JPH0324269A - Deposited film forming device - Google Patents

Deposited film forming device

Info

Publication number
JPH0324269A
JPH0324269A JP15676389A JP15676389A JPH0324269A JP H0324269 A JPH0324269 A JP H0324269A JP 15676389 A JP15676389 A JP 15676389A JP 15676389 A JP15676389 A JP 15676389A JP H0324269 A JPH0324269 A JP H0324269A
Authority
JP
Japan
Prior art keywords
active species
deposited film
coaxial
precursor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15676389A
Other languages
Japanese (ja)
Inventor
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15676389A priority Critical patent/JPH0324269A/en
Publication of JPH0324269A publication Critical patent/JPH0324269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To simplify the device and to form a deposited film which has good quality and is uniform by incorporating an active species forming part of a coaxial antenna having a flat shape at the time of introducing the precursor for the deposited film and an active species into a vacuum vessel, thereby forming the deposited film. CONSTITUTION:The inside of a vacuum vessel 101 is evacuated to a prescribed vacuum degree and a glass substrate 111 on a heating holder 110 is heated to a prescribed temp. Gaseous raw materials for active species are then introduced from an introducing port 106 into a coaxial pipe 102 and plasma is excited by adjusting an actuator 105 at the terminal of a waveguide and a tuner 115 at the terminal of the coaxial central body to form the active species, which are introduced into the vacuum vessel 101. On the other hand, the gaseous raw materials for the precursor are introduced from an introducing port 115 into the vacuum vessel 101 and current is passed to a magnetic field generating coil of an electromagnet 108, by which the film is formed on the substrate 111. The active species forming part of the coaxial pipe 102 for forming and introducing the active species is constituted of the coaxial antenna having a flat shape. The deposited film having various desired characteristics is obtd. uniformly with the large reproducibility in this way without increasing the size, complexity and diversification of the device.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は基体上に堆積膜、とりわけ機能性膜、特に半導
体デバイス、光起電力素子、薄膜半導体素子、電子写真
用の感光体デバイス、画像入力用のラインセンサー、撮
像デバイスなどに使用するアモルファスあるいは多結晶
質等機能性堆積膜を形威するのに好適な堆積膜形成装置
に関する.〔従来の技術の説明〕 熱CVD法のような高温プロセスを必要とせず、プラズ
マCVD法のように堆MI膜がプラズマにさらされてダ
メージを受けることのない堆積膜形威法として、特開昭
61−179869や特開昭61−184817等にあ
るような堆偵膜形或法、すなわち基体上に堆積膜を形成
するためのtS空間に、堆4N膜形成用の原料となる前
駆体と、前記前駆体と相互作用をする活性種とを導入す
ることによって、前記基体上に堆積膜を形成する堆積膜
形成法が知られている. これらの堆積膜形成法では、一般に、水素を含む活性種
の原料ガスを活性化して活性種を生戒することが多いが
、水素を含む活性種の寿命は短いので成膜空間の近くで
生成する必要がある。
Detailed Description of the Invention [Technical Field to which the Invention Pertains] The present invention relates to a film deposited on a substrate, particularly a functional film, particularly a semiconductor device, a photovoltaic element, a thin film semiconductor element, a photoreceptor device for electrophotography, and an image forming apparatus. This article relates to a deposited film forming apparatus suitable for forming functional deposited films such as amorphous or polycrystalline for use in input line sensors, imaging devices, etc. [Description of Prior Art] As a deposited film deposition method that does not require a high-temperature process like the thermal CVD method and does not damage the deposited MI film by being exposed to plasma like the plasma CVD method, A deposited film type method such as that disclosed in 179869/1982 and Japanese Patent Application Laid-Open No. 184817/1984, that is, a precursor serving as a raw material for forming a deposited 4N film is placed in the tS space for forming a deposited film on a substrate. A method of forming a deposited film is known in which a deposited film is formed on the substrate by introducing an active species that interacts with the precursor. In these deposited film formation methods, the raw material gas for active species containing hydrogen is generally activated to preserve the active species, but since the lifespan of active species containing hydrogen is short, they are generated near the film formation space. There is a need to.

