JPH03243187A - Reciprocal driving device - Google Patents

Reciprocal driving device

Info

Publication number
JPH03243187A
JPH03243187A JP3870190A JP3870190A JPH03243187A JP H03243187 A JPH03243187 A JP H03243187A JP 3870190 A JP3870190 A JP 3870190A JP 3870190 A JP3870190 A JP 3870190A JP H03243187 A JPH03243187 A JP H03243187A
Authority
JP
Japan
Prior art keywords
magnet
superconductor
magnets
superconductive
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3870190A
Other languages
Japanese (ja)
Inventor
Toshimasa Hirano
平野 敏雅
Katsuharu Suzuki
勝春 鈴木
Akira Ishikawa
明 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3870190A priority Critical patent/JPH03243187A/en
Publication of JPH03243187A publication Critical patent/JPH03243187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To increase the utilizing degree of a superconductive body and make the title device inexpensive by a method wherein the approaching distance of a magnet to the superconductive body and the maximum separating distance of the magnet from a magnetic member are regulated by non-magnetic cylinders. CONSTITUTION:When permanent magnets 2, 5 are approached (fore end) positions in non-magnetic cylinders 1, 6, the fore side magnetic pole S of the magnet 2 is detected by a position detector 12. Big current from a current supplying device 11 to the superconductive body 3 is stopped based on the detection. The superconductive body 3 is changed so as to have superconductive state and repells flux from the magnets 2, 5. The magnets 2, 5 are separated from the superconductive body 3 and approach to the positions of the rear end sides thereof. When the magnets 2, 5 arrive at the separated (rear ends) positions, the position detector 13 detects the rear side pole N of the magnet 2 and the current supplying device 11 supplies big current to the superconductive body 3 to make the superconductive body 3 so as to have non-superconductive state. The magnets 2, 5 are moved to the fore end positions by the attracting force between them. The magnets 2, 5 are reciprocated in such a manner.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は往復動駆動装置に関し、例えば低温環境下て゛
の動力源、又は電気的な動力を使用しにくい引火しやす
い環境下での動力源等に利用できるものて゛ある。
Detailed description of the invention (a) Industrial application field The present invention relates to a reciprocating drive device, for example, a power source in a low-temperature environment, or a power source in an easily flammable environment where it is difficult to use electric power. There are things that can be used as sources.

(ロ)従来の技術 従来から熱エネルギーを力学的エネルギーに変換する装
置としては、スターリングエンジンや形状記憶合金を使
用したものが知られている。スターリングエンジンを利
用したものでは、気体の圧縮や膨張を利用してピストン
を往復動させるものであり、形状記憶合金を利用したも
のでは、形状記憶合金の機械的な伸縮を利用して重心を
移動させるものである。
(b) Prior Art Conventionally, devices using Stirling engines and shape memory alloys are known as devices for converting thermal energy into mechanical energy. Stirling engines use the compression and expansion of gas to move the piston back and forth, while those using shape memory alloys use the mechanical expansion and contraction of the shape memory alloy to move the center of gravity. It is something that makes you

また1回転体又はその回転体の羽根に超電導体を用い、
この回転体又はその羽根に磁場を印加して超電導体の反
磁性によるマイスナー効果を利用してその回転体を回転
させる超電導モータが知られている(「反磁性を利用し
た超電導回転機」(昭和48午電気関係学会東北支部連
合大会、2D−23)。
In addition, superconductors are used for the rotating body or the blades of the rotating body,
A superconducting motor is known that rotates the rotating body by applying a magnetic field to the rotating body or its blades and utilizing the Meissner effect caused by the diamagnetism of the superconductor (``Superconducting rotating machine using diamagnetism'' (Showa 48th pm Tohoku Branch Federation Conference of Electrical Associations, 2D-23).

