organic compounds ・Blending heavy metal powders, fibers, or knitted fabrics that exhibit antibacterial properties : ・Blending antibacterial heavy metal compound powder or particles ・Modifying the resin to impart antibacterial properties. Among these, compositions containing organic compounds are likely to be accompanied by a decrease in antibacterial properties due to elution, volatilization, or sublimation of the compound.
Furthermore, the blending of antibacterial heavy metal powders, etc. is not only difficult to achieve uniformly due to the large density difference with the resin, but also often results in a decrease in transparency due to the low affinity of the resin to the surface of the metal powder, etc. . Similar problems are often associated with formulations such as antibacterial heavy metal compound powders, and means for modifying resins may impair the advantages of the raw resin, so the scope of application is extremely limited. [Problems to be Solved by the Invention] In most of the above-mentioned conventional technologies, a sheet-like product is manufactured by kneading an antibacterial substance into a crystalline thermoplastic resin, but the lack of transparency due to crystallinity. Depending on the application, this becomes a major obstacle in developing applications for the sheet-like material. The present inventors have conducted extensive research on methods for obtaining a sheet-like material that has antibacterial properties and is also a crystalline thermoplastic resin with excellent transparency. [Means for solving the problem] As a result, when a crystalline thermoplastic resin composition containing a zeolite antibacterial agent in a specific proportion is rolled, the transparency of the sheet material is significantly improved, and the antibacterial The present invention was completed based on this finding. As is clear from the above description, an object of the present invention is to provide a transparent antibacterial sheet material having excellent transparency and sufficient antibacterial properties, and a method for producing the same. That is, the present invention provides a resin composition mainly composed of 100 parts by weight of a crystalline thermoplastic resin and 0.05 to 3 parts by weight of zeolite solid particles holding metal ions exhibiting antibacterial activity, which is made transparent by rolling. It consists of a transparent antibacterial sheet-like material (a concept that includes both sheets and films) and the transparent antibacterial sheet-like material. In the present invention, both natural zeolite and synthetic zeolite can be used as the zeolite. Zeolite is a general term for aluminosilicates that generally have a three-dimensional skeleton structure, and is expressed by one of the following general formulas depending on the valence of the metal rMJ contained: mMio・A1tOs'pSfO1qHaO (M is a monovalent Gold H)mMllAlxOs・psiolqHzo
(M is a divalent metal) mMaolAlaOs・psi0
1qH*o (M is a trivalent metal) (where M represents an ion exchangeable ion, usually a mono- or divalent metal ion. m and p are the coefficients of metal oxide and silica, respectively) , q represents the number of water of crystallization) Specific examples of zeolites include A-type zeolide, X-
type zeolide, Y-type zeolide, T-type zeolide,
Examples include, but are not limited to, high silica zeolite, sodalite, mordenite, alcyme, clinoptilolite, chabasite, erionite, and the like. The zeolite-based solid particles holding metal ions exhibiting antibacterial activity of the present invention refer to some of the ion-exchangeable metal ions in the zeolite, such as sodium ions, calcium ions, potassium ions, magnesium ions, iron ions, etc. All of the components have been replaced with antibacterial metal ions. Examples of antibacterial metal ions include silver, copper, lead,
ions of tin, chromium, cadmium, zinc, bismuth or thallium, preferably silver, copper or zinc ions. The content ratio of each metal exhibiting a bactericidal effect to the total amount of zeolite (based on the weight of anhydrous zeolite) is as follows: Silver: 30% by weight or less, preferably 0.00% by weight or less
1 to 5% by weight; in the case of copper or zinc, up to 35% by weight, preferably 0.
01 to 15% by weight; When two or more of silver, copper, and zinc ions are used together, the sum of these ions is preferably in the range of 0.001 to 15% by weight. In addition, metal ions other than silver, copper or zinc ions, for example,
There is no problem even if ions such as sodium, potassium, calcium, or ammonium ions coexist in amounts that do not interfere with the bactericidal effect. Part by weight of antibacterial zeolite solid particles holding antibacterial metal ions in the transparent antibacterial sheet of the present invention (
(based on anhydrous zeolite) is 0 based on the weight percent of crystalline resin.
.. The amount is set in the range of 0.05 to 3 parts by weight, preferably 0.1 to 2 parts by weight, and more preferably 0.2 to 1 part by weight. If the amount of antibacterial zeolite solid particles holding antibacterial metal ions is less than 0.05 parts by weight, sufficient antibacterial properties will not be exhibited, and if the amount exceeds 3 parts by weight, the antibacterial properties will be reduced during rolling. It becomes difficult to obtain a transparent sheet-like product since the tendency of the sheet to whiten, become perforated or cut becomes difficult to ignore. Examples of the crystalline thermoplastic resin used in the present invention include the following: High-density polyethylene (H
DPE), medium density polyethylene (MDPE), linear low density polyethylene (L-LDPE) or ultra-high molecular weight polyethylene (UHMW-PE); homopolymerized polypropylene or copolymerized polypropylene; in addition to poly-1-butene, etc., ethylene or polyolefin resins such as copolymers containing propylene as a main component and other α-olefins or polar monomers; polyamide resins such as nylon-6, nylon-6,6, nylon-11, nylon-12, etc. ; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyacecool resins; and mixtures of two or more of these resins, as long as they are crystalline thermoplastic resins, depending on the type of raw material resin. There are no restrictions. Among these, crystalline polyolefin resins are preferred from the standpoint of practicality, ease of processing, and the like. In addition, modified resins obtained by copolymerizing or grafting unsaturated carboxylic acids such as maleic acid, acrylic acid, and fumaric acid, and derivatives such as their acid anhydrides or esters to the above resins, or treating the above resins with ionizing radiation, Modified resins crosslinked with a crosslinking agent can also be used depending on the application. In the present invention, various fillers (or reinforcing materials) may be added to the crystalline thermoplastic resin in an amount that does not substantially reduce its transparency. Fillers that can be used include fibrous reinforcing materials such as glass fiber, carbon fiber, and vinylon fiber, flake fillers such as mica and talc, spherical fillers such as glass peas, and amorphous fillers such as calcium carbonate, wood chips, and wood powder. can be mentioned. The surface of these fillers (or reinforcing materials) is preferably subjected to a treatment that imparts affinity to the resin to be blended. Examples of such treatment include addition of an unsaturated carboxylic acid or its acid anhydride, addition of an unsaturated amine, and rubber coating. In addition to these fillers, a moisture absorbent, an extender, a coloring agent, a flame retardant, an anti-deterioration agent, an antistatic agent, a lubricant, etc. can be added as necessary. In the present invention, the crystalline thermoplastic resin and zeolite solid particles holding metal ions exhibiting an antibacterial effect are melt-kneaded, and a film is formed by a known molding method such as a T-die method or an inflation method. A rolling process is performed on the rolled sheet material. The rolling in the present invention must be carried out between one or more pairs of rolls at a temperature below the melting point (defined later) of the crystalline thermoplastic resin. If an attempt is made to roll the sheet at a temperature higher than the melting point of the crystalline thermoplastic resin, the sheet will melt and rolling will not take place. This can cause problems such as adhesion to surfaces. The melting point of the resin in the rolling process of the present invention is defined by JIS K
