JPH0324316A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPH0324316A
JPH0324316A JP1156780A JP15678089A JPH0324316A JP H0324316 A JPH0324316 A JP H0324316A JP 1156780 A JP1156780 A JP 1156780A JP 15678089 A JP15678089 A JP 15678089A JP H0324316 A JPH0324316 A JP H0324316A
Authority
JP
Japan
Prior art keywords
bearing
shaft
viscosity
voltage
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1156780A
Other languages
Japanese (ja)
Other versions
JP2635171B2 (en
Inventor
Nobuo Tsumaki
妻木 伸夫
Toshifumi Koike
敏文 小池
Satoyuki Sato
智行 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1156780A priority Critical patent/JP2635171B2/en
Publication of JPH0324316A publication Critical patent/JPH0324316A/en
Application granted granted Critical
Publication of JP2635171B2 publication Critical patent/JP2635171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/109Lubricant compositions or properties, e.g. viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/064Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being supplied under pressure
    • F16C32/0644Details of devices to control the supply of liquids to the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/1045Details of supply of the liquid to the bearing
    • F16C33/105Conditioning, e.g. metering, cooling, filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

PURPOSE:To operate in an adequate viscosity by controlling a voltage with application of an electric field to an electrode disposed in a shaft and a bearing so as to control a viscosity of an electroviscous fluid flowing between the shaft and the bearing. CONSTITUTION:A space between a shaft 1 and a bearing 2 is filled with an electroviscous fluid 3 as lubricating oil. A power source 4 is connected to the shaft 1 and bearing 2 serving as an electrode. The shaft 1 and the power source 4 are connected in a rotatable manner. The viscosity of the electroviscous fluid 3 is varied dependently on the output voltage of the power source (voltage controller) 4. There is provided a sensor for detecting a rotational speed of the shaft, a temperature of the electroviscous fluid, and the like, thus controlling the output voltage of the voltage controller on the basis of the detected signal. Therefore, a viscous resistance of a flow in the space between the shaft and the bearing can be freely controlled, and a load capacity and the like can be controlled at real time, thus enabling an operation in a viscosity adequate for a rotational speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、静圧軸受やすべり軸受などの軸受装置に係り
、特に荷重の変化に対応して軸受すきまを一定に保持す
るあるいは任意の軸受すきまを設定することができる軸
受装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to bearing devices such as hydrostatic bearings and sliding bearings, and in particular to bearing devices that maintain a constant bearing clearance in response to changes in load or any type of bearing device. The present invention relates to a bearing device in which a clearance can be set.

〔従来の技術〕[Conventional technology]

従来の軸受装置では、特公昭5341853および新版
潤滑性の実用性能−トライボロジ叢書2一幸書房.19
80、第167頁から第169頁に記載のように、運転
開始時や低速時の軸と軸受の接触、または潤滑不良を避
けるために,運転開始時からある一定の時間は静圧軸受
として働かせ、その後動圧軸受に切り換える方法を採用
している。
In conventional bearing devices, Japanese Patent Publication No. 5341853 and Practical Performance of Lubricity New Edition - Tribology Series 2 Kazuyuki Shobo. 19
80, pages 167 to 169, in order to avoid contact between the shaft and the bearing at the start of operation or at low speeds, or poor lubrication, the bearing must be operated as a hydrostatic bearing for a certain period of time from the start of operation. The company then adopted a method of switching to hydrodynamic bearings.

また,従来,潤滑油の温度と粘度の関係については、新
版潤滑剤の実用性能一トライボロジ叢書2、幸芹房、1
980、第73頁から第75頁および第49頁から第5
2頁に記載されているように、温度上昇とともに粘度は
下がるため潤滑油に粘度指数向上剤を添加し,温度変化
による粘度変化を抑えているものであった。
In addition, regarding the relationship between the temperature and viscosity of lubricating oil, the new edition of Practical Performance of Lubricants - Tribology Series 2, Kouserifusa, 1
980, pages 73 to 75 and pages 49 to 5
As described on page 2, the viscosity decreases as the temperature rises, so a viscosity index improver is added to the lubricating oil to suppress changes in viscosity due to temperature changes.

また、特開昭60−150950号公報に示すごとく,
軸受すき間の変化に応じて軸受に供給する流体の供給圧
力を圧力制御弁によって制御するものであった。また、
絞り抵抗をピエゾ素子やダイアフラムなどを用いて変化
させるものであった。
In addition, as shown in Japanese Patent Application Laid-Open No. 60-150950,
The supply pressure of fluid supplied to the bearing was controlled by a pressure control valve in accordance with changes in the bearing clearance. Also,
The aperture resistance was changed using piezo elements, diaphragms, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、運転開始などの低速運転時に、軸と軸
受が直接接触するのを避けるために静圧軸受を用いたき
たが、静圧のための装置が複雑であった.また粘度指数
向上剤などの添加剤を加えることによって,環境温度や
、運転開始と定常運転時などの温度差による潤滑油の粘
度変化をおさえ潤滑性能をあげてきた。しかしこれらの
従来技術では、ある運転条件を満たす潤滑油を選定する
だけであり、軸受内で潤滑油の粘度を自由に変えること
はできず、幅広い運転条件に対応したものではなかった
. 又、圧力制御バルブで供給圧力を制御する方式では、仇
給うインに高価な圧力制御バルブが必要なだけでなく、
現状ではバルブの応答性が悪いため、高々50〜loO
Hz程度の制御までしかできない。また絞りをダイアフ
ラムなどでメカニカルに制御する方式ではその構造が複
雑となる。
The above-mentioned conventional technology used a static pressure bearing to avoid direct contact between the shaft and the bearing during low-speed operation such as when starting operation, but the device for static pressure was complicated. Additionally, by adding additives such as viscosity index improvers, lubrication performance has been improved by suppressing changes in the viscosity of lubricating oil due to environmental temperature and temperature differences between the start of operation and steady operation. However, with these conventional technologies, only a lubricant that satisfies certain operating conditions is selected, and the viscosity of the lubricant within the bearing cannot be freely changed, so it is not compatible with a wide range of operating conditions. In addition, the method of controlling the supply pressure with a pressure control valve not only requires an expensive pressure control valve at the input, but also
Currently, the response of the valve is poor, so it is at most 50~loO.
It is possible to control only up to about Hz. In addition, a method in which the aperture is mechanically controlled using a diaphragm or the like has a complicated structure.

