JPH0324459B2 - - Google Patents

Info

Publication number
JPH0324459B2
JPH0324459B2 JP61158022A JP15802286A JPH0324459B2 JP H0324459 B2 JPH0324459 B2 JP H0324459B2 JP 61158022 A JP61158022 A JP 61158022A JP 15802286 A JP15802286 A JP 15802286A JP H0324459 B2 JPH0324459 B2 JP H0324459B2
Authority
JP
Japan
Prior art keywords
methacrylic acid
maa
aqueous solution
extraction
separation step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61158022A
Other languages
Japanese (ja)
Other versions
JPS6314752A (en
Inventor
Shoichi Matsumoto
Masatoshi Kamioka
Hiroshi Yoshida
Atsushi Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP15802286A priority Critical patent/JPS6314752A/en
Publication of JPS6314752A publication Critical patent/JPS6314752A/en
Publication of JPH0324459B2 publication Critical patent/JPH0324459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はメタクリル酸(以下MAAと記す。)
の精製方法に関する。詳しく述べると、本発明は
イソブチレン、ターシヤリーブタノール、メタク
ロレインまたはイソブチルアルデヒド(以下これ
らをC4類と記す。)の接触気相酸化反応によつて
MAAを製造するプロセスにおいて、酸化反応器
より出たMAA含有反応生成ガスの冷却凝縮操作
によつてえられた粗MAA水溶液から、高純度お
よび高品質のMAAを工業的に精製取得するため
の方法に関する。 〔従来の技術および問題点〕 上記C4類を1段または2段以上の反応で接触
気相酸化してMAAを製造しうることは、酸化触
媒の開発やプロセスの開発に関する多くの文献に
より公知である。しかしながらMAAが接触気相
酸化反応によつて工業的に製造されるまでには長
年月を要した。その原因は反応生成ガス中に種々
な多くの副生物が存在していて、該副生物のある
ものが粗MAA溶液に随拌してくるためMAAの
精製プロセスにおいて種々のトラブルを生じた
り、また製品MAAの品質低下を招いたりするこ
とにあつた。換言すれば、反応生成ガス中には、
MAAの他に、メタクロレイン、アクロレイン、
アクリル酸、酢酸、アセトアルデヒド、プロトア
ネモニン、酸化炭素類などの如き比較的沸点の低
い物質やマレイン酸、テレフタール酸、トルイル
酸、安息香酸などの如き芳香族カルボン酸類およ
びタール状物質などがそれぞれ少量ながら存在し
ており、これらのうち粗MAA溶液に溶解してく
る比較的高沸点な副生物(芳香族化合物やタール
状物質)が以後のMAAの精製工程において種々
のトラブルの原因となつたり、さらにこれら不純
物のため高品質のメタクリル酸を取得すること困
難となることが判明している。 上述した問題点を解決するために副生物として
酢酸、アクリル酸を含むMAA水溶液から炭素数
5〜7の脂肪族または脂環式炭化水素を用いて
MAAを抽出し、さらに蒸留により高純度の
MAAをえる方法(特開昭49−13112号公報参
照)、炭素数2〜4の脂肪族アルコールの酢酸エ
ステルの少くとも1種並びにヘキサン、ヘプタン
およびベンゼンより選ばれる少くとも1種の炭化
水素からなる有機溶媒混合物にて、MAA水溶液
からMAAを抽出した後、抽出液の脱水蒸留を行
ない次いで蒸留によりMAAを精製する方法(特
開昭51−101913号公報参照)、炭素数4の化合物
の気相接触酸化反応でえられるMAA含有物を、
スルホン酸基含有化合物とホルムアルデヒド以外
のカルルボニル基含有化合物ならびに第1級およ
び/または第2級アミン類で処理する方法(特開
昭59−48439号公報参照)が提案されている。し
かしながら上述方法のうち、特開昭49−13112号
公報および特開昭51−101913号公報の方法では、
本発明者らの検討によればイソブチレン、ターシ
ヤリーブタノール、メタクロレインまたはイソブ
チルアルデヒドの接触気相酸化反応によつて
MAAを製造する際に生成する種々の副生物の除
去が不十分であり重合性能の低下及び着色等を起
こさない高品質のMAAをえることが困難であつ
た。また特開昭59−48439号公報の方法では二種
類の化合物を併用し、さらに処理時間および温度
等の条件も考慮する必要があり工程が複雑化して
コスト高を招くという欠点を有する。さらに本発