(ハ)発明が解決しようとする課題 前記スターリングエンジンや形状記憶合金を利用したも
のでは、いずれも構造が複雑になる欠点があるっ また、前二C超電導モータにおいては、回転体又はその
羽根を構成する超電導体のうちの一部のみの超電導体の
マイスナー効果を利用するものであるから、超電導体の
利用度が低く、相対的に割高なものとなる。
(C) Problems to be Solved by the Invention Both of the Stirling engines and those that utilize shape memory alloys have the disadvantage of having complex structures. Since it utilizes the Meissner effect of only a part of the superconductors that constitute it, the degree of utilization of the superconductor is low and it is relatively expensive.

本発明はかかる点に鑑み発明さtしたものにして、超電
導体の利用度を高め、相対的に割安な往復駆動装置を提
供することを解決課題とする。
The present invention has been devised in view of these points, and an object of the present invention is to provide a relatively inexpensive reciprocating drive device that increases the utilization of superconductors.

(ニ)課題を解決するたぬの手段 本発明による往復駆動装置は、非磁性シリンダ内のピス
トン用磁石と、シリンダの先端に対抗して設けた超電導
体と、この超電導体を介して前記磁石にて吸引される磁
性部材と、前記磁石の位置を検出して、前記超電導体を
超電導状態又は非超え 電導状態に切換る位置検出器とよりなり、前記シノンダ
は前記磁石の前記超電導体との近接距離及び前記磁石の
前記磁性部材との最大離間距離を規制するものであるこ
とを特徴とするものである。
(d) Means for Solving the Problems The reciprocating drive device according to the present invention includes a piston magnet in a non-magnetic cylinder, a superconductor provided opposite to the tip of the cylinder, and a magnet connected to the magnet via the superconductor. and a position detector that detects the position of the magnet and switches the superconductor to a superconducting state or a non-superconducting state. The present invention is characterized in that a proximity distance and a maximum separation distance between the magnet and the magnetic member are regulated.

(ホ)作用 ピストン用磁石が磁性部材又は超電導体から最も離間し
た位置て後端位置)にあるとき、この位置を位置検出器
が検出して、超電導体を非超電導状態とする。
(E) When the working piston magnet is at the rear end position, which is the position farthest from the magnetic member or superconductor, this position is detected by the position detector, and the superconductor is placed in a non-superconducting state.

この状態では、磁石の磁力が超電導体を通して磁性部材
に及び、磁石はその吸引力によりシリンダ内を移動して
超電導体に近接する(前端位置)この近接位置に達する
と、位置検出器がそれを検出して超電導体を非超電導状
態から超電導状態にする。
In this state, the magnetic force of the magnet is applied to the magnetic member through the superconductor, and the magnet moves within the cylinder due to its attractive force and approaches the superconductor (front end position). When it reaches this close position, the position detector detects it. Detection and change the superconductor from a non-superconducting state to a superconducting state.

すると、超電導体は反磁性を示し、マイスナー効果によ
り磁石からの磁力を反発する。従って、磁石は超電導体
から離れる方向に移動し、シリンダの後端位置に移行す
る。
Then, the superconductor exhibits diamagnetic properties and repels the magnetic force from the magnet due to the Meissner effect. Therefore, the magnet moves away from the superconductor and moves to the rear end position of the cylinder.

以後同様にして磁石が往復動する。Thereafter, the magnet reciprocates in the same manner.

前記後端位置は、磁性部材に対して磁力が及び、吸引力
が作用する位置であり、前端位置は磁性部材に最も近い
位置であるが、磁石の磁束密度が超電導体の臨界磁束密
度値より小さい範囲に決められる。
The rear end position is the position where the magnetic force is applied to the magnetic member and the attractive force acts, and the front end position is the position closest to the magnetic member, but the magnetic flux density of the magnet is lower than the critical magnetic flux density value of the superconductor. Can be determined within a small range.

(へ)実施例 本発明の実施例全図面に基いて説明する。(f) Example Embodiments of the present invention will be explained based on all the drawings.