本発明の目的は、軸の回転速度や移送速度あるいは潤滑
油の温度に応じた潤滑油の粘度を制御してより簡単な方
式で負荷容量あるいは軸受すきまを効果的に制御のでき
る軸受装置を提供することを目的とする. 〔課題を解決するための手段〕 上記目的を達成するために、本発明は軸受装置の潤滑剤
として電界により粘度が変化する電気粘性流体を使用し
、該電気粘性流体に電界を印加するための電極を該電気
粘性流体をはさむように設け,前記軸受装置によって軸
受支持する披支持体の回転速度または移動動速度を、回
転センサまたは速度センサにより検出し.該検出信号に
従い前記軸受装置に設けた電極間に電界を印加すること
により前記電気粘性流体の粘度を変化させるようにした
ものである。
An object of the present invention is to provide a bearing device that can effectively control load capacity or bearing clearance in a simpler manner by controlling the viscosity of lubricating oil according to the shaft rotational speed, transfer speed, or lubricating oil temperature. The purpose is to [Means for Solving the Problems] In order to achieve the above object, the present invention uses an electrorheological fluid whose viscosity changes depending on an electric field as a lubricant for a bearing device, and a method for applying an electric field to the electrorheological fluid. Electrodes are provided to sandwich the electrorheological fluid, and a rotational speed or a moving speed of the support supported by the bearing device is detected by a rotation sensor or a speed sensor. The viscosity of the electrorheological fluid is changed by applying an electric field between electrodes provided on the bearing device in accordance with the detection signal.

すベリ軸受においては、前記電気粘性流体の温度を測定
する温度計を、前記すベリ軸受に設け、該温度または該
温度に応じた信号に従い、前記すべり軸受に設けた電極
間に電界を印加することにより、前記電気粘性流体の粘
度を変化させるようにしたものである。
In the sliding bearing, a thermometer for measuring the temperature of the electrorheological fluid is provided on the sliding bearing, and an electric field is applied between electrodes provided on the sliding bearing in accordance with the temperature or a signal corresponding to the temperature. Accordingly, the viscosity of the electrorheological fluid is changed.

静圧軸受においては,電気粘性流体を作動流体として用
い、流体供給部の絞り付近に電界をかけられる構造とす
ることにより、絞りを通る流体の粘性をコントロールし
絞り抵抗をコントロールするようにしたものである。軸
受すき間(軸受面)を複数個のセグメントに分割し、各
セグメントに独立に電界を変化させることにより、その
部分の電気粘性流体の粘度をコントロールするようにし
たものである。
Hydrostatic bearings use electrorheological fluid as the working fluid and are designed to apply an electric field near the throttle in the fluid supply section, thereby controlling the viscosity of the fluid passing through the throttle and controlling the throttle resistance. It is. By dividing the bearing gap (bearing surface) into a plurality of segments and changing the electric field independently for each segment, the viscosity of the electrorheological fluid in that part is controlled.

制御ループを構成して、軸受すき間を変位計などで検出
し、これと目標値との偏差によって電界をコントロール
し、その部分の電気粘性流体の粘度を変化させ,流れの
抵抗を変化させるようにしたものである。
A control loop is configured to detect the bearing clearance with a displacement meter, etc., and control the electric field based on the deviation between this and the target value, changing the viscosity of the electrorheological fluid in that area, and changing the flow resistance. This is what I did.

〔作用〕[Effect]

電気粘性流体は電界をかけることによりその強さに対応
して粘度が増加し、電界が除かれれば再びもとの粘性に
戻る性質を有している。よって、電気粘性流体は外部の
電界によってその粘度が変化し従って流れの抵抗が変化
する。
Electrorheological fluids have the property that when an electric field is applied, their viscosity increases in response to the strength of the electric field, and when the electric field is removed, they return to their original viscosity. Therefore, the viscosity of the electrorheological fluid changes due to an external electric field, and therefore the resistance to flow changes.