明者らの検討によれば得られたMAAの品質も上
述の処理により改良されてはいるが必ずしも十分
な水準ではなかつた。 そして、さらに特開昭60−252446号公報に開示
があるようにイソブチレン、ターシヤリーブタノ
ール、メタクロレインまたはイソブチリアルデヒ
ドを接触気相酸化してMAAを製造するプロセス
において、抽出工程からえられる抽出溶剤と
MAAとを含有する抽出液に重亜硫酸塩水溶液を
添加混合処理し、さらに溶剤分離工程、軽沸点物
分離工程および再蒸留精製工程のうち少くとも1
つの工程でMAA含有溶液にヒドラジン化合物を
添加混合処理することにより高純度MAAをえ、
かつ重合性能や着色度の小さいMAAをえること
ができると提案されている。しかしながら、この
方法では重亜硫酸塩水溶液の添加工程が入るた
め、新たに脱水工程が必要となつたり、廃水の処
理に費用がかかつたりの煩雑さが避けられない。 〔問題点を解決するための手段〕 本発明は、かくしてイソブチレン、ターシヤリ
ーブタノール、メタクロレインまたはイソブチル
アルデヒドを接触気相酸化してMAAを製造する
プロセスにおいて、生成する副生物を効率よく除
去し、その精製工程を重合によるトラブルのない
安定した連続操業で高品質のMAAをえる方法を
提供することを目的とする。より具体的には、抽
出工程において使用する抽出溶剤を特定し、さら
に、えられるMAAを少量のヒドラジン類化合物
にて処理することにより高純度かつ重合能におい
てすぐれ、えられる重合物の着色もきわめて改善
されたMAAを取得する方法を提供する。 すなわち、本発明は以下の如く特定されてな
る。 (1) イソブチレン、ターシヤリーブタノール、メ
タクロレインまたはイソブチルアルデヒドを接
触気相酸化してメタクリル酸を製造するプロセ
スにおいて、酸化反応器より出るメタクリル酸
含有反応生成ガスの冷却凝縮操作によつてえら
れたメタクリル酸水溶液を、まず該水溶液に含
れる軽沸点物質を蒸留または放散操作によつて
除去し、ついでえられたメタクリリル酸水溶液
を抽出工程、溶剤分離工程、軽沸点分離工程、
重質物分離工程および再蒸留精製工程で処理し
精製するに際し、抽出溶剤として炭素数6〜
20、好ましくは6〜12の脂肪族鎖状飽和炭化水
素を用いて該メタクリル酸水溶液からメタクリ
ル酸を抽出し、さらに溶剤分離工程、軽沸点物
分離工程、重質物分離工程および再蒸発精製工
程のうち少くとも1つの工程でメタクリル酸含
有溶液にヒドラジン類化合物を添加混合処理す
ることを特徴とするメタクリル酸の精製方法。 (2) ヒドラジン類化合物が下記の一般式を有する
ものから選ばれた少くとも1種であることを特
徴とする上記(1)記載の方法。 (式中、R1,R2は水素原子、C1〜3のアルキル
基、フエニル基、置換基を有するフエニル基ある
いは脂環式炭化水素基を示す。) 本発明を採用することにより、MAAの分離、
精製工程におけるトラブル、とくに蒸留塔におけ
る重合物の発生およびスケールの析出が大巾に低
減されるし、またえられたMAAの品質に関して
も重合性能がよく、プロトアネモニン、マレイン
酸などの含有量の非常に少い製品をえることがで
きた。さらにこの精製MAAを使用して合成精製
したメタクリル酸エステル類の重合物の経時的着
色性も改善された。 以下、本発明方法の態様について詳しくのべ
る。 モリブデン酸化物またはその複合酸化物を主体
とする酸化触媒を用い、イソブチレン−ターシヤ
リーブタノール、メタクロレインまたはイソブチ
ルアルデヒドを一段酸化ないし多段酸化反応に供
すると、MAAを主体とする反応生成物がえられ
る。そしてMAAは通常は、MAA水溶液として
冷却凝縮捕集される。この水溶液には、若干量の
メタクロレイン、アセトンなどの軽沸点物質が含
有しているので、蒸留操作などの放散工程にかけ
られ、これら軽沸点物質が除去される。ついで、
この粗MAA水溶液は、本発明が特定してなる炭
素数6〜20の脂肪族鎖状飽和炭化水素のうちの少
くとも1種を含有してなる抽出溶剤によつて抽出
操作に供され、MAAを含有する抽出液がえられ
る。ここで本発明が特定する炭素数6〜20、とく
に6〜12の脂肪族鎖状飽和炭化水素とは、具体的
にはヘキサン、ヘプタン、オクタン、ノナン、デ
カン、ドデカンなどであるが、これらは分岐を有
するものであつてもよく、さらにこれら炭化水素
の混合物であつてもよい。これらはMAAを良好
に抽出分離し、かつアルデヒドなど不純物の抽出
量は少ない。 本発明においては、抽出装置は通常のものが用
いられ、通常の抽出条件が適用され、すなわち通
常の向流接触式装置を用い、常温〜70℃の温度範
囲および抽剤比0.5〜1.5の範囲で操作することに
より好結果がえられる。 ヒドラジン類化合物の添加箇所は上述した如き
MAA含有液を対象とするものであれば特に限定
されず、抽出液、抽剤分離、軽沸分離の各蒸留塔
のいずの工程で添加しても効果がえられるが、と
くに高沸分離塔の留出液に添加して再蒸留するの
が好ましい。 本発明に用いるヒドラジン類化合物は、下記の
一般式を有する。
[Industrial Application Field] The present invention uses methacrylic acid (hereinafter referred to as MAA).
