JP2002179514A - Antifungal agent, method of producing the same and antifungal resin composition - Google Patents

Antifungal agent, method of producing the same and antifungal resin composition

Info

Publication number
JP2002179514A
JP2002179514A JP2000375877A JP2000375877A JP2002179514A JP 2002179514 A JP2002179514 A JP 2002179514A JP 2000375877 A JP2000375877 A JP 2000375877A JP 2000375877 A JP2000375877 A JP 2000375877A JP 2002179514 A JP2002179514 A JP 2002179514A
Authority
JP
Japan
Prior art keywords
silver
zinc oxide
fine powder
resin
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000375877A
Other languages
Japanese (ja)
Inventor
Eiki Takeshima
鋭機 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2000375877A priority Critical patent/JP2002179514A/en
Publication of JP2002179514A publication Critical patent/JP2002179514A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antifungal agent that can manifest excellent antifungal properties, even when the agent is kneaded together with a resin, without discoloration of the resin, in a short time after it is applied, even in the case of a small amount of the agent applied. SOLUTION: In this antifungal agent, the diffusion layers of silver are formed on the surface of zinc oxide fine particles with an average particle size of <=1 μm in scattered dots and zinc oxide is exposed on the surface of the fine particles. The fine particles of zinc oxide are covered on their surfaces with 1-10 mass % of silver in the scattered dot form, then they are heated at 400-800 deg.C in an inert gas atmosphere whereby the silver is diffused on the zinc oxide fine particles to form the diffused silver layer thereon in the scattered dot form.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、樹脂,塗料,繊維,化
粧品等に対する無着色の添加剤又は塗布剤として使用さ
れ、優れた抗菌性を呈する抗菌剤、その製造方法及び抗
菌剤を配合した樹脂組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as an uncolored additive or coating agent for resins, paints, fibers, cosmetics, and the like, and has an antibacterial agent exhibiting excellent antibacterial properties, a method for producing the same, and a compounded antibacterial agent. It relates to a resin composition.

【0002】[0002]

【従来の技術】生活環境レベルの向上に伴って清潔志向
が強くなってきている。身の回りで使用される各種生活
用品としても、抗菌性を付与したものが好まれている。
抗菌性を付与する抗菌剤は、有機系及び無機系に大別さ
れる。無機系抗菌剤は、有機系抗菌剤に比較すると揮発
や分解が少なく、溶出量も少ないため長期間にわたり優
れた抗菌性を持続する。また、耐熱性にも優れ、人体に
対する安全性も高いことから、広範な分野での使用が期
待されている。
2. Description of the Related Art With an improvement in the living environment level, a desire for cleanliness has become stronger. As various kinds of daily necessities used in the daily life, those provided with antibacterial properties are preferred.
Antimicrobial agents that impart antimicrobial properties are broadly classified into organic and inorganic. Inorganic antibacterial agents have less volatilization and decomposition and have a smaller elution amount than organic antibacterial agents, so that they maintain excellent antibacterial properties over a long period of time. In addition, since it has excellent heat resistance and high safety for the human body, it is expected to be used in a wide range of fields.

【0003】無機系抗菌剤としては、ゼオライト,シリ
カゲル,ガラス,燐酸カルシウム,燐酸ジルコニウム,
ケイ酸カルシウム,酸化チタン,酸化亜鉛,シリカ,ア
ルミナ等の無機系粉末に抗菌作用を呈する銀,銅,亜鉛
等の金属を担持させたものが知られている。なかでも、
強力な抗菌作用をもつ銀は、ほとんどの無機系抗菌剤に
使用されている。たとえば、ポリオレフィン等の樹脂に
無機系抗菌剤を配合した後、繊維状,フィルム状,線状
等、種々の形状に成形加工することにより,抗菌性を付
与したプラスチック製品として各種用途に使用されてい
る。
As inorganic antibacterial agents, zeolite, silica gel, glass, calcium phosphate, zirconium phosphate,
It is known that inorganic powders such as calcium silicate, titanium oxide, zinc oxide, silica, and alumina carry a metal such as silver, copper, and zinc exhibiting an antibacterial action. Above all,
Silver, which has a strong antibacterial effect, is used in most inorganic antibacterial agents. For example, after blending an inorganic antimicrobial agent with a resin such as polyolefin, it is molded into various shapes such as fibrous, film, and linear, and is used in various applications as an antibacterial plastic product. I have.

【0004】しかし、無機系抗菌剤は抗菌性を効果的に
発現させることが難しく,所望の抗菌性を得るためには
無機系抗菌剤の多量配合が必要になる。たとえば、大腸
菌,黄色ブドウ球菌,黒コウジカビ等に対する抗菌剤自
体のMIC値(菌の最小発育阻止濃度)は、代表的な有
機系抗菌剤ではそれぞれ15ppm,8ppm,3pp
m程度であるのに比較して、代表的な無機系抗菌剤では
それぞれ125ppm,250ppm,1000ppm
程度と大きく、有機系抗菌剤の1/50以下の抗菌性し
か得られていない。抗菌剤を樹脂に練り込んだ場合に抗
菌性が極めて発現しがたいことも、無機系抗菌剤の欠点
である。抗菌性の発現し難さは、樹脂を透過する水分に
よって銀,銅,亜鉛等の金属がイオン化した後、樹脂表
面に移動するまでに長時間を要することが原因と考えら
れている。
However, it is difficult for an inorganic antibacterial agent to effectively exhibit antibacterial properties, and a large amount of an inorganic antibacterial agent is required to obtain a desired antibacterial property. For example, the MIC value of the antibacterial agent itself against Escherichia coli, Staphylococcus aureus, Aspergillus niger, etc. (minimum inhibitory concentration of the fungus) is 15 ppm, 8 ppm, and 3 pp for typical organic antibacterial agents, respectively.
m, 125 ppm, 250 ppm, and 1000 ppm for typical inorganic antibacterial agents, respectively.
The antibacterial property is as large as about 1/50 of that of the organic antibacterial agent. It is also a disadvantage of inorganic antibacterial agents that antibacterial properties are extremely difficult to express when kneaded into the resin. It is considered that the difficulty in exhibiting the antibacterial property is that it takes a long time until the metal such as silver, copper, zinc or the like is ionized by the moisture permeating the resin and moves to the resin surface.