軸受装置において、電気粘性流体を用いて,外部より電
界をかけて粘度をコントロールすれば、流れの抵抗が変
化し,軸受装置の性能を自由にコントロールすることが
できる。すなわち軸受面の該電気粘性流体をはさむよう
に設けられた前記電極間に電界を印加すると、該電気粘
性流体の粘度は電界の強さに応じて変化するので,前記
被支持体の回転速度、移動速度または該電気粘性流体の
温度を測定し、これらの情報をもとに該電気粘性流体の
粘度を変え軸受の負荷容量、軸受すきまをコントロール
することができる.静圧軸受においては、流体を供給す
る絞りと圧力を発生し荷重を支持する軸受すき間(軸受
面)を有し、絞りを通る抵抗が増加すれば下流側、すな
わち軸受すき間の圧力は小さくなり、負荷容量は下る、
また絞りの抵抗を一定として、軸受すき間の抵抗を増加
すれば絞り出口の圧力は高まり、負荷容量は増大する。
In a bearing device, if an electrorheological fluid is used and the viscosity is controlled by applying an external electric field, the flow resistance changes and the performance of the bearing device can be freely controlled. That is, when an electric field is applied between the electrodes provided to sandwich the electrorheological fluid on the bearing surface, the viscosity of the electrorheological fluid changes depending on the strength of the electric field. It is possible to measure the moving speed or the temperature of the electrorheological fluid, change the viscosity of the electrorheological fluid based on this information, and control the bearing load capacity and bearing clearance. Hydrostatic bearings have a throttle that supplies fluid and a bearing gap (bearing surface) that generates pressure and supports the load.If the resistance passing through the throttle increases, the pressure on the downstream side, that is, in the bearing gap, decreases. load capacity decreases,
Furthermore, if the resistance of the bearing gap is increased while the resistance of the throttle is kept constant, the pressure at the throttle outlet will increase and the load capacity will increase.

静圧軸受の構成要素である絞りと軸受すき間に,それぞ
れ独立に電界がかけられるような構造を設け,外からの
電界を荷重などに応じて適切にコントロールすると、軸
受すき間を荷重変動に対して一定に保つ、あるいは軸受
すき間を任意の大きさに設定するなど自由な制御が可能
となる。また軸受すき間を(軸受面)複数個のセグメン
トに分割し、それぞれ独立に電界がかけられるようにす
ることにより、個々のセグメントの軸受すきを制御でき
、軸の姿勢も制御できる。
By creating a structure that allows an electric field to be applied independently to the orifice and the bearing gap, which are the components of a hydrostatic bearing, and controlling the external electric field appropriately according to the load, the bearing gap can be adjusted against load fluctuations. Free control is possible, such as keeping it constant or setting the bearing clearance to an arbitrary size. Furthermore, by dividing the bearing clearance (on the bearing surface) into a plurality of segments and applying an electric field to each segment independently, the bearing clearance of each segment can be controlled, and the posture of the shaft can also be controlled.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図を用いて説明する。第
1図はジャーナル軸受に適用した一例を示す図である。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a diagram showing an example of application to a journal bearing.

本図において、軸1および軸受2の間に潤滑油としての
電気粘性流体3があり、この電気粘性流体3に電界を印
加するための電源4は,電極を兼ねる軸1および軸受2
に接続され、このうち軸1と電源4は回転自由に接続さ
れている。本発明によれば,電源4の出力電圧を変える
ことにより.im滑油としての電気粘性流体3の粘度を
軸受内で変えることができる。
In this figure, there is an electrorheological fluid 3 as a lubricating oil between a shaft 1 and a bearing 2, and a power source 4 for applying an electric field to this electrorheological fluid 3 connects the shaft 1 and the bearing 2, which also serves as an electrode.
Of these, the shaft 1 and the power source 4 are rotatably connected. According to the invention, by changing the output voltage of the power supply 4. The viscosity of the electrorheological fluid 3 as im lubricant can be varied within the bearing.

第2図は、電極の構或を変えた実施例を示す図である。FIG. 2 is a diagram showing an embodiment in which the structure of the electrodes is changed.

第2図においては,5は軸、6は軸受、8は電気粘性流
体であり、9は電源である。さらに軸受6は、電極6a
,6bおよび#@縁体7a,7bで構成されている。絶
縁体?a,7bにより電気的に絶縁された電極6a,6
bに電′g9を接続し電圧を印加することにより電気粘
性流体に電界を印加することができ、電源9の出力電圧
を変えることにより電気粘性流体の粘度を変えることが
できる。このとき、絶縁体7a,7bの厚さは軸受すき
まよりも大きいほうが、また軸5は電気良導体が望まし
い。
In FIG. 2, 5 is a shaft, 6 is a bearing, 8 is an electrorheological fluid, and 9 is a power source. Further, the bearing 6 has an electrode 6a
, 6b and #@edge bodies 7a, 7b. Insulator? Electrodes 6a, 6 electrically insulated by a, 7b
An electric field can be applied to the electrorheological fluid by connecting an electric current g9 to b and applying a voltage, and by changing the output voltage of the power source 9, the viscosity of the electrorheological fluid can be changed. At this time, it is desirable that the thickness of the insulators 7a and 7b be larger than the bearing clearance, and that the shaft 5 be a good electrical conductor.

第3図は、本発明を往復動の平面軸受に適用した一例を
示す図である.10は被支持体である軸、11は軸受、
12は電気粘性流体であり,13は電源である。軸IO
と軸受11を電極として用い、これらに電源13を接続
し電圧を加えると軸10と軸受11との間に電界が生じ
,?!J滑油である電気粘性流体はこの電界に応じた粘
度になる。
FIG. 3 is a diagram showing an example in which the present invention is applied to a reciprocating plane bearing. 10 is a shaft which is a supported body; 11 is a bearing;
12 is an electrorheological fluid, and 13 is a power source. axis IO
and bearing 11 are used as electrodes, and when a power source 13 is connected to these and a voltage is applied, an electric field is generated between shaft 10 and bearing 11, and ? ! The electrorheological fluid, which is J lubricant, has a viscosity that corresponds to this electric field.