This invention relates to a method for refining. More specifically, the present invention is directed to the catalytic gas phase oxidation reaction of isobutylene, tert-butanol, methacrolein or isobutyraldehyde (hereinafter referred to as C4 ).
A method for industrially purifying and obtaining high-purity and high-quality MAA from a crude MAA aqueous solution obtained by cooling and condensing the MAA-containing reaction product gas discharged from an oxidation reactor in the process of manufacturing MAA. Regarding. [Prior art and problems] It is known from many documents related to the development of oxidation catalysts and processes that MAA can be produced by catalytic gas phase oxidation of the above C4 group in one or more stages of reaction. It is. However, it took many years before MAA could be produced industrially by catalytic gas phase oxidation reaction. The reason for this is that there are many various by-products in the reaction product gas, and some of these by-products are mixed into the crude MAA solution, causing various troubles in the MAA purification process. This caused a decline in the quality of the product MAA. In other words, in the reaction product gas,
In addition to MAA, methacrolein, acrolein,
Substances with relatively low boiling points such as acrylic acid, acetic acid, acetaldehyde, protoanemonin, and carbon oxides, aromatic carboxylic acids such as maleic acid, terephthalic acid, toluic acid, benzoic acid, and tar-like substances are present in small amounts. Among these, by-products with relatively high boiling points (aromatic compounds and tar-like substances) that dissolve in the crude MAA solution can cause various troubles in the subsequent MAA purification process. Furthermore, it has been found that these impurities make it difficult to obtain high quality methacrylic acid. In order to solve the above-mentioned problems, aliphatic or alicyclic hydrocarbons having 5 to 7 carbon atoms were used as by-products from MAA aqueous solutions containing acetic acid and acrylic acid.
MAA is extracted and further distilled to obtain high purity
A method for obtaining MAA (see JP-A-49-13112), from at least one acetate ester of an aliphatic alcohol having 2 to 4 carbon atoms and at least one hydrocarbon selected from hexane, heptane and benzene. A method of extracting MAA from an aqueous MAA solution using an organic solvent mixture of MAA-containing substances obtained by phase contact oxidation reaction,
A method of treatment with a sulfonic acid group-containing compound, a carbonyl group-containing compound other than formaldehyde, and primary and/or secondary amines has been proposed (see JP-A-59-48439). However, among the above-mentioned methods, the methods of JP-A-49-13112 and JP-A-51-101913,
According to studies by the present inventors, by catalytic gas phase oxidation reaction of isobutylene, tert-butanol, methacrolein or isobutyraldehyde.
It has been difficult to obtain high-quality MAA that does not cause deterioration in polymerization performance or coloration due to insufficient removal of various by-products generated during the production of MAA. Furthermore, the method disclosed in JP-A-59-48439 uses two types of compounds in combination, and it is also necessary to consider conditions such as treatment time and temperature, which has the disadvantage of complicating the process and increasing costs. Furthermore, according to studies by the present inventors, the quality of the obtained MAA was improved by the above-mentioned treatment, but was not necessarily at a sufficient level. Furthermore, as disclosed in JP-A No. 60-252446, in the process of producing MAA by catalytic gas phase oxidation of isobutylene, tert-butanol, methacrolein, or isobutyraldehyde, an extraction solvent obtained from the extraction step is used. and
A bisulfite aqueous solution is added and mixed to the extract containing MAA, and at least one of the solvent separation step, light boiling point separation step, and redistillation purification step is performed.
High purity MAA is obtained by adding and mixing a hydrazine compound to the MAA-containing solution in two steps.
It has also been proposed that MAA with low polymerization performance and low degree of coloration can be obtained. However, since this method involves a step of adding an aqueous bisulfite solution, it is unavoidable that a new dehydration step is required and the wastewater treatment is expensive and complicated. [Means for Solving the Problems] Thus, the present invention efficiently removes generated by-products in the process of producing MAA by catalytic gas phase oxidation of isobutylene, tert-butanol, methacrolein or isobutyraldehyde, The purpose of the present invention is to provide a method for obtaining high-quality MAA through stable continuous operation of the purification process without troubles caused by polymerization. More specifically, by specifying the extraction solvent used in the extraction process and further treating the obtained MAA with a small amount of hydrazine compounds, we have achieved high purity and excellent polymerization ability, and the resulting polymer has extremely high coloration. Provide an improved way to obtain MAA. That is, the present invention is specified as follows. (1) Obtained by cooling and condensing the methacrylic acid-containing reaction product gas discharged from the oxidation reactor in the process of producing methacrylic acid by catalytic gas phase oxidation of isobutylene, tert-butanol, methacrolein, or isobutyraldehyde. A methacrylic acid aqueous solution is first removed by distillation or dispersion operation to remove light boiling substances contained in the aqueous solution, and then the obtained methacrylic acid aqueous solution is subjected to an extraction step, a solvent separation step, a light boiling point separation step,
When processing and refining in the heavy substance separation process and redistillation purification process, carbon atoms with 6 to 6 carbon atoms are used as extraction solvents.