【0005】[0005]

【発明が解決しようとする課題】ポリオレフィン系樹脂
やABS系樹脂に界面活性剤を添加すると、樹脂に練り
込んだ無機系抗菌剤の抗菌性が比較的短時間で発現する
(特開平8−208945号公報)。しかし、単に界面
活性剤を混合しただけでは、抗菌性の発現が十分でな
い。また、ポリビニルアルコール等の水溶性高分子で予
め被覆した無機系抗菌剤を樹脂に配合することも知られ
ている(特開平9−48638号公報)が、水溶性高分
子の被覆によっても依然として抗菌性の発現が十分でな
い。
When a surfactant is added to a polyolefin resin or an ABS resin, the antibacterial property of the inorganic antibacterial agent kneaded into the resin is developed in a relatively short time (Japanese Patent Laid-Open No. 8-208945). No.). However, the mere expression of a surfactant does not provide sufficient antibacterial properties. It is also known that an inorganic antibacterial agent previously coated with a water-soluble polymer such as polyvinyl alcohol is added to the resin (Japanese Patent Application Laid-Open No. 9-48638). Sex expression is not enough.

【0006】ところで、本発明者等は、平均粒径1μm
以下の酸化亜鉛微粉末の表面を銀又は銀合金で散点状に
被覆するスパッタリング法を提案した(特開平11−2
63705号公報)。また、被覆後に空気中で200〜
1000℃に加熱するとき、銀又は銀合金の凝集層が形
成されることを紹介した(特開平11−228306号
公報)。
By the way, the present inventors have proposed that the average particle diameter is 1 μm.
A sputtering method in which the surface of the following zinc oxide fine powder is covered with silver or a silver alloy in a scattered manner has been proposed (Japanese Patent Laid-Open No. 11-2).
63705). In addition, after coating in air 200 ~
It was introduced that a coagulated layer of silver or a silver alloy is formed when heated to 1000 ° C. (JP-A-11-228306).

【0007】[0007]

【課題を解決するための手段】本発明は、銀又は銀合金
の被覆層又は凝集層を形成した微粉末の物性を研究する
過程で散点状の被覆層又は凝集層が抗菌性向上に有効に
作用することを見出し、該知見を更に発展させて銀被覆
層を銀拡散層に改質することにより、従来の無機系抗菌
剤に比較してより少量の添加で済み、樹脂の変色を抑制
すると共に、優れた抗菌性を短時間で発現する抗菌剤を
提供することを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, in the process of studying the physical properties of a fine powder having a silver or silver alloy coating layer or an aggregation layer formed thereon, a scattered coating layer or an aggregation layer is effective for improving antibacterial properties. By further developing the knowledge and modifying the silver coating layer into a silver diffusion layer, a smaller amount of addition is required compared to conventional inorganic antibacterial agents, and discoloration of the resin is suppressed. It is another object of the present invention to provide an antibacterial agent which exhibits excellent antibacterial properties in a short time.

【0008】本発明の抗菌剤は、その目的を達成するた
め、平均粒径1μm以下の酸化亜鉛微粉末の表面に銀拡
散層が散点状に形成され、粉末粒子の表面に酸化亜鉛が
露出していることを特徴とする。この抗菌剤は、粉末ス
パッタリング法により酸化亜鉛微粉末の表面を1〜10
質量%の銀で散点状に被覆した後、不活性ガス雰囲気中
で400〜800℃に加熱することにより銀を酸化亜鉛
微粉末に拡散させ、散点状の銀拡散層を形成することに
より製造される。この抗菌剤を0.1〜10質量%の割
合で成形用樹脂,塗料用樹脂塗料,接着剤樹脂,化粧品
等に添加することにより、所与の抗菌性が付与された各
種製品となる。
In the antibacterial agent of the present invention, in order to achieve the object, a silver diffusion layer is formed on the surface of zinc oxide fine powder having an average particle diameter of 1 μm or less in a scattered manner, and zinc oxide is exposed on the surface of the powder particles. It is characterized by doing. This antibacterial agent is used to powder the surface of zinc oxide
After coating in the form of spots with silver of mass%, the silver is diffused into the zinc oxide fine powder by heating to 400 to 800 ° C. in an inert gas atmosphere to form a spot-like silver diffusion layer. Manufactured. By adding this antibacterial agent to molding resins, paint resin coatings, adhesive resins, cosmetics, and the like at a ratio of 0.1 to 10% by mass, various products having a given antibacterial property can be obtained.

【0009】[0009]

【作用】本発明者は、樹脂に練り込まれる抗菌剤につい
て種々調査・研究した結果、抗菌剤の粒径が小さくなる
ほど短時間で優れた抗菌性が発現することを見出した。
抗菌性発現までの所要時間に粒径が及ぼす影響は、粒径
が小さくなるほど粉末の比表面積が増加し、それに応じ
て銀の溶出速度が増加することに起因する。そこで、粉
末表面に銀の拡散層を形成させた抗菌剤について、抗菌
性発現までの所要時間に及ぼす粉末粒径の影響を調査し
たところ、平均粒径が1μm以下の酸化亜鉛微粉末を使
用するとき銀の溶出量が著しく増加することを解明し
た。銀溶出量の増加は、樹脂に練り込む抗菌剤の配合割
合を減らしても、十分な抗菌性が短時間で発現すること
を意味する。
As a result of various investigations and studies on the antibacterial agent kneaded into the resin, the present inventors have found that the smaller the particle size of the antibacterial agent, the more excellent antibacterial properties are exhibited in a shorter time.
The effect of the particle size on the time required for the development of antibacterial properties is attributable to the fact that the smaller the particle size, the higher the specific surface area of the powder, and accordingly the higher the silver elution rate. Investigation of the effect of the powder particle size on the time required for the antibacterial agent to exhibit the antibacterial property of the antibacterial agent having a silver diffusion layer formed on the powder surface revealed that zinc oxide fine powder having an average particle size of 1 μm or less is used. It was clarified that the amount of silver eluted significantly increased. An increase in the amount of silver eluted means that sufficient antibacterial properties are exhibited in a short time even if the mixing ratio of the antibacterial agent kneaded into the resin is reduced.

【0010】酸化亜鉛微粉末の粒径及び銀拡散層と銀の
溶出速度との関係は、次のように推察される。たとえ
ば、平均粒径0.8μmの酸化亜鉛微粉末は、比表面積
が約7m2/gと大きく、0.1〜1重量%と少量の配
合割合で樹脂に練り込んでも極めて均一に分散する。し
かも、酸化亜鉛微粉末の表面に銀拡散層が形成されてい
るので、樹脂に対する銀の単位重量あたりの接触面積も
大きくなる。更に、酸化亜鉛に銀の溶出を促進させる作
用があることと相俟って、銀の溶出が早期に開始され、
溶出速度も大きくなる。他方、平均粒径が数μm〜数十
μmの多孔質ゼオライトやシリカゲル等では、粒径が大
きく、担持された銀がゼオライトやシリカゲルの多孔質
構造内部に取り込まれるため、樹脂に対する単位重量当
たりの有効接触面積もそれほど大きくならない。したが
って、抗菌性の発現に必要な銀の溶出量を確保するため
には、配合割合を多くすることが必要になる。
The relationship between the particle size of the zinc oxide fine powder and the silver diffusion layer and the silver elution rate is presumed as follows. For example, zinc oxide fine powder having an average particle size of 0.8 μm has a large specific surface area of about 7 m 2 / g, and is extremely uniformly dispersed even when kneaded into a resin in a small mixing ratio of 0.1 to 1% by weight. In addition, since the silver diffusion layer is formed on the surface of the zinc oxide fine powder, the contact area per unit weight of silver with the resin is increased. Further, in combination with the fact that zinc oxide has an effect of promoting silver elution, silver elution is started early,
The dissolution rate also increases. On the other hand, in porous zeolites or silica gels having an average particle size of several μm to several tens μm, the particle size is large, and the supported silver is taken into the porous structure of the zeolite or silica gel, so that the weight per unit weight of the resin is The effective contact area is not so large. Therefore, it is necessary to increase the blending ratio in order to secure the amount of silver eluted necessary for exhibiting antibacterial properties.