It refers to the temperature at which the maximum peak of the thermal behavior curve of the resin is obtained using a DSC (differential scanning calorimeter) in accordance with 7121. Further, the rolling operation may be repeated or the sheet-like material may be preheated before rolling, if necessary. In order to improve the transparency of the sheet, the surface roughness of the rolling roll used to produce the transparent antibacterial sheet of the present invention is usually less than IS, preferably less than 0.5S, more preferably less than 0.5S. Set to 2S or less. The rolling reduction ratio (r:%), which is one of the requirements for rolling conditions in the present invention, can be expressed by the following formula from the thickness of the material resin before rolling (hl) and the thickness of the sheet after rolling (h2). can. r=100” (hi ha )/h+ (%
) The final rolling reduction ratio of the rolled film or sheet (sheet-like material) is preferably set in a range of 50% or more and 90% or less, more preferably 60% or more and 85% or less. The transparent antibacterial sheet material of the present invention conforms to ASTM DIO03.
The haze measured according to the method is 15% or less, preferably 8%.
The content is more preferably 5% or less. [Examples] The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited thereto. The zeolite-based solid particles holding metal ions exhibiting antibacterial action (hereinafter referred to as "antibacterial agent") used in the examples are commercially available under the trade name "Bactekiller BM103J (manufactured by Kobo)." is a powder containing 3.5% by weight of silver in A-type zeolide, and has a particle size of 2 μm.In addition, when performing melt kneading and film formation by rolling, the antibacterial agent is added in advance. The crystalline thermoplastic resin containing the following was heated in a heating oven at 120°C for 8 hours or more before being subjected to processing. Rolling suitability was evaluated based on whether whitening, holes, breaks, etc. occurred in the sheet material during the rolling process. If a uniform transparent sheet was obtained, it was marked as ×, and if a uniform transparent sheet was obtained, it was marked as ○. Antibacterial properties were evaluated from the killing rate of viable bacteria measured by the method shown below. A result with a killing rate of 90% or more was marked as “○”. , results of less than 90% were expressed as "x". The sample bacterial solution contains Escherichia coli as a test bacterial strain.
h-ia coil IFO3301) or Staphylo-coccus aureus
IFo 13276) using normal bouillon medium.
After culturing overnight at <RTI ID=0.0>C,</RTI> the mixture is diluted with sterile physiological saline so that the number of bacteria per 11 liters is about 10' to 10'. A fixed amount of the bacterial solution is sprayed onto one side of the sample sheet, and the surface of the sample sheet is wiped with sterile gauze immediately after spraying and after being left at 35° C. for 18 hours. The test bacteria attached to this gauze are extracted with 5CDLP broth medium to make a test solution, and the number of viable bacteria in this test solution is determined by 5C
Conventional pour plate culture method using DLP agar medium (37°C,
The killing rate is calculated from the number of viable bacteria adhering to the sample surface immediately after spraying and after 18 hours. Examples 1 to 3 and Comparative Examples 1 to 3 Polypropylene homopolymer (abbreviated as PP, melt flow rate 1.0 g 710 minutes, density 0.90 g / c
c, melting point 162°C) and 0.5 parts by weight, 1 part by weight, or 2.5 parts by weight of the antibacterial agent were melt-kneaded in a granulator, and then mixed to a thickness of 1 by T-die method. Three types of rolling sheets with different antibacterial agent concentrations (74% rolling degree) were prepared with a width of .5 ma + width of 250 mm. The above rolling sheet was supplied to a pair of upper and lower rolls with a roll diameter of 300 mm and a width of 400 mm, and the roll temperature was 110°C.
Three types of rolled sheets with a thickness of 0.40 mm and different concentrations of antibacterial agents were obtained (reduction ratio of 73%). Table 1 shows the transparency (Ilk degree) and antibacterial properties of each sheet. Further, as Comparative Examples 1.2 and 3, Table 1 shows the results of cases in which no antibacterial agent was included, and cases in which 0.02 parts by weight or 10 parts by weight of an antibacterial agent were included. Examples 4-6 and Comparative Examples 4-5 Ethylene-propylene random copolymer (rR-PP
Abbreviated as J. Melt flow rate 2.2 g 710 min, density 0.90 g/cc, melting point 142 °C, ethylene content 4 mol% and propylene content 96 mol%) 100
parts by weight and 0.5 parts by weight, 1 part by weight or 1.5 parts by weight of the antibacterial agent.
After melt-kneading each composition consisting of parts by weight in a granulator,
Three types of rolling sheets (haze of 29%) with different antibacterial agent concentrations were formed using the T-die method with a thickness of 1.5 mm and a width of 250 am. Each of the above sheets was supplied to a rolling roll with a roll diameter of 300 mm and a width of 400 mm, and rolled at a roll temperature of 90°C to obtain three types of rolled sheets (transparent sheets) with a thickness of 0.42 mm and different antibacterial agent concentrations. was obtained (reduction rate of 72%). Table 1 shows the transparency and antibacterial properties of each sheet. Furthermore, as Comparative Examples 4 and 5, Table 1 shows the results of cases in which no antibacterial agent was included and cases in which 0.02 parts by weight of an antibacterial agent was included. Example 7 and Comparative Example 6 Ethylene-brobylene block copolymer [rB-PP
Abbreviated as J. Melt flow rate (MFR) 0.5g/
10 minutes, density 0.91 g/cc, melting point 160°C, ethylene content 8 mol% and propylene content 92 mol%]
A composition consisting of 100 parts by weight and 1 part by weight of the antibacterial agent was kneaded using a granulator, and the mixture was mixed using a T-die method to a thickness of 2.3 mm x width of 2.
A 50mm sheet was formed into a rolling sheet (haze level 80).
%)It was created. This sheet was rolled in the same manner as in Example 1 to obtain a film with a thickness of 0.35 mm (rolling ratio: 85%).
). Table 1 shows the transparency and antibacterial properties of the film. Further, as Comparative Example 6, the results when no antibacterial agent was included are shown in Table 1. Examples 8 and 9 and Comparative Example 7 Made of high-density polyethylene homopolymer [abbreviated as rPEJ]. Melt index (MI) 0.8g710
min, density 0.94 g/cc, melting point 130℃ 110
0 parts by weight and 1 part by weight or 2 parts by weight of the antibacterial agent were kneaded in a granulator, and two types of rolling sheets (!l degree of 92%) with a thickness of 2.2 mm and a width of 250 mm were prepared using a T-die method. Created 0
Both sheets were rolled in the same manner as in Example 1 at a rolling temperature of 90°C to obtain a rolled sheet with a thickness of 0.45 mm (rolling reduction rate of 80%).
). Table 1 shows the transparency and antibacterial properties of both sheets. Additionally, Table 1 also shows the results of Comparative Example 7 in which no antibacterial agent was included. [Effects of the Invention] The sheet-like material of the present invention has antibacterial properties and is transparent even though it is formed of a crystalline thermoplastic resin. The sheet according to the present invention is not only transparent, but also has the ability to prevent spoilage caused by bacteria and microorganisms, as well as product deterioration and contamination. Can be used in a wide range of applications such as equipment-related, precision photography-related, food-related, liquid crystal-related, medical-related materials, packaging, etc.