Methacrylic acid is extracted from the methacrylic acid aqueous solution using a 20, preferably 6 to 12 aliphatic chain saturated hydrocarbon, and further a solvent separation step, a light boiling point separation step, a heavy material separation step and a re-evaporation purification step are carried out. A method for purifying methacrylic acid, which comprises adding and mixing a hydrazine compound to a methacrylic acid-containing solution in at least one step. (2) The method according to (1) above, wherein the hydrazine compound is at least one selected from those having the following general formula. (In the formula, R 1 and R 2 represent a hydrogen atom, a C 1-3 alkyl group, a phenyl group, a phenyl group having a substituent, or an alicyclic hydrocarbon group.) By adopting the present invention, MAA separation of,
Trouble in the purification process, especially the generation of polymer products and scale precipitation in the distillation column, is greatly reduced, and the quality of the obtained MAA is good, with good polymerization performance and low content of protoanemonin, maleic acid, etc. I was able to get very few products. Furthermore, the coloring properties of methacrylic acid ester polymers synthesized and purified using this purified MAA were also improved over time. Hereinafter, aspects of the method of the present invention will be described in detail. When isobutylene-tert-butanol, methacrolein or isobutyraldehyde is subjected to a single-stage oxidation or multi-stage oxidation reaction using an oxidation catalyst mainly composed of molybdenum oxide or its composite oxide, a reaction product mainly composed of MAA can be obtained. . Then, MAA is usually collected by cooling and condensing as an aqueous MAA solution. Since this aqueous solution contains a small amount of light-boiling substances such as methacrolein and acetone, it is subjected to a dispersion process such as distillation to remove these light-boiling substances. Then,
This crude MAA aqueous solution is subjected to an extraction operation using an extraction solvent containing at least one kind of aliphatic chain saturated hydrocarbons having 6 to 20 carbon atoms specified in the present invention, and the MAA An extract containing . Here, the aliphatic chain saturated hydrocarbon having 6 to 20 carbon atoms, particularly 6 to 12 carbon atoms, specified by the present invention specifically includes hexane, heptane, octane, nonane, decane, dodecane, etc. It may be branched, or it may be a mixture of these hydrocarbons. These extract and separate MAA well, and extract only a small amount of impurities such as aldehydes. In the present invention, a conventional extraction device is used, and conventional extraction conditions are applied, that is, a conventional countercurrent contact type device is used, the temperature range is from room temperature to 70°C, and the extractant ratio is in the range of 0.5 to 1.5. Good results can be obtained by operating with . The location where the hydrazine compound is added is as described above.
It is not particularly limited as long as it is intended for MAA-containing liquids, and it can be added at any stage of the distillation column for extraction liquid, extractant separation, and low-boiling separation, but it is especially effective for high-boiling separation. Preferably, it is added to the column distillate and redistilled. The hydrazine compound used in the present invention has the following general formula.