【0011】一般に、銀被覆酸化亜鉛微粉末や銀イオン
担持ゼオライト等を練り込んだ樹脂組成物では、樹脂溶
融時の熱や樹脂成形品使用時の紫外線照射によって銀と
樹脂との界面で化学反応が生じやすく、化学反応の結果
として樹脂成形品が黄変することがある。黄変は、抗菌
性を高めるために銀被覆量を多くした抗菌剤を使用する
場合や樹脂に対する銀被覆又は銀担持抗菌剤の配合量を
多くした場合に生じがちである。銀と樹脂との化学反応
に起因する樹脂の着色は、銀被覆層を酸化亜鉛微粉末に
熱拡散させることによって抑制される。この抑制メカニ
ズムは十分に明らかではないが、酸化亜鉛への銀拡散に
より樹脂/抗菌剤粒子の界面における銀の濃度勾配が緩
やかになっていることが一因であると推察される。
In general, in a resin composition in which silver-coated zinc oxide fine powder or silver ion-supporting zeolite is kneaded, a chemical reaction occurs at the interface between silver and the resin due to heat during melting of the resin or ultraviolet irradiation during use of the resin molded product. Is likely to occur, and the resin molded product may turn yellow as a result of the chemical reaction. Yellowing tends to occur when an antibacterial agent having a large silver coating amount is used to enhance antibacterial properties, or when the amount of silver coating or silver-carrying antibacterial agent in a resin is increased. Coloring of the resin due to the chemical reaction between silver and the resin is suppressed by thermally diffusing the silver coating layer into the zinc oxide fine powder. Although the mechanism of this suppression is not fully understood, it is supposed that one of the causes is that the silver concentration gradient at the interface between the resin and the antibacterial agent particles is moderated by silver diffusion into zinc oxide.

【0012】[0012]

【実施の形態】平均粒径1μm以下の酸化亜鉛微粉末
は、空気中400℃で蓚酸亜鉛を加熱分解する方法,ヒ
ドロキシ炭酸亜鉛を加熱脱水する方法,金属亜鉛を燃焼
させる方法等によって用意される。酸化亜鉛微粉末のみ
でも抗菌性を呈するとの報告(特開平5−140331
号公報,特開平8−59890号公報)もあるが、銀や
銅に比較して抗菌性が極めて弱い。また、抗菌性を補う
ために酸化亜鉛微粉末を樹脂に多量配合すると、耐熱性
や機械的性質が低下する。このようなことから、酸化亜
鉛微粉末単独を抗菌剤として使用することは実用的でな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Fine zinc oxide powder having an average particle diameter of 1 μm or less is prepared by a method of thermally decomposing zinc oxalate at 400 ° C. in air, a method of heating and dehydrating zinc hydroxycarbonate, a method of burning metallic zinc, and the like. . Report that the zinc oxide fine powder alone exhibits antibacterial properties (Japanese Unexamined Patent Publication No. 5-140331).
JP-A-8-59890), but has extremely weak antibacterial properties as compared with silver and copper. Further, if a large amount of zinc oxide fine powder is mixed with the resin to supplement the antibacterial property, heat resistance and mechanical properties are reduced. For this reason, it is not practical to use zinc oxide fine powder alone as an antibacterial agent.

【0013】無機物粉末の表面に銀を直接担持する方法
としては、イオン交換法,キレート法,包接化合物法等
が従来から提案されている。しかし、このような湿式法
は、極僅かではあるが酸化亜鉛自体に水溶性があること
(18℃の水に対する溶解度:0.42mg/100m
l),酸化亜鉛が両性酸化物であり酸と反応して亜鉛塩
となり、アルカリと反応して亜鉛酸塩となって共に水に
良く溶けること等から、酸化亜鉛微粉末の表面に銀を担
持させることに適用できない。
As a method of directly supporting silver on the surface of the inorganic powder, an ion exchange method, a chelate method, an inclusion compound method and the like have been conventionally proposed. However, in such a wet method, zinc oxide itself is water-soluble although only slightly (solubility in water at 18 ° C .: 0.42 mg / 100 m 2).
l) Since zinc oxide is an amphoteric oxide and reacts with acid to form a zinc salt, and reacts with alkali to form a zincate and dissolves well in water, silver is supported on the surface of zinc oxide fine powder. Not applicable to letting

【0014】水を全く必要とせず酸化亜鉛微粉末粒子1
(図1)の表面に銀被覆層2を直接形成する方法として
は、スパッタリング法,真空蒸着,イオンプレーティン
グ等のドライプロセスが採用される。なかでも、銀の溶
出が容易に進行するように銀の全量を酸化亜鉛微粉末粒
子1の表面に存在させることから、粉末スパッタリング
法が好ましい。粉末スパッタリング法では、回転容器中
で流動状態に維持されている酸化亜鉛微粉末粒子1に向
けて銀蒸気をスパッタリングし、個々の酸化亜鉛微粉末
粒子1の表面に銀被覆層2を形成する。
No need for water at all, zinc oxide fine powder particles 1
As a method of directly forming the silver coating layer 2 on the surface of FIG. 1, a dry process such as a sputtering method, vacuum deposition, or ion plating is employed. Among them, the powder sputtering method is preferable because the entire amount of silver is present on the surface of the zinc oxide fine powder particles 1 so that the elution of silver proceeds easily. In the powder sputtering method, silver vapor is sputtered toward zinc oxide fine powder particles 1 which are maintained in a fluidized state in a rotating container, and a silver coating layer 2 is formed on the surface of each zinc oxide fine powder particle 1.