第1図は本発明の一実施例を示す往復駆動装置の概略構
成図である。この図面において、非磁性シリンダ1内に
はピストル用磁石2が摺動自在に収納されている。この
磁石はこの実施例では永久磁石で1@戊され、シリンダ
lの軸方向に着磁されている。
FIG. 1 is a schematic diagram of a reciprocating drive device showing an embodiment of the present invention. In this drawing, a pistol magnet 2 is slidably housed in a non-magnetic cylinder 1. In this embodiment, this magnet is a permanent magnet and is magnetized in the axial direction of the cylinder l.

シリンダ1の先端に対抗して超電導体3が配置されてい
る。この超電導体はNb、Pb等の金属系超電導体、N
b−Ti等の化合系超電導体、又よY系、Bi系、Tl
系等の酸化物超電導体にて構成することができるが、い
ずれの系の超電導体を用いる場合にも、その雰囲気温度
をその超電導体の臨界温度にて使用する必要がある。こ
の実施例では、i’ B a ICu so y−aの
超電導体を用い、液体窒素に浸めた。
A superconductor 3 is placed opposite the tip of the cylinder 1. This superconductor is a metal-based superconductor such as Nb or Pb, or Nb.
Compound superconductors such as b-Ti, Y-based, Bi-based, Tl
However, when using any type of superconductor, it is necessary to use the ambient temperature at the critical temperature of the superconductor. In this example, a superconductor of i' Ba ICu so y-a was used and immersed in liquid nitrogen.

超電導体3のシリンダ1と反対側に、磁石2にて吸引さ
れる磁性部材4を設けている。この実施例ではこの磁性
部材として永久磁石5を用い、ピストン用磁石となるよ
うに第2の非磁性シリンダ6に摺動自在に収納した。こ
の永久磁石5も第2シリンダ6の軸方向に着磁されてお
り、磁石2と吸引するよう互いに異極を対抗させている
A magnetic member 4 that is attracted by a magnet 2 is provided on the opposite side of the superconductor 3 from the cylinder 1. In this embodiment, a permanent magnet 5 is used as the magnetic member, and is slidably housed in the second non-magnetic cylinder 6 so as to function as a piston magnet. This permanent magnet 5 is also magnetized in the axial direction of the second cylinder 6, and has different polarities opposed to each other so as to be attracted to the magnet 2.

両シリンダ1.6は、夫々磁石2又は永久磁石5の近接
距離を規制する前端位置規制部7.8と、磁石2と永久
磁石5の最大離間を規制する後端位置規制部9.10と
を有する。各前端位置規制部7.8の位置は、超電導体
3における磁石2及び永久磁石5からの磁束密度の大き
さがこの超電導体の臨界磁束密度値より小さい値になる
ように決められる。また、各後端位置規制部9.10の
位置は、両磁石2.5が相互間の吸引力により可動し得
る範囲内になるように決められる。
Both cylinders 1.6 have a front end position regulating part 7.8 that regulates the proximity distance of the magnet 2 or the permanent magnet 5, respectively, and a rear end position regulating part 9.10 that regulates the maximum separation between the magnet 2 and the permanent magnet 5. has. The position of each front end position regulating portion 7.8 is determined so that the magnitude of the magnetic flux density from the magnet 2 and the permanent magnet 5 in the superconductor 3 is smaller than the critical magnetic flux density value of this superconductor. Further, the position of each rear end position regulating portion 9.10 is determined so that both magnets 2.5 are within a movable range due to the mutual attraction force.