〔発明の効果〕〔Effect of the invention〕

本発明において特定される抽出溶剤の使用とヒ
ドラジン処理とによる相剰効果の原因は明らかで
はないが、イソブチレン、ターシヤリーブタノー
ル、メタクロレインまたはイソブチルアルデヒド
を接触気相酸化してえられたMAAには特有の極
微量の副生物が存在し、これらの副生成物が精製
時の重合性およびえられたMAAの品質に悪影響
を与えると考えられる。これらの副生物が特定さ
れた抽出溶剤の使用および抽出条件下で分離除去
され、上述の問題が解決するのではないかと推定
される。 発明の効果としてMAA精製系の重合トラブル
なしに長期間の運転が可能となつたことは安定操
業の上からメリツトが大きい。また精製MAAを
使用して合成したメタクリル酸エステル類の色相
安定が良くなることは接触気相酸化法でえられた
MAAを高品質化させるという点でメリツトが大
きい。以下、本発明の実施例を示すが、本発明は
これに限定されるものでなない。 実施例 1 前段反応用触媒媒としてモリブデン系複合酸化
物を用い、後段反応用触媒としてモリヘブデン−
リン系ヘテロポリ酸を基盤とする触媒を用いてイ
ソブチレンを水蒸気の存在下に空気による接触気
相酸化反応せしめ、えられる反応生成ガスをハイ
ドロキノンを重合防止剤として用い冷却凝縮せし
め、メタクリル酸含有水溶液をえた。えられた水
溶液からメタクロレインなどの軽沸点物質を蒸留
除去し、メタクリル酸24重量%、酢酸3.6重量%、
フタル酸類(o−、m−、p−)1.4重量%、マ
レイン酸0.8重量%、タール状物質1.0重量%、プ
ロトアネモニン(以下PANと記す)100ppmを含
む水溶液20Kg/Hrをえた。 この水溶液を抽出塔上部より供給し、抽出塔下
部からはn−ヘプタンを26Kg/Hrの割合で供給
し向流連続的に抽出を行なつた。抽出操作は常温
常圧にて行なつた。抽出塔は内径70mm、全高1800
mmの回転円板塔である。抽出は十分に抽出平衡に
達せしめたのち、抽出塔上部より抽出液(有機
層)を30.9Kg/Hrと抽出塔下部より抽残液(水
性層)を15.1Kg/Hrの割合でえた。抽出塔の二
層界面でのスカムの発生は認められなかつた。抽
出液中のPANは30ppmであつた。 えられた有機層を溶剤分離塔(内径6B、シーブ
トレー30段、SUS304製)の15段目に供給し、塔
頂圧105mmHg、還流比1.0で蒸留した。塔頂より
留出した溶剤は抽出塔で再使用した。缶出液とし
ては99.7重量%のメタクリル酸がえられた。この
缶出液はさらに軽沸点物分離塔(内径6B、シーブ
トレー40段、SUS304製)の15段目に供給し塔頂
圧35mmHg、還流比15で蒸留した。 缶出液は重質物分離塔(内径6B、シーブトレー
15段、SUS304製)の塔底に供給し、塔頂圧35mm
Hg、還流比0.5で蒸留した。 留出メタクリル酸液にヒドラジンヒドラート80
%水溶液をメタクリル酸に対して0.03重量%にな
るように添加し、これを精製塔(内径6B、シーブ
トレー15段、SUS304製)の塔底に供給し、塔頂
圧35mmHg、還流比2.0で蒸留し、精製メタクリル
酸をえた。ガスクロマトグラフイーで分析したと
ころ製品の純度は99.9重量%以上であり、2,4
−ジニトロフエニルヒドラジン法による全アルデ
ヒド量は痕跡の測定値であつた。この精製メタク
リル酸を使用してメタクリル酸鉄触媒下でエチレ
ンオキサイドを付加させてエステル化反応を行
い、蒸留精製してえられる2−ヒドロキシエチル
メタクリレート(以下HEMAと記す。)をブタノ
ール窯媒中で2,2′−アゾビスブチロニトリルを
重合開始剤として、95℃で5時間溶液重合を行
い、えられた重合物の着色度経時変化を50℃でテ
ストし第1表のような結果をえた。 なお、溶剤分離塔、軽沸点物分離塔、重質物分
離塔および再蒸留精製塔は、いずれも60日間の連
続運転中重合物などによるトラブルは起らなかつ
た。 実施例 2 実施例1で用いたのと同じメタクリル酸水溶液
を、抽出溶剤をn−ヘキサンに変更し、またヒド
ラジンヒドラートをメタクリル酸に対し0.05重量
%加えた以外は、実施例1におけると同じ装置お
よび方法で精製処理した。 溶剤分離塔、軽沸点物分離塔、重質物分離塔お
よび再蒸留精製塔いずれも60日間の連続稼動中、
重合によるトラブルは起こらなかつた。えられた
精製メタクリル酸を用いて実施例1と同様にし
て、HEMAの重合物の色相変化テストをしたと
ころ第1表のような結果をえた。 実施例 3 実施例1で用いたのと同じメタクリル酸水溶液
を、抽出溶剤をn−オクタンに変更し、またヒド
ロラジンヒドラートをメタクリル酸に対し0.05重
量%加えた以外は、実施例1におけると同じ装置
および方法で精製処理した。 溶剤分離塔、軽沸点物分離塔、重質物分離塔お
よび再蒸留精製塔いずれも60日間の連続稼動中、
重合によるトラブルは起こらなかつた。えられた
精製メタクリル酸を用いて、実施例1と同様にし
て、HEMAの重合物の色相変化テストをしたと
ころ第1表のような結果をえた。 比較例 1 実施例1で用いたのと同じメタクリル酸水溶液
を実施例1におけると同じ装置および方法で処理
した。ただし80%−ヒドラジンヒドラート水溶液
は添加しなかつた。 溶剤分離塔、軽沸点物分離塔、重質物分離塔お
よび再蒸留精製塔いずれも60日間の連続稼動中重
合によるトラブルは起こらなかつた。えられた精
製メタクリル酸を用いて実施例1と同様にして
HEMAの重合物の色相変化テストをしたところ
第1表のような結果をえた。 比較例 2 実施例1で用いたのと同じメタクリル酸水溶液
を、抽出溶剤をトルエンに変更し、またヒドラジ
ンヒドラートをメタクリル酸に対し0.1重量%加
えた以外は、実施例1におけると同じ装置および
方法で精製処理した。 溶剤分離塔、軽沸点物分離塔、重質物分離塔の
各リボイラーで重合が起こり、精製操作を10時間
で停止せざるをえなかつた。えられた精製メタク
リル酸を用いて、実施例1と同様にして、
HEMAの重合物の色相変化テストをしたところ
第1表のような結果をえた。 比較例 3 実施例1で用いたのと同じメタクリル酸水溶液
を、抽出溶剤をトルエンに変更し、80%−ヒドラ
ジンヒドラート水溶液を添加しなかつた以外は、
実施例1におけると同じ装置および方法で精製処
理した。溶剤分離塔、軽沸点物分離塔、重質物分
離塔の各リボイラーで重合が起こり、精製操作を
10時間で停止せざるをえなかつた。えられた精製
メタクリル酸を用いて、実施例1と同様にして
HEMAの重合物の色相変化テストをしたところ
第1表のような結果をえた。
Although the cause of the mutual effect caused by the use of the extraction solvent specified in the present invention and the hydrazine treatment is not clear, MAA obtained by catalytic gas phase oxidation of isobutylene, tert-butanol, methacrolein, or isobutyraldehyde It is believed that there are trace amounts of unique by-products, and these by-products adversely affect the polymerizability during purification and the quality of the obtained MAA. It is assumed that these by-products can be separated and removed using the specified extraction solvent and extraction conditions, thus solving the above-mentioned problems. As a result of the invention, it has become possible to operate the MAA refining system for a long period of time without polymerization troubles, which is a great advantage in terms of stable operation. In addition, improved hue stability of methacrylic acid esters synthesized using purified MAA was obtained using catalytic gas phase oxidation method.