【0015】酸化亜鉛微粉末に対する銀の被覆量は、1
〜10質量%(特に3〜7質量%)の範囲が好ましい。
1質量%未満の被覆量では、担持される銀の絶対量が少
なく、銀被覆酸化亜鉛微粉末を樹脂に多量配合しないと
所期の抗菌性が発現しない。銀被覆量を多くするほど、
樹脂に対する銀被覆酸化亜鉛微粉末の配合量を減らすこ
とができる。しかし、10質量%を超える銀被覆量で
は、酸化亜鉛微粉末粒子1の全表面を銀被覆層2が覆っ
てしまい、銀の溶出促進に有効な亜鉛のイオン化反応が
逆に抑制される。
The coating amount of silver on the zinc oxide fine powder is 1
The range is preferably from 10 to 10% by mass (particularly from 3 to 7% by mass).
If the coating amount is less than 1% by mass, the absolute amount of silver carried is small, and the desired antibacterial properties will not be exhibited unless a large amount of silver-coated zinc oxide fine powder is blended with the resin. The larger the silver coverage, the more
The blending amount of the silver-coated zinc oxide fine powder with respect to the resin can be reduced. However, when the silver coating amount exceeds 10% by mass, the entire surface of the zinc oxide fine powder particles 1 is covered with the silver coating layer 2, and the ionization reaction of zinc, which is effective for promoting the elution of silver, is conversely suppressed.

【0016】銀被覆量1〜10質量%で形成された銀被
覆層2は、酸化亜鉛微粉末粒子1の表面に散点状に分布
する。散点状に銀被覆層2が分布した酸化亜鉛微粉末粒
子1を窒素ガス,Arガス等の不活性ガス雰囲気中40
0〜800℃に1時間程度加熱すると、被覆層2の銀が
酸化亜鉛微粉末粒子1に拡散し、銀拡散層3が形成され
る。銀の拡散は、400℃以上の加熱温度で活発に進行
するが、800℃を超える加熱温度では酸化亜鉛微粉末
粒子1の中心部にまで銀拡散が過剰に進み、微粒子表面
の銀濃度が薄くなるので好ましくない。
The silver coating layer 2 formed with a silver coating amount of 1 to 10% by mass is distributed on the surface of the zinc oxide fine powder particles 1 in a scattered manner. The zinc oxide fine powder particles 1 in which the silver coating layers 2 are distributed in a scattered manner are mixed in an atmosphere of an inert gas such as nitrogen gas or Ar gas.
When heated to 0 to 800 ° C. for about 1 hour, silver in the coating layer 2 diffuses into the zinc oxide fine powder particles 1 to form a silver diffusion layer 3. Silver diffusion actively proceeds at a heating temperature of 400 ° C. or higher, but at a heating temperature exceeding 800 ° C., silver diffusion excessively proceeds to the center of the zinc oxide fine powder particles 1 and the silver concentration on the surface of the fine particles is low. Is not preferred.

【0017】酸化亜鉛微粉末粒子1の表面に散点状に形
成される銀拡散層3は,結晶子径で100nm以下(好
適には、50nm以下)の大きさをもつものが好まし
い。結晶子径の大きさは、次のシェラーの式に従って計
算される。 D=k×λ/β×cosθ ただし、D:結晶子径(Å) k:定数(測定X線がCuΚαの場合0.9) λ:測定X線の波長(Å) β:回折線の広がり(半値幅,ラジアン) θ:回折線のブラッグ角(ラジアン)
The silver diffusion layer 3 formed in a scattered manner on the surface of the zinc oxide fine powder particles 1 preferably has a crystallite diameter of 100 nm or less (preferably 50 nm or less). The size of the crystallite diameter is calculated according to the following Scherrer's formula. D = k × λ / β × cos θ where D: crystallite diameter (Å) k: constant (0.9 when the measured X-ray is CuΚα) λ: wavelength of the measured X-ray (Å) β: spread of diffraction line (Half width, radian) θ: Bragg angle of diffraction line (radian)

【0018】スパッタリング速度を小さくし、或いはス
パッタリング中の酸化亜鉛微粉末を比較的低温度に保持
することが結晶子径を小さくする有効な方法である。具
体的には、スパッタリング速度の目安として酸化亜鉛微
粉末1g当りの銀の被覆速度を0.01g/時程度に設
定し、酸化亜鉛微粉末を200℃以下の温度に保持する
ことにより、100nm以下の結晶子径をもつ銀拡散層
3を形成できる。散点状に銀拡散層3が形成された抗菌
剤は、従来の抗菌剤に比較すると非常に大きな銀溶出速
度を呈する。高い銀溶出速度は、次のような理由による
ものと推察される。樹脂を構成している水酸基,アミノ
基,カルボニール基等の官能基や光安定剤,紫外線吸収
剤,界面活性剤等の添加剤は、銀イオンとイオン交換反
応を起こしやすい。イオン交換反応が生じると銀イオン
が樹脂中に捕捉され、樹脂成形品の表面まで移動しなく
なる。このことが、極めて抗菌性が発現しがたい原因と
推察される。
Reducing the sputtering rate or keeping the zinc oxide fine powder during sputtering at a relatively low temperature is an effective method for reducing the crystallite diameter. Specifically, as a guide for the sputtering rate, the coating rate of silver per 1 g of zinc oxide fine powder is set to about 0.01 g / hour, and by keeping the zinc oxide fine powder at a temperature of 200 ° C. or less, 100 nm or less. Can be formed. The antibacterial agent in which the silver diffusion layers 3 are formed in a scattered manner exhibits an extremely high silver elution rate as compared with the conventional antibacterial agent. The high silver elution rate is presumed to be due to the following reasons. Functional groups such as a hydroxyl group, an amino group, and a carbonyl group, and additives such as a light stabilizer, an ultraviolet absorber, and a surfactant, which constitute the resin, easily cause an ion exchange reaction with silver ions. When an ion exchange reaction occurs, silver ions are trapped in the resin and do not move to the surface of the resin molded product. This is presumed to be the reason that the antibacterial property is extremely difficult to develop.

【0019】これに対し、酸化亜鉛微粉末粒子1の表面
に銀拡散層3を散点状に分布させた抗菌剤では、樹脂中
を透過してきた水分によって先ず多量の亜鉛がイオン化
し、次いで種々の官能基や添加剤が亜鉛イオンとイオン
交換反応を起こす。したがって、樹脂成形品の表面まで
への銀イオンの拡散が促進される。このような現象は、
平均粒径1μm以下の酸化亜鉛微粉末粒子1の表面一部
に数Åの結晶子径で銀が拡散している形態によって始め
て発現するものであり、銀微粉末及び酸化亜鉛微粉末を
単に混合しただけでは生じない。
On the other hand, in the antibacterial agent in which the silver diffusion layer 3 is dispersed on the surface of the zinc oxide fine powder particles 1 in a scattered manner, first, a large amount of zinc is ionized by moisture permeating the resin, and then various zinc ions are ionized. Functional groups and additives cause an ion exchange reaction with zinc ions. Therefore, diffusion of silver ions to the surface of the resin molded product is promoted. Such a phenomenon,
This is manifested for the first time by a form in which silver is diffused with a crystallite diameter of several に on a part of the surface of zinc oxide fine powder particles 1 having an average particle diameter of 1 μm or less. It doesn't happen just by doing it.