次に、この実施例においては、超電導体3にその臨界電
流密度値より大きい電流(以下大電流という)を供給す
ることができる電流供給装置11が設けられている。こ
の装置は、磁石2がが前端位置規制部7に位置するとき
には、前記大電流の供給が停止され、磁石が後端位置規
制部9に位置するときには、前記大電流を供給するもの
である。磁石2が停止する前端位置及び後端位置は、夫
々の近接に設けた位置検出器12.13により検出され
る。この実施例では位置検出器としてホール素子を用い
た。
Next, in this embodiment, a current supply device 11 capable of supplying a current larger than the critical current density value (hereinafter referred to as large current) to the superconductor 3 is provided. In this device, when the magnet 2 is located at the front end position regulating part 7, the supply of the large current is stopped, and when the magnet 2 is located at the rear end position regulating part 9, the large current is supplied. The front end position and rear end position at which the magnet 2 stops are detected by position detectors 12 and 13 provided close to each. In this embodiment, a Hall element was used as the position detector.

また、この実施例て゛は、磁石2及び永久磁石5は夫々
クランクシャフト14を介してクランク車15に連結さ
れてδす、各磁石の往復直線運動を回転運動に変換する
ようにしている。
Further, in this embodiment, the magnet 2 and the permanent magnet 5 are each connected to a crank wheel 15 via a crankshaft 14, so that the reciprocating linear motion of each magnet is converted into rotational motion.

以上のteaにおいて、磁石2及び永久磁石5が夫々近
接した各前端位置にあるとする。このときには、前端の
位置検出器12にて磁石2の前側磁極(S)が検出され
る。この検出に基づき、電流供給装置11から超電導体
3に供給されていた大電流の供給が停止される。従って
、超電導体3は非超電導状態から超電導状態に変わり、
超電導体3は反磁性の性質を示し、両磁石2.5からの
磁束を反発する。このため、両磁石は超電導体3から離
れる方向に移動し後端位置に向う。第1図はこの移動途
中を示している。
In the above tea, it is assumed that the magnet 2 and the permanent magnet 5 are located at respective front end positions close to each other. At this time, the front magnetic pole (S) of the magnet 2 is detected by the position detector 12 at the front end. Based on this detection, the supply of the large current that was being supplied to the superconductor 3 from the current supply device 11 is stopped. Therefore, the superconductor 3 changes from a non-superconducting state to a superconducting state,
The superconductor 3 exhibits diamagnetic properties and repels the magnetic flux from both magnets 2.5. Therefore, both magnets move in a direction away from the superconductor 3 and toward the rear end position. FIG. 1 shows this movement in progress.

各磁石2.5が後端位置に至ると、後端の位置検出器1
3が磁石2の後側磁極(N)を検出し、この検出出力に
より電流供給装置11は超電導体3の前記大電流を供給
する。従って超電導体3は超電導状態から非超電導状態
に変わり、反磁性の性質が消失するので、両磁石2.5
はその吸引力により第2図に示すように前端位置に移行
する。
When each magnet 2.5 reaches the rear end position, the rear end position detector 1
3 detects the rear magnetic pole (N) of the magnet 2, and based on this detection output, the current supply device 11 supplies the large current to the superconductor 3. Therefore, the superconductor 3 changes from a superconducting state to a non-superconducting state, and the diamagnetic property disappears, so both magnets 2.5
is moved to the front end position as shown in FIG. 2 by the suction force.

以後同様の動作により、両磁石2.5は往復動し、各ク
ランク車15が回転する。
Thereafter, by the same operation, both magnets 2.5 reciprocate and each crank wheel 15 rotates.