It has great merit in that it improves the quality of MAA. Examples of the present invention will be shown below, but the present invention is not limited thereto. Example 1 A molybdenum-based composite oxide was used as a catalyst for the first reaction, and molybdenum was used as a catalyst for the second reaction.
Using a catalyst based on a phosphorous heteropolyacid, isobutylene is subjected to a catalytic gas phase oxidation reaction with air in the presence of water vapor, and the resulting reaction product gas is cooled and condensed using hydroquinone as a polymerization inhibitor to form an aqueous solution containing methacrylic acid. I got it. Light boiling substances such as methacrolein were removed by distillation from the resulting aqueous solution, and 24% by weight of methacrylic acid, 3.6% by weight of acetic acid,
20 kg/hr of an aqueous solution containing 1.4% by weight of phthalic acids (o-, m-, p-), 0.8% by weight of maleic acid, 1.0% by weight of tar-like substances, and 100ppm of protoanemonin (hereinafter referred to as PAN) was obtained. This aqueous solution was supplied from the upper part of the extraction column, and n-heptane was supplied from the lower part of the extraction column at a rate of 26 Kg/Hr to perform extraction continuously in countercurrent. The extraction operation was performed at room temperature and pressure. The extraction tower has an inner diameter of 70 mm and a total height of 1800 mm.
mm rotating disk tower. After the extraction sufficiently reached extraction equilibrium, an extract (organic layer) was obtained from the upper part of the extraction column at a rate of 30.9 Kg/Hr, and a raffinate solution (aqueous layer) was obtained from the lower part of the extraction column at a rate of 15.1 Kg/Hr. No scum was observed at the interface between the two layers of the extraction tower. PAN in the extract was 30 ppm. The obtained organic layer was supplied to the 15th stage of a solvent separation column (inner diameter 6 B , 30 sieve trays, made of SUS304) and distilled at a column top pressure of 105 mmHg and a reflux ratio of 1.0. The solvent distilled from the top of the column was reused in the extraction column. 99.7% by weight of methacrylic acid was obtained as bottom liquid. This bottoms was further fed to the 15th stage of a light boiling point separation column (inner diameter 6 B , 40 sieve trays, made of SUS304) and distilled at a column top pressure of 35 mmHg and a reflux ratio of 15. The bottoms are collected in a heavy matter separation column (inner diameter 6 B , sieve tray).
15 stages, made of SUS304) is supplied to the bottom of the tower, and the top pressure is 35 mm.
Hg was distilled at a reflux ratio of 0.5. Hydrazine hydrate 80 in distilled methacrylic acid solution
% aqueous solution was added to methacrylic acid at a concentration of 0.03% by weight, and this was supplied to the bottom of a purification tower (inner diameter 6 B , 15 sieve trays, made of SUS304), and the top pressure was 35 mmHg and the reflux ratio was 2.0. Distillation yielded purified methacrylic acid. When analyzed by gas chromatography, the purity of the product was over 99.9% by weight, with a purity of 2.4% by weight.