第4図はテイルテイングパツド軸受に適用した例で,各
パッドに独立した電源をもたせた実施例を示す図である
.本図において14は軸,15a,1 5 b , 1
 5 c , 1 5 dはパッド、↓6は電気粘性流
体、17a,17b,17c,17dは電源である。電
源17a,17b,17c,17dの一端は軸14と回
転自由に接続してあり、もう一端は各パッド15a,1
5b,15c,15dに接続されている。各電]17a
,17b,17c,17dにより,各パツド15a,1
5b,15c,15dと軸14との間に電圧を印加する
ことによって、各軸受間の電気粘性流体16は各電界に
応じた粘度になる。従って,軸の支持条件等により各パ
ッドごとに電気粘性流体16の粘度を変えることができ
る。また当然のことながら、fil源17a,17b,
17c,17dを一つにしてパッド受台15と軸14と
の間につなぎ、電気粘性流体全体の粘度を変えることも
できる。
Figure 4 shows an example of application to a tailing pad bearing, in which each pad has an independent power supply. In this figure, 14 is the axis, 15a, 1 5 b, 1
5 c and 1 5 d are pads, ↓ 6 is an electrorheological fluid, and 17 a, 17 b, 17 c, and 17 d are power supplies. One end of the power supplies 17a, 17b, 17c, 17d is rotatably connected to the shaft 14, and the other end is connected to each pad 15a, 1
5b, 15c, and 15d. Each electric train] 17a
, 17b, 17c, 17d, each pad 15a, 1
By applying a voltage between 5b, 15c, 15d and the shaft 14, the electrorheological fluid 16 between each bearing becomes viscous in accordance with each electric field. Therefore, the viscosity of the electrorheological fluid 16 can be changed for each pad depending on the shaft support conditions and the like. Also, as a matter of course, the fil sources 17a, 17b,
The viscosity of the entire electrorheological fluid can also be changed by combining 17c and 17d and connecting them between the pad holder 15 and the shaft 14.

第5図は、スラスト軸受に適用した実施例を示す図であ
る6本図において、軸受ランナ18とパッド19に電源
21を接続し,パツドl9と軸受ランナ18との間に電
圧を印加し電界を発生させることにより、この間の電気
粘性流体20の粘度を変化させることができる。
FIG. 5 is a diagram showing an embodiment applied to a thrust bearing. In this figure, a power source 21 is connected to the bearing runner 18 and the pad 19, and a voltage is applied between the pad 19 and the bearing runner 18 to generate an electric field. By generating this, the viscosity of the electrorheological fluid 20 during this period can be changed.

第6図は、潤滑油としての電気粘性流体の温度を検出し
、これに応じて電気粘性流体に印加する電界を変え粘度
を変えるすべり軸受の例を示す図である.本図において
、22は軸、23は軸受であり絶縁体24を電極25の
内側に設けたものであり、26は電気粘性流体である。
FIG. 6 is a diagram showing an example of a sliding bearing that detects the temperature of electrorheological fluid as lubricating oil and changes the viscosity by changing the electric field applied to the electrorheological fluid accordingly. In this figure, 22 is a shaft, 23 is a bearing with an insulator 24 provided inside an electrode 25, and 26 is an electrorheological fluid.

絶縁体24は軸22と電極25が接触したときに電源3
0が短終するのを防ぐためのものである。本実施例は、
温度センサ27により温度を検出し、この検出信号をも
とにコントローラ28により、軸22と電極25との間
に印加する電源29の電圧を制御し電気粘性流体26の
粘度を制御するものである。
The insulator 24 is connected to the power source 3 when the shaft 22 and the electrode 25 are in contact with each other.
This is to prevent 0 from ending too soon. In this example,
The temperature is detected by a temperature sensor 27, and based on this detection signal, a controller 28 controls the voltage of a power source 29 applied between the shaft 22 and the electrode 25, thereby controlling the viscosity of the electrorheological fluid 26. .

本実施例によれば、潤滑油としての電気粘性流体26の
温度に応じた粘度制御を軸受内におこなうことができる
. 第7図は、軸の速度に応じて軸受内の電気粘性流体の粘
度を変える実施例を示す図である。本図において、30
は軸、31は軸受であり絶縁体33と電極32より戊り
,34は電気粘性流体である.軸30の回転速度を回転
速度検出器35により検出し、この検出信号によりコン
トローラ36は、軸30と電極32の間に印加する電圧
すなわち電界を制御し電気粘性流体34の粘度を制御す
る.本実施例によれば、軸30の回転度に応じて、軸受
内の潤滑油としての電気粘性流体34の粘度を制御でき
る. なお本発明は、潤滑油を用いるすべり軸受であり、電界
を印加できるものであればどのような構造でもかまわな
い. 次に、静圧軸受に適用した実施例を述べる。
According to this embodiment, the viscosity of the electrorheological fluid 26 as a lubricating oil can be controlled in accordance with the temperature within the bearing. FIG. 7 is a diagram showing an embodiment in which the viscosity of the electrorheological fluid in the bearing is changed depending on the speed of the shaft. In this figure, 30
is a shaft, 31 is a bearing which is connected to an insulator 33 and an electrode 32, and 34 is an electrorheological fluid. The rotational speed of the shaft 30 is detected by a rotational speed detector 35, and based on this detection signal, a controller 36 controls the voltage, that is, the electric field, applied between the shaft 30 and the electrode 32, thereby controlling the viscosity of the electrorheological fluid 34. According to this embodiment, the viscosity of the electrorheological fluid 34 as the lubricating oil in the bearing can be controlled according to the degree of rotation of the shaft 30. Note that the present invention is a sliding bearing that uses lubricating oil, and any structure may be used as long as it can apply an electric field. Next, an example in which the present invention is applied to a hydrostatic bearing will be described.