【0020】銀拡散層3としては、銀単体は勿論、銅,
亜鉛,錫,ニッケル,クロム,コバルト,アンチモン,
チタン,アルミニウムの1種又は2種以上を含む銀合金
も使用できる。なかでも、防カビ性に有効な銅や、チオ
バチルス菌等の特定の細菌に対して抗菌性を呈する錫,
ニッケル等を含む銀合金で酸化亜鉛微粉末粒子1を被覆
すると、銀に由来する抗菌性に加えてこれらの効果が付
加された抗菌剤が得られる。
As the silver diffusion layer 3, not only silver alone but also copper,
Zinc, tin, nickel, chromium, cobalt, antimony,
A silver alloy containing one or more of titanium and aluminum can also be used. Among them, copper which is effective for fungicide, tin which exhibits antibacterial properties against specific bacteria such as Thiobacillus,
When the zinc oxide fine powder particles 1 are coated with a silver alloy containing nickel or the like, an antibacterial agent having these effects in addition to the antibacterial properties derived from silver can be obtained.

【0021】銀拡散酸化亜鉛微粉末からなる抗菌剤は、
樹脂,塗料,繊維,化粧品等の各種材料に添加又は塗布
される。たとえば、ポリエチレン,ポリプロピレン,ポ
リスチレン,ABS,ポリエステル,ポリアミド,ポリ
カーボネート,シリコーン樹脂,フッ素樹脂等の熱可塑
性樹脂に練り込み、射出成形,押出成形,ブロー成形等
で成形すると、抗菌性が付与されたプラスチック製品と
なる。また、エポキシ樹脂,フェノール樹脂,尿素樹脂
等の熱硬化性樹脂やアルキッド樹脂,セルロース誘導
体,ビニル樹脂等の塗料用樹脂やアクリル樹脂,ウレタ
ン樹脂等の接着剤に添加すると、抗菌性を付与した各種
製品が得られる。
An antibacterial agent comprising a silver-diffused zinc oxide fine powder is
It is added or applied to various materials such as resin, paint, fiber, and cosmetics. For example, when kneaded into a thermoplastic resin such as polyethylene, polypropylene, polystyrene, ABS, polyester, polyamide, polycarbonate, silicone resin, and fluororesin, and molded by injection molding, extrusion molding, blow molding, or the like, a plastic having antibacterial properties is obtained. Product. When added to thermosetting resins such as epoxy resins, phenolic resins, and urea resins, coating resins such as alkyd resins, cellulose derivatives, and vinyl resins, and adhesives such as acrylic resins and urethane resins, various antibacterial properties can be obtained. The product is obtained.

【0022】樹脂に対する銀拡散酸化亜鉛微粉末の添加
量は、0.1〜1質量%(好ましくは、0.3〜0.7
質量%)の範囲で調整される。0.1質量%に満たない
添加量では、銀の絶対量が不足し、十分な抗菌性が発現
しない。逆に1質量%を超える過剰量では、添加量の増
加に見合った抗菌性の改善が見られず、却ってコスト高
の製品となる。銀拡散酸化亜鉛微粉末は、種々の方法で
樹脂に練り込まれる。たとえば、熱可塑性樹脂組成物で
は、バンバリーミキサ,タンブラ,ブレンダ,ナウター
ミキサ,混練ロール,一軸又は二軸のベント付きエクス
トルーダ等を用いて銀拡散酸化亜鉛微粉末を添加した樹
脂を加熱混合し、押出機,射出成形機等によって所定形
状に成形する。
The amount of the silver-diffused zinc oxide fine powder added to the resin is 0.1 to 1% by mass (preferably 0.3 to 0.7% by mass).
% By mass). If the amount is less than 0.1% by mass, the absolute amount of silver is insufficient, and sufficient antibacterial properties are not exhibited. Conversely, if the amount exceeds 1% by mass, the antibacterial property corresponding to the increase in the added amount is not improved, and the product is rather expensive. The silver-diffused zinc oxide fine powder is kneaded into the resin by various methods. For example, in a thermoplastic resin composition, a resin to which silver-diffused zinc oxide fine powder is added is heated and mixed by using a Banbury mixer, a tumbler, a blender, a Nauter mixer, a kneading roll, a uniaxial or biaxial vented extruder, and the like. , Molded into a predetermined shape by an injection molding machine or the like.

【0023】銀拡散酸化亜鉛微粉末の混合に際しては、
酸化防止剤,紫外線吸収剤及び光安定剤を併用添加する
ことが好ましい。酸化防止剤としてはフェノール系抗酸
化剤,リン系酸化防止剤,イオウ系酸化防止剤等があ
り、成形加工時の熱による樹脂の劣化を防止する。紫外
線吸収剤としては種々のベンゾトリアゾール系化合物が
あり、光安定剤としては種々のヒンダートアミン系化合
物があり、何れも成形品の耐候性を改善する。その他、
用途に応じて顔料,染料,潤滑剤,分散剤,帯電防止剤
等を添加することもできる。
In mixing the silver-diffused zinc oxide fine powder,
It is preferable to add an antioxidant, an ultraviolet absorber and a light stabilizer in combination. Examples of the antioxidant include a phenolic antioxidant, a phosphorus antioxidant, a sulfur antioxidant, and the like, which prevent deterioration of the resin due to heat during molding. There are various benzotriazole compounds as UV absorbers and various hindered amine compounds as light stabilizers, all of which improve the weather resistance of molded articles. Others
Pigments, dyes, lubricants, dispersants, antistatic agents and the like can be added according to the application.

【0024】[0024]