- The total aldehyde content determined by the dinitrophenylhydrazine method was a trace measurement. Using this purified methacrylic acid, an esterification reaction is carried out by adding ethylene oxide under an iron methacrylate catalyst, and 2-hydroxyethyl methacrylate (hereinafter referred to as HEMA) obtained by distillation is purified in a butanol kiln medium. Using 2,2'-azobisbutyronitrile as a polymerization initiator, solution polymerization was carried out at 95℃ for 5 hours, and the coloring degree of the obtained polymer was tested at 50℃ with the results shown in Table 1. I got it. The solvent separation column, light boiling point separation column, heavy substance separation column and redistillation purification column did not experience any trouble due to polymers during 60 days of continuous operation. Example 2 The same aqueous methacrylic acid solution used in Example 1 was used, except that the extraction solvent was changed to n-hexane, and 0.05% by weight of hydrazine hydrate was added to the methacrylic acid. Purification was carried out using equipment and methods. The solvent separation column, light boiling point separation column, heavy substance separation column and redistillation purification column are all in continuous operation for 60 days.
No troubles due to polymerization occurred. Using the obtained purified methacrylic acid, a hue change test of a HEMA polymer was conducted in the same manner as in Example 1, and the results shown in Table 1 were obtained. Example 3 The same aqueous methacrylic acid solution used in Example 1 was used, except that the extraction solvent was changed to n-octane, and 0.05% by weight of hydrazine hydrate was added to the methacrylic acid. Purification was carried out using the same equipment and method. The solvent separation column, light boiling point separation column, heavy substance separation column and redistillation purification column are all in continuous operation for 60 days.
No troubles due to polymerization occurred. Using the obtained purified methacrylic acid, a hue change test of a HEMA polymer was conducted in the same manner as in Example 1, and the results shown in Table 1 were obtained. Comparative Example 1 The same aqueous methacrylic acid solution used in Example 1 was treated with the same equipment and method as in Example 1. However, an 80% aqueous hydrazine hydrate solution was not added. No troubles due to polymerization occurred in the solvent separation column, light boiling point separation column, heavy substance separation column, and redistillation purification column during continuous operation for 60 days. In the same manner as in Example 1 using the purified methacrylic acid obtained.
When we conducted a hue change test on HEMA polymers, we obtained the results shown in Table 1. Comparative Example 2 The same equipment and equipment as in Example 1 were used, except that the same aqueous methacrylic acid solution used in Example 1 was used, the extraction solvent was changed to toluene, and 0.1% by weight of hydrazine hydrate was added to the methacrylic acid. It was purified by the following method. Polymerization occurred in the reboilers of the solvent separation column, light boiling point separation column, and heavy substance separation column, and purification operations had to be stopped after 10 hours. Using the obtained purified methacrylic acid, in the same manner as in Example 1,
When we conducted a hue change test on HEMA polymers, we obtained the results shown in Table 1. Comparative Example 3 The same methacrylic acid aqueous solution used in Example 1 was used, except that the extraction solvent was changed to toluene and the 80% hydrazine hydrate aqueous solution was not added.
Purification was carried out using the same equipment and method as in Example 1. Polymerization occurs in the reboilers of the solvent separation tower, light boiling point separation tower, and heavy material separation tower, and purification operations are carried out.
It had to be stopped after 10 hours. Using the obtained purified methacrylic acid, the same procedure as in Example 1 was carried out.
When we conducted a hue change test on HEMA polymers, we obtained the results shown in Table 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 イソブチレン、ターシヤリーブタノール、メ
タクロレインまたはイソブチルアルデヒドを接触
気相酸化してメタクリル酸を製造するプロセスに
おいて、酸化反応器より出るメタクリル酸含有反
応生成ガスの冷却凝縮操作によつてえられたメタ
クリル酸水溶液を、まず該水溶液に含まれる軽沸
点物質を蒸留または放散操作によつて除去し、つ
いでえられたメタクリル酸水溶液を抽出工程、溶
剤分離工程、軽沸点物分離工程、重質物分離工程
および再蒸留生成工程で処理し精製するに際し、
抽出溶剤として炭素数6〜12の脂肪族鎖状飽和炭
化水素を用いて該メタクリル酸水溶液からメタク
リル酸を抽出し、さらに溶剤分離工程、軽沸点物
分離工程、重質物分離工程で精製処理した後、再
蒸留精製工程でメタクリル酸含有溶液にヒドラジ
ン類化合物を添加混合処理することを特徴とする
メタクリル酸の精製方法。 2 ヒドラジン類化合物が下記の一般式を有する
ものから選ばれた少なくとも1種であることを特
徴とする特許請求の範囲1記載の方法。 (式中、R1,R2は水素原子、C1〜3のアルキ
ル基、フエニル基、置換基を有するフエニル基あ
るいは脂環式炭化水素基を示す。)
[Scope of Claims] 1. In a process for producing methacrylic acid by catalytic gas phase oxidation of isobutylene, tert-butanol, methacrolein or isobutyraldehyde, a process for producing methacrylic acid by cooling and condensing the methacrylic acid-containing reaction product gas discharged from an oxidation reactor. The obtained methacrylic acid aqueous solution is first removed by distillation or dispersion operation to remove the light boiling point substances contained in the aqueous solution, and then the obtained methacrylic acid aqueous solution is subjected to an extraction step, a solvent separation step, a light boiling point separation step, When processing and refining in the heavy substance separation process and redistillation generation process,
After extracting methacrylic acid from the methacrylic acid aqueous solution using an aliphatic chain saturated hydrocarbon having 6 to 12 carbon atoms as an extraction solvent, and further purifying it in a solvent separation step, a light boiling point separation step, and a heavy substance separation step. A method for purifying methacrylic acid, which comprises adding and mixing a hydrazine compound to a methacrylic acid-containing solution in a redistillation purification step. 2. The method according to claim 1, wherein the hydrazine compound is at least one selected from those having the following general formula. (In the formula, R1 and R2 represent a hydrogen atom, a C1-3 alkyl group, a phenyl group, a phenyl group having a substituent, or an alicyclic hydrocarbon group.)