Claims (2)

【特許請求の範囲】[Claims] (1)結晶性熱可塑性樹脂100重量部に抗菌作用を有
する金属イオンを保持するゼオライト系固体粒子0.0
5〜3重量部を含有し、樹脂層の曇り度が15%以下で
あることを特徴とする透明抗菌シート状物。
(1) 0.0 zeolite solid particles holding metal ions with antibacterial activity in 100 parts by weight of crystalline thermoplastic resin
5 to 3 parts by weight, and the haze of the resin layer is 15% or less.
(2)結晶性熱可塑性樹脂100重量部及び抗菌作用を
有する金属イオンを保持するゼオライト系固体粒子0.
05〜3重量部を含有する樹脂組成物を該熱可塑性樹脂
の融点以下の温度においてロール圧延することを特徴と
する透明抗菌シート状物の製造方法。
(2) 100 parts by weight of crystalline thermoplastic resin and 0.0 parts by weight of zeolite solid particles holding metal ions having antibacterial activity.
1. A method for producing a transparent antibacterial sheet, comprising rolling a resin composition containing 5 to 3 parts by weight of the thermoplastic resin at a temperature below the melting point of the thermoplastic resin.
JP4111990A 1990-02-23 1990-02-23 Transparent antibacterial sheet Pending JPH03244663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111990A JPH03244663A (en) 1990-02-23 1990-02-23 Transparent antibacterial sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111990A JPH03244663A (en) 1990-02-23 1990-02-23 Transparent antibacterial sheet