【実施例】成形品1(本発明例):市販の酸化亜鉛微粉
末(堺化学工業株式会社性,平均粒径0.8μm)10
0gの表面を、粉末スパッタリング法により1質量%の
銀で散点状に被覆した。銀被覆された酸化亜鉛微粉末を
真空焼鈍炉に装入し、流量10ccmで窒素ガスを導入
しながら400℃に1時間加熱処理することにより、酸
化亜鉛微粉末粒子1の表面に散点状の銀拡散層3を形成
した。ポリプロピレン樹脂(J−740 三井石油化学
工業株式会社製)100質量部に、銀拡散酸化亜鉛微粉
末を0.1質量部,酸化防止剤(イルガノックスB−2
25 チバガイギー社製)を0.2質量%,紫外線吸収
剤(チヌビン326チバガイギー社製)を0.1質量
部,光安定剤(LS−770 三京株式会社製)を0.
2質量部配合し、均一に混練した。得られた透明な樹脂
コンパウンドを200℃で射出成形し、厚さ2mm,長
さ100mm,幅100mmのプレートを作成した。
[Example] Molded article 1 (Example of the present invention): Commercially available zinc oxide fine powder (manufactured by Sakai Chemical Industry Co., Ltd .;
0 g of the surface was covered with 1% by mass of silver in a scattered manner by a powder sputtering method. The silver-coated zinc oxide fine powder is charged into a vacuum annealing furnace, and heated at 400 ° C. for 1 hour while introducing nitrogen gas at a flow rate of 10 ccm, so that the surface of the zinc oxide fine powder particles 1 A silver diffusion layer 3 was formed. To 100 parts by mass of a polypropylene resin (J-740, manufactured by Mitsui Petrochemical Industry Co., Ltd.), 0.1 parts by mass of a silver-diffused zinc oxide fine powder, and an antioxidant (Irganox B-2)
25 Ciba-Geigy), 0.1 part by mass of an ultraviolet absorber (Tinuvin 326 Ciba-Geigy) and 0.1 parts by weight of a light stabilizer (LS-770, Sankyo).
Two parts by mass were mixed and uniformly kneaded. The obtained transparent resin compound was injection molded at 200 ° C. to prepare a plate having a thickness of 2 mm, a length of 100 mm and a width of 100 mm.

【0025】成形品2(本発明例):粉末スパッタリン
グ法により酸化亜鉛微粉末粒子1の表面を5質量%の銀
で散点状に被覆した後、真空焼鈍炉に装入し、流量10
ccmで窒素ガスを導入しながら600℃に1時間加熱
処理することにより、銀拡散層3が散点状に形成された
銀拡散酸化亜鉛微粉末を得た。ABS樹脂(ABS−1
2 日本合成ゴム株式会社製)100質量部に対し、銀
拡散酸化亜鉛微粉末を0.5質量部,成形品1と同じ酸
化防止剤を0.1質量部、紫外線吸収剤を0.2質量
部、光安定剤を0.3質量部配合した。得られた灰色の
樹脂コンパウンドを220℃で射出成形し、成形品1と
同じサイズのプレートを作製した。
Molded product 2 (Example of the present invention): The surface of zinc oxide fine powder particles 1 was covered with 5% by mass of silver by a powder sputtering method, and then charged into a vacuum annealing furnace.
Heat treatment was performed at 600 ° C. for 1 hour while introducing nitrogen gas at ccm to obtain a silver-diffused zinc oxide fine powder in which silver diffusion layers 3 were formed in a scattered manner. ABS resin (ABS-1
2 With respect to 100 parts by mass of Nippon Synthetic Rubber Co., Ltd.), 0.5 parts by mass of the silver-diffused zinc oxide fine powder, 0.1 parts by mass of the same antioxidant as in molded article 1, and 0.2 parts by mass of the ultraviolet absorber Parts and 0.3 parts by weight of a light stabilizer. The obtained gray resin compound was injection molded at 220 ° C. to produce a plate having the same size as the molded product 1.

【0026】成形品3(本発明例):粉末スパッタリン
グ法により酸化亜鉛微粉末粒子1の表面を7質量%の銀
で散点状に被覆した後、真空焼鈍炉に装入し、流量5c
cmで窒素ガスを導入しながら700℃に1時間加熱処
理することにより、銀拡散層3が散点状に形成された銀
拡散酸化亜鉛微粉末を得た。ポリスチレン樹脂(スチレ
ンG−20 新日鐵化学株式会社製)100質量部に対
し、銀拡散酸化亜鉛微粉末を0.7質量部,成形品1と
同じ酸化防止剤を0.4質量部、紫外線吸収剤を0.2
質量部、光安定剤を0.4質量部,酸化チタンを0.5
質量部配合した。得られた白色の樹脂コンパウンドを2
30℃で射出成形し、成形品1と同じサイズのプレート
を作製した。
Molded product 3 (Example of the present invention): The surface of zinc oxide fine powder particles 1 was covered with 7% by mass of silver by a powder sputtering method in a scattered manner, and then charged into a vacuum annealing furnace at a flow rate of 5c.
Heat treatment was performed at 700 ° C. for 1 hour while introducing nitrogen gas at a density of 1 cm to obtain fine silver-diffused zinc oxide powder having silver diffusion layers 3 formed in scattered spots. For 100 parts by mass of a polystyrene resin (styrene G-20, manufactured by Nippon Steel Chemical Co., Ltd.), 0.7 parts by mass of the silver-diffused zinc oxide fine powder, 0.4 parts by mass of the same antioxidant as in the molded article 1, and ultraviolet rays 0.2 sorbent
Parts by mass, 0.4 parts by mass of light stabilizer, 0.5 parts of titanium oxide
Parts by mass were blended. The obtained white resin compound was
By injection molding at 30 ° C., a plate having the same size as the molded product 1 was produced.

【0027】成形品4(本発明例):粉末スパッタリン
グ法により酸化亜鉛微粉末粒子1の表面を10質量%の
銀で散点状に被覆した後、真空焼鈍炉に装入し、流量5
ccmで窒素ガスを導入しながら800℃に1時間加熱
処理することにより、銀拡散層3が散点状に形成された
銀拡散酸化亜鉛微粉末を得た。ポリカーボネート樹脂
(タフロンー2200 出光石油化学株式会社製)10
0質量部に対し、銀拡散酸化亜鉛微粉末を1.0質量
部,成形品1と同じ酸化防止剤を0.6質量部、紫外線
吸収剤を0.3質量部、光安定剤を0.6質量部,フタ
ロシアニンブルーを0.2質量部配合し、均一に混練し
た。得られた青色の樹脂コンパウンドを280℃で射出
成形し、成形品1と同じサイズのプレートを作製した。
Molded product 4 (Example of the present invention): The surface of zinc oxide fine powder particles 1 was covered with 10% by mass of silver by a powder sputtering method, and then charged into a vacuum annealing furnace.
Heat treatment was performed at 800 ° C. for 1 hour while introducing a nitrogen gas at ccm, to obtain a silver-diffused zinc oxide fine powder in which silver-diffused layers 3 were formed in scattered points. Polycarbonate resin (Taflon-2200 manufactured by Idemitsu Petrochemical Co., Ltd.) 10
With respect to 0 parts by mass, 1.0 part by mass of the silver-diffused zinc oxide fine powder, 0.6 parts by mass of the same antioxidant as the molded article 1, 0.3 parts by mass of the ultraviolet absorber, and 0.1 part by mass of the light stabilizer. 6 parts by mass and 0.2 parts by mass of phthalocyanine blue were blended and uniformly kneaded. The obtained blue resin compound was injection molded at 280 ° C. to produce a plate having the same size as the molded product 1.