JP15802286A 1986-07-07 1986-07-07 Purification of methacrylic acid Granted JPS6314752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15802286A JPS6314752A (en) 1986-07-07 1986-07-07 Purification of methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15802286A JPS6314752A (en) 1986-07-07 1986-07-07 Purification of methacrylic acid

Publications (2)

Publication Number Publication Date
JPS6314752A JPS6314752A (en) 1988-01-21
JPH0324459B2 true JPH0324459B2 (en) 1991-04-03

Family

ID=15662561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15802286A Granted JPS6314752A (en) 1986-07-07 1986-07-07 Purification of methacrylic acid

Country Status (1)

Country Link
JP (1) JPS6314752A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334382C (en) * 2001-11-07 2007-08-29 三菱化学株式会社 Storage tank for easily polymerizable compound and method of storage
EP2085376B1 (en) * 2008-01-30 2012-09-05 Evonik Röhm GmbH Process for preparation of high purity methacrylic acid
KR102079774B1 (en) 2016-11-25 2020-02-20 주식회사 엘지화학 Process for continuous recovering (meth)acrylic acid and apparatus for the process
TWI796324B (en) * 2017-03-09 2023-03-21 日商東亞合成股份有限公司 Method for producing (meth)acrylate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178842A (en) * 1984-02-24 1985-09-12 Nippon Kayaku Co Ltd Purification and separation of methacrylic acid
JPS60252446A (en) * 1984-05-29 1985-12-13 Nippon Shokubai Kagaku Kogyo Co Ltd Purification of methacrylic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60178842A (en) * 1984-02-24 1985-09-12 Nippon Kayaku Co Ltd Purification and separation of methacrylic acid
JPS60252446A (en) * 1984-05-29 1985-12-13 Nippon Shokubai Kagaku Kogyo Co Ltd Purification of methacrylic acid

Also Published As

Publication number Publication date
JPS6314752A (en) 1988-01-21

Similar Documents

Publication Publication Date Title
JP3937462B2 (en) Acrylic acid purification method
EP1041062B1 (en) Method for refining (meth)acrylic acid
KR20160105370A (en) Process for producing methyl methacrylate
EP0102642B1 (en) Process for purifying methacrylic acid
US6787001B2 (en) Method for distilling (meth) acrylic acid solution
JP2003183221A (en) Extraction process for recovering acrylic acid
JP3568209B2 (en) Method for purifying acrylic acid obtained by catalytic oxidation of propylene
KR19980071856A (en) Recovery method of acrylic acid
JPH08134011A (en) Purification of methacrylic acid
JPH0324459B2 (en)
JPS61218556A (en) Purification of acrylic acid
JP5959645B2 (en) Method for regenerating methacrylic acid from high boiling and aqueous phases
JPH0244296B2 (en)
US8828231B2 (en) Method for recovering carboxylic acids from dilute aqueous streams
JPH01139547A (en) Production of methacrylic acid ester
JPS644505B2 (en)
JP4942878B2 (en) (Meth) acrylic acid ester purification method
JPS6353175B2 (en)
JPS6245222B2 (en)
JP4581395B2 (en) Method for purifying (meth) acrylic acid and method for producing (meth) acrylic acid ester
JPH10306052A (en) Recovery of acrylic acid
JPH0813779B2 (en) Method for recovering methacrylic acid as methyl methacrylate
JPH10237012A (en) Recovery of acrylic acid
JP3150909B2 (en) Purification method of glyoxylates
JP2023520711A (en) Method for purifying (meth)acrylic acid