第8図に静圧軸受の一般的な構成を示す。圧力Ps供給
された流体は絞り40で絞り抵抗を受け、絞り出口では
圧力P,となる。さらに流体は軸受すき間41を通過す
る際に粘性抵抗を受けながら外に(圧力pa)排出され
る。その圧力分布は第9図に示すごとくなる。ここで軸
受すき間内の圧力pを軸受面積にわたって積分した値が
軸受の負荷容量となる6荷重Wが増大すると軸受すき間
41が減少し、すき間を流れる流体の抵抗が増大し結果
としてP+ がPICまで上昇し,第9図の破線で示し
たごとく、実線で示した圧力分布より圧力分布が高くな
り、負荷容量が増加して荷重増加分とつり合う。本発明
は上記の静圧軸受の動作原理を電気粘性流体と各要素に
対して独立に発生させることのできる電界発装置により
達戊するものである。第10図は本発明の一実施例を示
すものである。絞りの周辺に電極43を設け、電圧コン
トローラ44によって絞り近傍に電界をかける。電圧を
増加して絞り近傍の電界が増加すると,電界中の絞りを
通過する電気粘性流体の粘度が増加し、絞りを通過する
抵抗が増し、従って絞りの出口圧力P+ が減少し軸受
負荷容量は低下する。逆に作用させれば負荷容量を増加
することもできる。
FIG. 8 shows a general configuration of a hydrostatic bearing. The fluid supplied with pressure Ps is subjected to throttling resistance at the throttle 40, and has a pressure P at the throttle outlet. Furthermore, when the fluid passes through the bearing gap 41, it is discharged to the outside (pressure pa) while being subjected to viscous resistance. The pressure distribution is as shown in FIG. Here, the load capacity of the bearing is the value obtained by integrating the pressure p in the bearing gap over the bearing area.6 When the load W increases, the bearing gap 41 decreases, the resistance of the fluid flowing through the gap increases, and as a result, P+ reaches PIC. As shown by the broken line in FIG. 9, the pressure distribution becomes higher than the pressure distribution shown by the solid line, and the load capacity increases to balance the increased load. The present invention achieves the operating principle of the above-mentioned hydrostatic bearing by using an electrorheological fluid and an electric field generating device that can generate electricity independently for each element. FIG. 10 shows an embodiment of the present invention. An electrode 43 is provided around the diaphragm, and a voltage controller 44 applies an electric field to the vicinity of the diaphragm. When the electric field near the throttle increases by increasing the voltage, the viscosity of the electrorheological fluid passing through the throttle in the electric field increases, the resistance to passing through the throttle increases, and therefore the outlet pressure P+ of the throttle decreases, and the bearing load capacity decreases. descend. Conversely, it is possible to increase the load capacity.

第11図は本発明の他の実施例であり、軸受すき間41
を挾むように電極46を設置する。電圧コントローラ4
7により軸受すき間41に電界をかけると、すき間内の
電気粘性流体の粘度が増加し、流れの抵抗が増大し、従
って圧力Piは上昇し負荷容量が増大する。また第12
図に示すごとく、@極を46.48と分離し、それぞれ
独立の電圧コントローラにより独立の電界をかけるよう
にすれば、例えば一定の荷重状態を保ちながら、46の
電界を増加し48の電界をドげれば、図中Aで示した領
域の負荷容量が増加し、Bで示した領域の負荷容量が減
少する。従って第13図に示すごとく軸受を傾けること
ができる。第14図は絞り、軸受すき間内の電界をそれ
ぞれ独立にコン1〜ロールできるように構威した例を示
した図であり、絞り抵抗を軸受すき間の抵抗の相方を変
化させることにより、前述の負荷容量増大効果、すき間
コントロールの効果をより大きくすることができる。
FIG. 11 shows another embodiment of the present invention, in which the bearing clearance 41
Electrodes 46 are installed so as to sandwich the two electrodes. voltage controller 4
When an electric field is applied to the bearing gap 41 by 7, the viscosity of the electrorheological fluid in the gap increases, the flow resistance increases, and therefore the pressure Pi increases and the load capacity increases. Also the 12th
As shown in the figure, if the @ pole is separated into 46 and 48 and independent electric fields are applied by independent voltage controllers, for example, while maintaining a constant load state, the electric field at 46 is increased and the electric field at 48 is increased. If the voltage is lowered, the load capacity in the area indicated by A in the figure increases, and the load capacity in the area indicated by B decreases. Therefore, the bearing can be tilted as shown in FIG. Figure 14 is a diagram showing an example in which the electric field in the aperture and the bearing gap can be controlled independently. It is possible to further increase the effect of increasing load capacity and controlling the gap.