以上の実施例においては、超電導体3の非超電導状態と
超電導状態の切換えを、臨界電流密度値より大きい電流
を流すか否かにより行ったが、次のようにして状態を変
えるようにじてもよい。即ち、超電導体3をその臨界濃
度以下の温度の冷媒ガス中に配置すると共に超電導体近
傍にヒーターを配置し、後端位置検出器13の出力に基
づいてヒーターの加熱により超電導体3を臨界温度以上
の温度として非超電導状態とし、前端位置検出器12の
出力に基づいてヒーターの加熱を停止して臨界温度以下
の温度にして超電導状態にするものである。この場合に
は、を流供給装置11はヒーターに接続されるう また、実施例では、磁性部材4として永久磁石5を用い
たが、鉄板、銅板等を用い、超電導体3に後身して固定
するようにしてもよい。さらに、実施例における永久磁
石5を動がないように固定することにより、シリンダ1
の後端位置規制部9をより後方にすることかて゛き、磁
石2の移行距離を長くすることもできる。また、両磁石
2.5を、磁性体のまわりに超電導コイルを設けた超電
導磁石τ構成してもよい。
In the above embodiments, the superconductor 3 was switched between the non-superconducting state and the superconducting state depending on whether or not a current larger than the critical current density value was passed, but the state could be changed as follows. Good too. That is, the superconductor 3 is placed in a refrigerant gas having a temperature below its critical concentration, a heater is placed near the superconductor, and the superconductor 3 is heated to the critical temperature based on the output of the rear end position detector 13. A non-superconducting state is set at the above temperature, and heating of the heater is stopped based on the output of the front end position detector 12 to bring the temperature below the critical temperature to a superconducting state. In this case, the flow supply device 11 is connected to the heater, and in the embodiment, the permanent magnet 5 is used as the magnetic member 4, but an iron plate, a copper plate, etc. are used, and it is later replaced by the superconductor 3. It may be fixed. Furthermore, by fixing the permanent magnet 5 in the embodiment so that it does not move, the cylinder 1
In addition to moving the rear end position regulating portion 9 further to the rear, it is also possible to lengthen the migration distance of the magnet 2. Further, both magnets 2.5 may be configured as superconducting magnets τ in which a superconducting coil is provided around a magnetic body.

(ト)発明の効果 本発明による往復駆動装置は、非磁性シリンダ内のピス
トン用磁石と・、シリンダの先端に対抗して設けた超電
導体と、この超電導体を介して前記磁石にて吸引される
磁性部材と、前記磁石の位置を検出して前記超電導体を
超電導状態又は非超電導状態に切換える位置検出器とよ
りなり、前記シノンダは、前記磁石の前記超電導体との
近接距離及び前記磁石の前記磁性部との最大離間を規制
するものであることを特徴とするものであるから、位置
検出器の出力に基づく超電導体の状態により、前記磁石
を往復動させることができ、[電導体の利用度を従来例
に比し高め、構造簡単な装置を提供することができる。
(G) Effects of the Invention The reciprocating drive device according to the present invention includes a piston magnet in a non-magnetic cylinder, a superconductor provided opposite to the tip of the cylinder, and an object that is attracted by the magnet via the superconductor. and a position detector that detects the position of the magnet and switches the superconductor to a superconducting state or a non-superconducting state. Since the magnet is characterized by regulating the maximum separation from the magnetic part, the magnet can be reciprocated depending on the state of the superconductor based on the output of the position detector, and It is possible to provide a device with increased utilization compared to the conventional example and a simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す往復駆動装置の概略構
成図、第2図は磁石の異なる位置を示す同概略構成図で
ある。 1.6・・・非磁性シリンダ、2・・・磁石、3・・・
超電導体、4・・・磁性部材、5・・・永久磁石、7〜
IO・・・位置規制部、11・・・電流供給装置、12
.13・・・位置検出器。
FIG. 1 is a schematic diagram of a reciprocating drive device showing one embodiment of the present invention, and FIG. 2 is a schematic diagram of the same diagram showing different positions of magnets. 1.6...Nonmagnetic cylinder, 2...Magnet, 3...
Superconductor, 4... Magnetic member, 5... Permanent magnet, 7~
IO...Position regulation unit, 11...Current supply device, 12
.. 13...Position detector.