【0028】成形品1〜4の各プレートを直射日光に3
0日間曝した後、各プレートの色調を目視観察すること
により耐変色性を調査した。変色が全く観察されなかっ
たものを◎,ほとんど変色していないものを○,明らか
に変色が検出されるものを△,変色が著しく進行してい
るものを×として耐変色性を評価した。また、各プレー
トから試験片を切り出し、抗菌試験に供した。抗菌試験
は、黄色ブドウ球菌を用い、銀等無機抗菌剤研究会「銀
等無機抗菌剤の自主規格および抗菌試験法:抗菌・防か
び製加工製品の抗菌力試験法(1995年度版)フィル
ム密着法」に準じた。試験前後の生菌数をカウントし、
生菌数が大幅に減少したものを◎,生菌数が減少したも
のを○,生菌数が僅かながらも減少したものを△,生菌
数の減少が検出されなかったものを×として抗菌性を評
価した。
Each plate of molded products 1-4 is exposed to direct sunlight for 3
After exposure for 0 days, the discoloration resistance was examined by visually observing the color tone of each plate. The color resistance was evaluated as ◎ when no discoloration was observed, を when little discoloration was observed, Δ when discoloration was clearly detected, and X when discoloration was significantly advanced. Further, a test piece was cut out from each plate and subjected to an antibacterial test. The antibacterial test was carried out using Staphylococcus aureus and the Society for the Study of Inorganic Antibacterial Agents such as Silver, "Self-Specific Standards and Antibacterial Test Methods for Inorganic Antibacterial Agents such as Silver: Antibacterial and Antifungal Test Methods for Antibacterial Activity (1995 Version) Film Adhesion Law ". Count the number of viable bacteria before and after the test,
The antibacterial activity was marked as ◎ when the viable cell count was significantly reduced, ○ when the viable cell count was reduced, Δ when the viable cell count was slightly reduced, and × when no viable cell count was detected. The sex was evaluated.

【0029】調査結果を、銀拡散酸化亜鉛微粉末の種類
及び樹脂コンパウンドと共に表1に示す。なお、表1で
は、加熱拡散処理を施さなかった酸化亜鉛微粉末(粉末
スパッタリング法で銀被覆層2を形成したまま)を用い
た場合を比較例とした。表1にみられるように、粒子表
面に散点状の銀拡散層3を形成した酸化亜鉛微粉末粒子
1を抗菌剤に使用した本発明例の樹脂成形体は、何れも
直射日光に30日間曝露した後でも銀イオン溶出に起因
する変色が検出されず、しかも非常に強い抗菌性を示し
た。
The results of the investigation are shown in Table 1 together with the type of silver-diffused zinc oxide fine powder and the resin compound. In addition, in Table 1, the case where the zinc oxide fine powder which did not perform the heat-diffusion process (the silver coating layer 2 was formed by the powder sputtering method) was used as the comparative example. As can be seen from Table 1, the resin molded products of the present invention using the zinc oxide fine powder particles 1 having the scattered silver diffusion layers 3 formed on the particle surfaces as antibacterial agents were all exposed to direct sunlight for 30 days. No discoloration due to silver ion elution was detected even after exposure, and very strong antibacterial properties were exhibited.

【0030】これに対し、拡散処理を施さず、銀被覆層
2を形成したままの酸化亜鉛微粉末を抗菌剤として使用
した比較例では、配合割合が0.1質量%と少ない場
合、変色がまったく観察されないものの抗菌性が劣って
いた。他方、配合割合が1.0質量%を多い場合、抗菌
性に優れているものの変色が著しく進行するというバラ
ンスの悪い性能であった。
On the other hand, in the comparative example in which the zinc oxide fine powder in which the silver coating layer 2 was formed without using the diffusion treatment was used as the antibacterial agent, the discoloration did not occur when the blending ratio was as small as 0.1% by mass. Although not observed at all, the antibacterial properties were poor. On the other hand, when the compounding ratio is more than 1.0% by mass, the antibacterial property is excellent, but the discoloration progresses remarkably, and the performance is poorly balanced.

【0031】 [0031]

【0032】[0032]

【発明の効果】以上に説明したように、本発明の抗菌剤
は、平均粒径1μm以下の酸化亜鉛微粉末の表面を散点
状の銀拡散層で被覆し、酸化亜鉛を粒子表面に露出させ
ているので、亜鉛イオン溶出によって銀イオンの溶出が
促進され、銀特有の優れた抗菌性を短時間で発現する。
しかも、酸化亜鉛微粉末に拡散した銀拡散層となってい
ることから、樹脂に練り込んだ場合でも酸化亜鉛の作用
によって樹脂の変色が防止される。そのため、少量の配
合によっても優れた抗菌性を付与でき、内装材,外装
材,壁紙,カーペット,ユニットバス,空調フィルタ,
サニタリ用品,浴用器具,厨房器具,医療器具,,衣料
用繊維,靴下,文房具,水処理部品,食品容器,包装フ
ィルム,抗菌塗装等、広範な分野で使用される抗菌剤と
なる。
As described above, the antibacterial agent of the present invention covers the surface of zinc oxide fine powder having an average particle size of 1 μm or less with a scattered silver diffusion layer and exposes zinc oxide to the particle surface. As a result, the elution of silver ions is promoted by the elution of zinc ions, and the excellent antibacterial properties unique to silver are developed in a short time.
In addition, since the silver diffusion layer is diffused in the zinc oxide fine powder, the discoloration of the resin is prevented by the action of the zinc oxide even when kneaded into the resin. Therefore, even a small amount of the compound can impart excellent antibacterial properties to interior materials, exterior materials, wallpaper, carpets, unit baths, air conditioning filters,
It is an antibacterial agent used in a wide range of fields such as sanitary products, bath utensils, kitchen utensils, medical utensils, textiles for clothing, socks, stationery, water treatment parts, food containers, packaging films, antibacterial coatings, etc.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従った抗菌剤の製造プロセスを説明
する図
FIG. 1 is a diagram illustrating a process for producing an antibacterial agent according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 9/02 C08K 9/02 C08L 101/00 C08L 101/00 C23C 14/00 C23C 14/00 A Fターム(参考) 4H011 AA02 BA01 BB18 BC03 BC09 BC19 DA02 DA07 DC10 DH02 DH04 4J002 BB031 BB121 BC031 BD121 BN151 CF001 CG001 CL001 CP031 DE106 FB066 FB076 FD186 GB00 GH01 GK00 4K029 AA04 AA22 BA04 BB03 BC00 CA05 GA01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08K 9/02 C08K 9/02 C08L 101/00 C08L 101/00 C23C 14/00 C23C 14/00 A F term (Reference) 4H011 AA02 BA01 BB18 BC03 BC09 BC19 DA02 DA07 DC10 DH02 DH04 4J002 BB031 BB121 BC031 BD121 BN151 CF001 CG001 CL001 CP031 DE106 FB066 FB076 FD186 GB00 GH01 GK00 4K029 AA04 AA22 BA05 BB03 BC00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径1μm以下の酸化亜鉛微粉末の
表面に銀拡散層が散点状に形成され、粉末粒子の表面に
酸化亜鉛が露出していることを特徴とする抗菌剤。
1. An antibacterial agent characterized in that silver diffusion layers are formed in the form of scattered spots on the surface of zinc oxide fine powder having an average particle size of 1 μm or less, and zinc oxide is exposed on the surface of the powder particles.
【請求項2】 粉末スパッタリング法により酸化亜鉛微
粉末の表面を1〜10質量%の銀で散点状に被覆した
後、不活性ガス雰囲気中で400〜800℃に加熱する
ことにより銀を酸化亜鉛微粉末に拡散させ、散点状の銀
拡散層を形成することを特徴とする抗菌剤の製造方法。
2. The surface of the zinc oxide fine powder is covered with 1 to 10% by mass of silver by a powder sputtering method in a scattered manner, and then heated to 400 to 800 ° C. in an inert gas atmosphere to oxidize the silver. A method for producing an antibacterial agent, characterized by forming a scattered silver diffusion layer by diffusing zinc fine powder.
【請求項3】 請求項1記載の抗菌剤が0.1〜1質量
%の割合で配合されている抗菌性樹脂組成物。
3. An antibacterial resin composition containing the antibacterial agent according to claim 1 in a ratio of 0.1 to 1% by mass.
JP2000375877A 2000-12-11 2000-12-11 Antifungal agent, method of producing the same and antifungal resin composition Withdrawn JP2002179514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000375877A JP2002179514A (en) 2000-12-11 2000-12-11 Antifungal agent, method of producing the same and antifungal resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000375877A JP2002179514A (en) 2000-12-11 2000-12-11 Antifungal agent, method of producing the same and antifungal resin composition