第15図は第14図の構成に加えて軸受の浮上ft(軸
受すき間の量δ)や姿勢を検出するセンサ50,51を
付加しこれらの情報をコン1・ローラ52に導いて目標
値と比較しこの偏差にもとづいて各電圧コントローラ4
.4.47,4.9を制御して各要素の電界を変化させ
、流体の粘性抵抗を変化させ、任意の軸受持性を得るよ
うに構成した例である。このような構或によって例えば
第16図に示すごとく、荷重と軸受すき間の量δの関係
と■@◎のように自由にコント口ーノレできる。
Fig. 15 shows the configuration shown in Fig. 14 with the addition of sensors 50 and 51 that detect the floating ft (amount of bearing clearance δ) and attitude of the bearing, and this information is led to the controller 1/roller 52 to obtain the target value. Compare each voltage controller 4 based on this deviation.
.. 4.47 and 4.9 are controlled to change the electric field of each element, change the viscous resistance of the fluid, and obtain a desired bearing support. With such a structure, for example, as shown in FIG. 16, the relationship between the load and the amount of bearing clearance δ can be freely controlled as shown in ■@◎.

■は荷重変化に対してほとんどすき間が変化し松い、剛
性の非常に高い軸受であり、またある荷重範囲では剛性
無限大を実現することもできる。また反対にのは非常に
剛性の低い軸受であり、このように仕様に合わせて軸受
の性能を任意に変化することができる。
① is a bearing with very high rigidity, with almost no clearance change as the load changes, and it is also possible to achieve infinite rigidity within a certain load range. On the other hand, there are bearings with extremely low rigidity, and in this way, the performance of the bearing can be changed arbitrarily according to the specifications.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軸受すき間内の流れの粘性抵抗を自由
コントロールできるので、負荷容量、’t%上量,剛性
などを任意の値にリアルタイムにコントロールできる効
果がある。
According to the present invention, since the viscous resistance of the flow within the bearing gap can be freely controlled, there is an effect that the load capacity, 't% increase, rigidity, etc. can be controlled to arbitrary values in real time.

また、潤滑油の粘度を軸の回転速度に応じて変えること
ができるため、低速回転時から高速回転時まで、適正な
粘度での運転が可能になる。
Furthermore, since the viscosity of the lubricating oil can be changed according to the rotational speed of the shaft, operation with an appropriate viscosity is possible from low-speed rotation to high-speed rotation.

また、潤滑油の粘度を潤滑油の温度に応じて変えること
ができるため,環境温度あるいは高温時の粘度不足によ
る軸と軸受の接触や焼き付き等を回避することができる
。静圧軸受では、圧カ供給部の絞り抵抗を変化させ負荷
容量を下げることもできる。また,静圧軸受では絞り抵
抗、軸受すき間内の流れの粘性抵抗の両方をコントロー
ルしてより効果的に上記性能を得ることができる。
Furthermore, since the viscosity of the lubricating oil can be changed depending on the temperature of the lubricating oil, it is possible to avoid contact between the shaft and the bearing, seizure, etc. due to insufficient viscosity at environmental temperatures or high temperatures. In static pressure bearings, the load capacity can be lowered by changing the throttle resistance of the pressure supply section. Furthermore, with hydrostatic bearings, the above performance can be achieved more effectively by controlling both the throttle resistance and the viscous resistance of the flow within the bearing gap.