Publications (1)

Publication Number Publication Date
JPH03244663A true JPH03244663A (en) 1991-10-31

Family

ID=12599569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111990A Pending JPH03244663A (en) 1990-02-23 1990-02-23 Transparent antibacterial sheet

Country Status (1)

Country Link
JP (1) JPH03244663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08207494A (en) * 1995-02-07 1996-08-13 Sankyo Kasei Kk Antibacterial sheet and manufacture thereof
US5997815A (en) * 1997-02-14 1999-12-07 Huels Aktiengesellschaft Article with antimicrobial coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08207494A (en) * 1995-02-07 1996-08-13 Sankyo Kasei Kk Antibacterial sheet and manufacture thereof
US5997815A (en) * 1997-02-14 1999-12-07 Huels Aktiengesellschaft Article with antimicrobial coating

Similar Documents

Publication Publication Date Title
US6838186B2 (en) Multilayer oriented antimicrobial and antifogging films
US11154063B2 (en) Method for producing a bacteriostatic and fungistatic additive in masterbatch for application in plastics
US20060062850A1 (en) Controlled release antimicrobial polymer compositions
JPH03134033A (en) Production of antifungal polyolefin resin molding
US20110081530A1 (en) Anti-Microbial Polymeric Film and Method of Manufacture of Said Film
KR20050094853A (en) Anti-microbial coated polymeric film
JPH05230325A (en) Antibacterial, antifungal polyacetal resin composition
JP2012012617A (en) Antibacterial polymer film
EP0552151B1 (en) Antimicrobial hydrogels
JPH03244663A (en) Transparent antibacterial sheet
KR20030034079A (en) Polyamide based antibacterial powder paint composition
JPH04275142A (en) Highly transparent antimicrobial multilayer sheet article and preparaiton thereof
KR102522104B1 (en) Bio antibacterial pellet and antibacterial products by using metal derivatives and porous carriers
JP3271888B2 (en) Antibacterial polycarbonate resin products
JP2809674B2 (en) Stretched film with antibacterial action
JPH0674348B2 (en) Weather resistant resin composition
JP2002179514A (en) Antifungal agent, method of producing the same and antifungal resin composition
JPH11228306A (en) Ag-based antimicrobial agent, its production and antimicrobial resin composition
JPH0649253A (en) Porous antimicrobial film and its production
CN106977814A (en) It is a kind of have stablize composite of anti-microbial property and application thereof
JP2004091779A (en) Antibacterial film-forming water-based dispersion and use of the same
JP2000119412A (en) Antibacterial oriented film
JP3059816B2 (en) Anti-scale adhesive polypropylene resin composition
JPH11157022A (en) Antibacterial polypropylene-based composite film
JPH04255727A (en) Ultraviolet-shielding transparent sheet material and its production