Publications (1)

Publication Number Publication Date
JP2002179514A true JP2002179514A (en) 2002-06-26

Family

ID=18844817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000375877A Withdrawn JP2002179514A (en) 2000-12-11 2000-12-11 Antifungal agent, method of producing the same and antifungal resin composition

Country Status (1)

Country Link
JP (1) JP2002179514A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023206A2 (en) * 2003-08-29 2005-03-17 Bio-Gate Ag Silver-and zinc-containing body care agent
CN1296548C (en) * 2004-03-30 2007-01-24 东华大学 Nano functional finishing agent for textile, preparation method and application
JP2013503124A (en) * 2009-08-27 2013-01-31 ポリマーズ シーアールシー リミテッド Nano silver-zinc oxide composition
WO2015147206A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 Substrate with antibacterial layer, and antibacterial sheet, radiography device, and touch panel
WO2015147201A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 Substrate provided with antibacterial layer, antibacterial sheet, radiography device, and touch panel
JP2016032628A (en) * 2014-07-29 2016-03-10 富士フイルム株式会社 Incubator hood, incubator having the same, hydrophilized sheet for incubators, and hydrophilized antibacterial film for incubators

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023206A2 (en) * 2003-08-29 2005-03-17 Bio-Gate Ag Silver-and zinc-containing body care agent
WO2005023206A3 (en) * 2003-08-29 2005-08-04 Bio Gate Bioinnovative Materia Silver-and zinc-containing body care agent
CN1296548C (en) * 2004-03-30 2007-01-24 东华大学 Nano functional finishing agent for textile, preparation method and application
JP2013503124A (en) * 2009-08-27 2013-01-31 ポリマーズ シーアールシー リミテッド Nano silver-zinc oxide composition
US8951543B2 (en) 2009-08-27 2015-02-10 Polymers Crc Ltd. Nano silver—zinc oxide composition
WO2015147206A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 Substrate with antibacterial layer, and antibacterial sheet, radiography device, and touch panel
WO2015147201A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 Substrate provided with antibacterial layer, antibacterial sheet, radiography device, and touch panel
JP2015189152A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 Substrate with antibacterial layer, antibacterial sheet, radiography device, and touch panel
JP2015189196A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 Substrate with antibacterial layer, and antibacterial sheet, radiography device, and touch panel
CN106163802A (en) * 2014-03-28 2016-11-23 富士胶片株式会社 Base material with antibiotic layer, antibiotic slice, radiographic equipment, contact panel
US10244763B2 (en) 2014-03-28 2019-04-02 Fujifilm Corporation Antibacterial layer-attached base material, antibacterial sheet, radiation photographing device, and touch panel
JP2016032628A (en) * 2014-07-29 2016-03-10 富士フイルム株式会社 Incubator hood, incubator having the same, hydrophilized sheet for incubators, and hydrophilized antibacterial film for incubators

Similar Documents

Publication Publication Date Title
US11154063B2 (en) Method for producing a bacteriostatic and fungistatic additive in masterbatch for application in plastics
KR101334283B1 (en) Material for antimicrobial plastic, antimicrobial plastic, masterbatch for manufacturing antimicrobial plastic, and manufacturing method of antimicrobial plastic
US7381751B2 (en) Antimicrobial composition for medical articles
JPH11263705A (en) Antimicrobial and antimicrobial resin composition
JP2002020632A (en) Antibacterial resin composition
KR100587465B1 (en) Inorganic antibiotic agent with silver and thermal plastic resin master batch containing its
US8921452B2 (en) Resin composition containing ultrafine silver particles
TWI224083B (en) Antibacterial glass compositions, antibacterial resin compositions and a method for the preparation thereof
JP2002179514A (en) Antifungal agent, method of producing the same and antifungal resin composition
US5939087A (en) Antimicrobial polymer composition
WO2011071261A2 (en) Zinc sulfide nanoparticle composition, antibacterial and anti-fungicidal polymer resin master batch containing same, and preparation method thereof
JP5854590B2 (en) Antibacterial / deodorant treatment agent and antibacterial / deodorant treatment article
JP3705920B2 (en) Antibacterial zeolite
JPH11228306A (en) Ag-based antimicrobial agent, its production and antimicrobial resin composition
JPH11263703A (en) Antimicrobial and antimicrobial resin composition
KR102228207B1 (en) Antibacterial film for light guide panel
KR101182882B1 (en) Thermoplastic resin composition having excellent antibacterial property
JP2559126B2 (en) Weather resistant antibacterial zeolite composition
JP2000044408A (en) Antibacterial agent, antibacterial resin composition and antibacterial molded product
JP2001240426A (en) Antibacterial glass and resin composition containing the same
JP2012077248A (en) Silver-containing resin composition and method for producing the same
JP2005511827A (en) Thermoplastic article exhibiting high surface available silver
JP2000302616A (en) Antibacterial resin composition, antibacterial composition and molded product therefrom
JP3874860B2 (en) Antibacterial resin molding
JP2988012B2 (en) Antimicrobial composition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304