軸受浮上量や荷重などを検出し、この情報をもとにして
絞り抵抗、軸受すき間内の流れの抵抗をコントロールす
ることにより,負荷容量、剛性,軸受姿勢などの軸受性
能を自由にコントロールできる効果がある。
By detecting the bearing flying height and load, and controlling the throttle resistance and flow resistance within the bearing gap based on this information, bearing performance such as load capacity, rigidity, bearing posture, etc. can be freely controlled. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は、本発明をジャーナル軸受に適用した一実施例
を示す横断面図、第2図は第1図において電極構造を変
えた実施例を示す横断面図、第3図は、往復動用軸受に
適用した実施例を示す縦断面図、第4図はテイルテイン
グパッドを用いたジャーナル軸受の横断面図,第5図は
、スラスト軸受の縦断面図,第6図は、温度センサを用
いて粘度を制御する実施例を示す横断面図、第7図は、
回転進度を検出して粘度を制御する実施例を示す縦断面
図,第8図は従来の静圧軸受の縦断面図、第9図はその
圧力分布を示す図、第10図から第7 a , 7 b
 , 2 4 , 3 3−絶縁体、1 5−・・パッ
ド受台、15a,15b,15c,15d,19パッド
、27・・・温度センサ、35・・・回転速度検出器、
28.36・・・コントローラ、4o・・・絞り、41
・・・軸受すき間、42・・・軸受、43・・・電極、
44・・・電圧コントローラ、46・・・電極、47・
・・電圧コントローラ、48・・・電極、49・・・電
圧コントローラ、50,51・・・変位検出器,52・
・・コント1,5,10,14,22,30・・・軸,
2,6,11,23.31・・・軸受、3,8,12,
16,20,26,34・・・電気粘性流体、4,9,
13,17a,17b,17c,17d,21,29.
3 7−・・電源、6 a , 6 b , 2 5 
. 3 2 −電極、奈 l 日 2 凹 早 S ■ /8 l9 /8 一受ランア 21..電圧コントローラ 寒 3 目 弟 4 口 /6゜電ス粘性泥体 l7  ・電圧コントローラ 早 7 日 33 絶銖体 37 電i本丘コントローラ 早 宕 ■ 塔 ? 母 P も /0 目 42 @受 44 電圧コントローラ 弟 l ■ P. 第 /3 切 47.49 電フ五コントローラ
Fig. 1 is a cross-sectional view showing an embodiment in which the present invention is applied to a journal bearing, Fig. 2 is a transverse sectional view showing an embodiment in which the electrode structure is changed from Fig. 1, and Fig. 3 is a cross-sectional view showing an embodiment in which the present invention is applied to a journal bearing. A vertical cross-sectional view showing an embodiment applied to a bearing, Figure 4 is a cross-sectional view of a journal bearing using a tailing pad, Figure 5 is a vertical cross-sectional view of a thrust bearing, and Figure 6 is a cross-sectional view of a journal bearing using a temperature sensor. FIG. 7 is a cross-sectional view showing an example in which the viscosity is controlled by
A vertical cross-sectional view showing an example of controlling viscosity by detecting rotational progress, Figure 8 is a vertical cross-sectional view of a conventional hydrostatic bearing, Figure 9 is a view showing its pressure distribution, and Figures 10 to 7 a , 7 b
, 2 4 , 3 3 - insulator, 1 5 - pad pedestal, 15a, 15b, 15c, 15d, 19 pad, 27... temperature sensor, 35... rotation speed detector,
28.36...Controller, 4o...Aperture, 41
...bearing gap, 42...bearing, 43...electrode,
44... Voltage controller, 46... Electrode, 47...
...Voltage controller, 48... Electrode, 49... Voltage controller, 50, 51... Displacement detector, 52...
... Control 1, 5, 10, 14, 22, 30... Axis,
2, 6, 11, 23. 31...bearing, 3, 8, 12,
16,20,26,34...electrorheological fluid, 4,9,
13, 17a, 17b, 17c, 17d, 21, 29.
3 7--Power supply, 6 a, 6 b, 2 5
.. 3 2 -Electrode, Nal Day 2 Ukohaya S ■ /8 l9 /8 Ichiuke Rania 21. .. Voltage controller cold 3 eyes 4 mouth/6゜dens viscous mud body l7 ・Voltage controller early 7 days 33 Zetsu body 37 electric i Honoka controller Hayago ■ Tower? Mother P also/0 Eye 42 @ Uke 44 Voltage controller younger brother l ■ P. No. 3 Cut 47.49 Electric F5 Controller

Claims (1)

【特許請求の範囲】 1、軸と、軸受と、電圧を可変にできる電圧コントロー
ラとを具備し、該軸と該軸受に設けた電極に電界を印加
し、前記軸と前記軸受間の潤滑を行なう電気粘性流体の
粘度を制御することを特徴とする軸受装置。 2、軸の回転速度、前記電気粘性流体の温度など軸受装
置の状態検出手段を設け、軸受装置の状態変化に応じて
前記電圧コントローラの電圧を制御する請求項1に記載
の軸受装置。 3、軸と、複数のセグメントに分割された軸受と、該軸
と該軸受に設けた電極に各セグメント毎独立に電界を印
加できる電圧コントローラを具備し、前記軸と前記軸受
間の潤滑を行なう電気粘性流体の粘度を各セグメント毎
独立に制御することを特徴とする軸受装置。 4、前記軸受の軸側に絶縁体を設けた請求項1、2又は
3に記載の軸受装置。 5、軸と、流体を供給する絞りを有する流体供給孔を備
えた軸受からなる静圧軸受において、該軸と該軸受の対
向する面各々に電極を設け、電圧を可変にできる電圧コ
ントローラにより前記電極間に電界を印加して、前記軸
と前記軸間に供給される電気粘性流体の粘度を制御する
ことを特徴とする軸受装置。 6、軸と、流体を供給する絞りを有する流体供給孔を備
えた軸受からなる静圧軸受において、該軸受に複数のセ
グメントに分割された電極とそれらに対向する軸側面に
複数のセグメントに分割された電極を設け、電圧を可変
にできる電圧コントローラにより、前記電極間に各セグ
メント毎独立に電界を印加して前記軸と前記軸受間に供
給される電気粘性流体の粘度を制御して前記軸受の姿熱
を制御することを特徴とする軸受装置。 7、前記絞りに電極を設け、電圧コントローラにより電
界を印加する請求項6又は7に記載の軸受装置。 8、軸受すきま又は軸受にかかる荷重を検出し、検出し
た値と設定された目標値との偏差に基づいて前記各電圧
コントローラの電圧を制御する請求項6、7又は8に記
載の軸受装置。
[Claims] 1. A shaft, a bearing, and a voltage controller that can vary the voltage, and apply an electric field to electrodes provided on the shaft and the bearing to lubricate between the shaft and the bearing. A bearing device characterized by controlling the viscosity of an electrorheological fluid. 2. The bearing device according to claim 1, further comprising means for detecting states of the bearing device such as the rotational speed of the shaft and the temperature of the electrorheological fluid, and controlling the voltage of the voltage controller in accordance with changes in the state of the bearing device. 3. A shaft, a bearing divided into a plurality of segments, and a voltage controller capable of independently applying an electric field to each segment to electrodes provided on the shaft and the bearing, and performing lubrication between the shaft and the bearing. A bearing device characterized in that the viscosity of electrorheological fluid is controlled independently for each segment. 4. The bearing device according to claim 1, 2 or 3, wherein an insulator is provided on the shaft side of the bearing. 5. In a hydrostatic bearing consisting of a shaft and a bearing equipped with a fluid supply hole having a throttle for supplying fluid, electrodes are provided on each of the opposing surfaces of the shaft and the bearing, and a voltage controller capable of varying the voltage is used to A bearing device characterized in that an electric field is applied between electrodes to control the viscosity of an electrorheological fluid supplied between the shafts. 6. In a hydrostatic bearing consisting of a shaft and a bearing equipped with a fluid supply hole having a throttle for supplying fluid, the bearing has electrodes divided into a plurality of segments, and the shaft side facing the electrodes is divided into a plurality of segments. A voltage controller that can vary the voltage applies an electric field independently to each segment between the electrodes to control the viscosity of the electrorheological fluid supplied between the shaft and the bearing. A bearing device characterized by controlling heat. 7. The bearing device according to claim 6 or 7, wherein an electrode is provided on the aperture, and an electric field is applied by a voltage controller. 8. The bearing device according to claim 6, 7 or 8, wherein a bearing clearance or a load applied to the bearing is detected, and the voltage of each voltage controller is controlled based on a deviation between the detected value and a set target value.
JP1156780A 1989-06-21 1989-06-21 Bearing device Expired - Lifetime JP2635171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1156780A JP2635171B2 (en) 1989-06-21 1989-06-21 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156780A JP2635171B2 (en) 1989-06-21 1989-06-21 Bearing device