Claims (1)

【特許請求の範囲】[Claims] (1)非磁性シリンダ内のピストン用磁石と、シリンダ
の先端に対抗して設けた超電導体と、この超電導体を介
して前記磁石にて吸収される磁性部材と、 前記磁石の位置を検出して、前記超電導体を超電導状態
又は非超電導状態に切え換る位置検出器と、 よりなり、前記シリンダは、前記磁石の前記超導電体と
の近接距離及び前記磁石の前記磁性部との最大離間距離
を規制するものである往復駆動装置。
(1) A piston magnet in a non-magnetic cylinder, a superconductor provided opposite to the tip of the cylinder, a magnetic member absorbed by the magnet via the superconductor, and detecting the position of the magnet. a position detector that switches the superconductor to a superconducting state or a non-superconducting state; A reciprocating drive device that regulates the separation distance.
JP3870190A 1990-02-20 1990-02-20 Reciprocal driving device Pending JPH03243187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3870190A JPH03243187A (en) 1990-02-20 1990-02-20 Reciprocal driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3870190A JPH03243187A (en) 1990-02-20 1990-02-20 Reciprocal driving device

Publications (1)

Publication Number Publication Date
JPH03243187A true JPH03243187A (en) 1991-10-30

Family

ID=12532620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3870190A Pending JPH03243187A (en) 1990-02-20 1990-02-20 Reciprocal driving device

Country Status (1)

Country Link
JP (1) JPH03243187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341055A (en) * 1992-08-07 1994-08-23 Roche Robert J Combination reciprocating motor and inverter
JP2007504796A (en) * 2003-09-05 2007-03-01 センシス メディカル インク Magneto-mechanical device
CN100367651C (en) * 2003-09-10 2008-02-06 高久恒 A superconductive engine and operating method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341055A (en) * 1992-08-07 1994-08-23 Roche Robert J Combination reciprocating motor and inverter
JP2007504796A (en) * 2003-09-05 2007-03-01 センシス メディカル インク Magneto-mechanical device
CN100367651C (en) * 2003-09-10 2008-02-06 高久恒 A superconductive engine and operating method thereof

Similar Documents

Publication Publication Date Title
Van de Klundert et al. Fully superconducting rectifiers and fluxpumps Part 1: Realized methods for pumping flux
CA2055043C (en) Magnetic refrigerator
Hull et al. Applications of bulk high-temperature superconductors
US5357756A (en) Bipolar pulse field for magnetic refrigeration
US20120007448A1 (en) Magnetically Actuated Reciprocating Motor and Process Using Reverse Magnetic Switching
US20120119594A1 (en) Magnetically Charged Solenoid for Use in Magnetically Actuated Reciprocating Devices
US20140111035A1 (en) Magnetically Actuated Reciprocating Motor and Process Using Reverse Magnetic Switching
CN103001547A (en) Paramagnetic superconductive magnetism-isolating crank connecting rod magnetic machine with cam mechanism
JPH03243187A (en) Reciprocal driving device
JPH02299482A (en) Power generating method and power generator
Zeisberger et al. Optimization of levitation forces [in superconducting magnetic bearings]
CN102075064A (en) Electromagnetic action device improving high-field large-current electromagnetic launch force and being used for body to be launched
Kim et al. A proposal for a superconducting actuator using Meissner effect
US4638194A (en) Coherent magneto-caloric effect superconductive heat engine process cycle
Iizuka et al. Precise positioning of a micro conveyor based on superconducting magnetic levitation
Siems et al. Advances in the design of superconducting magnetic bearings for static and dynamic applications
Liu et al. Levitation performance of high-Tc superconductor in sinusoidal guideway magnetic field
JP2002501299A (en) Magnet assembly having a reciprocating core member
JPH03226264A (en) Superconducting motor
JPS63262056A (en) Permanent magnet moving type linear motor
CN1195919A (en) Magnetic and superconductive electromagnetic driving device and manufacturing method
Israelsson et al. Magnetic refrigeration using flux compression in superconductors
JPH0530328Y2 (en)
JPH1174114A (en) Superconducting magnet device
JPH02237485A (en) Magnetic levitating apparatus