Publications (2)

Publication Number Publication Date
JPH0324316A true JPH0324316A (en) 1991-02-01
JP2635171B2 JP2635171B2 (en) 1997-07-30

Family

ID=15635149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156780A Expired - Lifetime JP2635171B2 (en) 1989-06-21 1989-06-21 Bearing device

Country Status (1)

Country Link
JP (1) JP2635171B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011138174A1 (en) * 2010-05-04 2011-11-10 Siemens Aktiengesellschaft Device for rotatably mounting a shaft, in particular for use in a steam turbine
US8418671B2 (en) * 2009-03-05 2013-04-16 Ford Global Technologies, Llc Magnetorheological lubrication of an internal combustion engine
JP2017145872A (en) * 2016-02-16 2017-08-24 オイレス工業株式会社 Relative motion member
WO2018212657A1 (en) * 2017-05-19 2018-11-22 Technische Universiteit Delft Lubricated sliding bearing with adjustment of the properties of the lubricant in certain parts of the bearing gap

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418671B2 (en) * 2009-03-05 2013-04-16 Ford Global Technologies, Llc Magnetorheological lubrication of an internal combustion engine
WO2011138174A1 (en) * 2010-05-04 2011-11-10 Siemens Aktiengesellschaft Device for rotatably mounting a shaft, in particular for use in a steam turbine
JP2017145872A (en) * 2016-02-16 2017-08-24 オイレス工業株式会社 Relative motion member
WO2018212657A1 (en) * 2017-05-19 2018-11-22 Technische Universiteit Delft Lubricated sliding bearing with adjustment of the properties of the lubricant in certain parts of the bearing gap
NL2018947B1 (en) * 2017-05-19 2018-11-28 Univ Delft Tech Bearing device
US11261912B2 (en) 2017-05-19 2022-03-01 Bifröst Research And Development B.V. Lubricated sliding bearing with adjustment of the properties of the lubricant in certain parts of the bearing gap

Also Published As

Publication number Publication date
JP2635171B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
Wilcock Turbulence in high-speed journal bearings
Orcutt et al. Steady-state and dynamic properties of the floating-ring journal bearing
Lagunova et al. Calculation of a radial slider bearing with a fusible coating
Wang et al. Thermohydrodynamic analysis of journal bearings lubricated with couple stress fluids
Mukutadze et al. Radial friction bearing with a fusible coating in the turbulent friction mode
CN107642545A (en) A kind of hydrostatic support workbench oil film thickness method
Dang et al. Effect of non-Newtonian lubricants on static and dynamic characteristics of journal bearings
Mane et al. Analysis of hydrodynamic plain journal bearing
JPH0324316A (en) Bearing device
Dimarogonas et al. Electrorheological fluid-controlled “smart” journal bearings
CN102705372B (en) Method for improving line contact hydrodynamic lubrication under small slide-roll ratio
Yang et al. Dynamic characteristics of hydrostatic active journal bearing of four oil recesses
Mukutadze et al. Mathematical model of a lubricant in a bearing with a fusible coating on the pilot and irregular slider profile
Santos et al. Influence of orifice distribution on the thermal and static properties of hybridly lubricated bearings
CN110040455A (en) A kind of guide rail
Simon Thermal elastohydrodynamic lubrication of rider rings
Bassani Lubricated hybrid journal bearings
Ruggiero et al. Partial journal bearings with couple stress fluids: an approximate closed-form solution
Rajalingham et al. Thermohydrodynamic performance of a plain journal bearing
Needs Influence of pressure on film viscosity in heavily loaded bearings
Jang et al. Modelling of mixed hydrodynamic and boundary lubrication: Layered structures and shear thinning
Kim et al. Slide current collection with disulfide lubricant in high-speed transport systems
Zhao et al. Effect of reversing duration time and commutation meshing state on the elastohydrodynamic lubrication of reciprocating spur gear rack
Wilson A framework for thermohydrodynamic lubrication analysis
Chauhan et al. Classification of Non-circular Journal Bearings