そこで、大iffl積に均一な膜を堆積しようとする場
合、従来は活性種生成のための活性化装置を戒膜空間の
大きさにあわせて大型化あるいは多数化して対応してい
た.しかし、装置が大型化、複雑化するために生産装置
に多大の設備投資が必要になる、更にその操作のための
管理項目も複雑になるという問題点があった. 一方マイクロ波プラズマを用いた堆積膜形成方法に用い
られる装置としてはECRプラズマ装置が知られている
が、これも、大面積で均一な膜を得ようとする場合には
、大口径のプラズマを発生ずる共振器が必要で、それに
応して電磁石が大型化するという欠点があった. 〔発明の目的〕 本発明は、上述の従来の堆積膜形成装置をさらに改良す
る堆積膜形成装置を提供することを目的とするものであ
る. すなわち、本発明の目的は半導体デバイス、光起電力素
子、薄膜半導体素子、電子写真用の感光体デバイス、画
像入力用のラインセンサー、撮像デバイス、その他各種
のエレクトロニクス素子、光学素子等に用いられる素子
部材としての機能性堆積膜を形成する場合に、装置を大
型化、複雑化あるいは多数化することなく、所望の各種
特性を有する堆積膜を再現性よく均一に大面積で得られ
る堆積膜形成装置を提供することにある.〔発明の構成
・効果〕 本発明は、従来のアモルファスあるいは多結晶質等の機
能性堆積膜を形成する堆積膜形成装置における前述の問
題点を解決し、本発明の目的を達或すべく鋭意研究を重
ねたところ、前駆体と活性種とを相互作用させて基体上
に堆積膜を形成する堆Mi膜形成装置において、活性種
生成部を扁平形状を有する同軸型アンテナとすることに
より大面積で均一に堆積膜を形成しうるという知見を得
た。
Therefore, when attempting to deposit a uniform film over a large ifl area, the conventional approach was to increase the size or increase the number of activation devices for generating active species depending on the size of the film space. However, as the equipment becomes larger and more complex, a large amount of capital investment is required for the production equipment, and the management items for its operation also become more complex. On the other hand, an ECR plasma device is known as a device used in a deposited film forming method using microwave plasma, but this also uses a large-diameter plasma when trying to obtain a uniform film over a large area. The drawback was that a resonator was required to generate the electricity, and the electromagnet was correspondingly large. [Object of the Invention] An object of the present invention is to provide a deposited film forming apparatus that further improves the conventional deposited film forming apparatus described above. That is, the object of the present invention is to provide elements used in semiconductor devices, photovoltaic elements, thin film semiconductor elements, photoreceptor devices for electrophotography, line sensors for image input, imaging devices, and various other electronic elements, optical elements, etc. A deposited film forming device that can uniformly obtain a deposited film having various desired characteristics over a large area with good reproducibility without increasing the size, complexity, or number of devices when forming a functional deposited film as a component. The goal is to provide the following. [Structure and Effects of the Invention] The present invention has been made to solve the aforementioned problems in the conventional deposited film forming apparatus for forming functional deposited films such as amorphous or polycrystalline, and to achieve the objects of the present invention. Through repeated research, we have found that in a deposited Mi film forming device that forms a deposited film on a substrate by interacting precursors and active species, the active species generation section can be made into a coaxial antenna with a flat shape to increase the surface area. We obtained the knowledge that it is possible to form a deposited film uniformly.

本発明は該知見に基づいて完成せしめたものであり、そ
の骨子とするところは、真空容器と、該真空容器内に堆
積膜形成用基体を保持する手段と、該真空容器内に堆積
膜形成用の原料となる前駆体を導入する手段と、前記前
駆体と相互作用する活性種を生成し、前記真空容器内に
導入する手段と、真空容器内を排気する手段よりなり、
前記真空容器内で前駆体と活性種とを相互作用させて前
記基体上に堆積膜を形成する堆積膜形或装置において、
活性種を生成し導入する手段の活性種生成部が扁平形状
を有する同軸型アンテナからなり、前記同軸部分で生成
された活性種を真空容器内に導入することを特徴とする
堆積膜形成装置にある。
The present invention was completed based on this knowledge, and its gist is a vacuum container, a means for holding a substrate for forming a deposited film in the vacuum container, and a method for forming a deposited film in the vacuum container. means for introducing a precursor to be used as a raw material for use, means for generating an active species that interacts with the precursor and introducing it into the vacuum container, and means for evacuating the inside of the vacuum container,
A deposited film type or apparatus for forming a deposited film on the substrate by interacting a precursor and an active species in the vacuum container,
A deposited film forming apparatus characterized in that an active species generating section of the means for generating and introducing active species is composed of a coaxial antenna having a flat shape, and the active species generated at the coaxial section is introduced into a vacuum container. be.

本発明では、活性種生成部を扁平形状を有する同軸型ア
ンテナとすることでまず寿命が長く、輸送の可能な不活
性ガスのプラズマを形成し、それを成膜空間の近くまで
輸送し、そのプラズマによって水素原子を含む活性種の
原料ガスを活性化することにより、寿命の短い水素を含
む活性種を成膜空間の近くで生成しうるようにしたもの
である。
In the present invention, by using a coaxial antenna with a flat shape as the active species generation unit, first, a long-life and transportable inert gas plasma is formed, and the plasma is transported close to the film forming space. By activating the source gas of active species containing hydrogen atoms with plasma, active species containing hydrogen, which have a short lifetime, can be generated near the film forming space.

これにより、基体が大面積の場合にも活性種の原料ガス
の活性化装置の大型化を行うことなく、均一な堆積膜を
得ることができる. 尚、本発明での「前駆体」とは、形威される堆積膜の原
料に或り得るものを云う.「活性種」とは、前記前駆体
と化学的相互作用を起こして例えば前駆体にエネルギー
を与えたり、前駆体と化学的に反応したりして、前駆体
をより効率よく堆積膜が形成出来る状態にする役目を荷
なうものを云う。従って、活性種としては、形成される
堆積膜を構成する構成要素に成る構成要素を含んでいて
も良く、或いはそのような構戒要素を含んでいなくとも
良い. 本発明では、生成される前駆体は、生産性及び取扱い易
さなどの点から、その寿命が0. 1秒以上、より好ま
しくは1秒以上、最適には10秒以七あるものが、所望
に従って選択されて使用される。
As a result, even when the substrate has a large area, a uniform deposited film can be obtained without increasing the size of the activation device for the raw material gas for active species. The term "precursor" used in the present invention refers to anything that can be used as a raw material for the deposited film to be formed. "Active species" are chemically interacted with the precursor, for example, giving energy to the precursor, or chemically reacting with the precursor, allowing the precursor to form a deposited film more efficiently. It refers to something that has the role of creating a state. Therefore, the active species may include constituent elements constituting the deposited film to be formed, or may not include such constituent elements. In the present invention, the produced precursor has a lifespan of 0.05% from the viewpoint of productivity and ease of handling. A time period of 1 second or more, more preferably 1 second or more, optimally 10 seconds or more is selected and used as desired.

本発明の堆積膜形成装置において、前駆体を生戒させる
ための成膜用の原料ガスとしては、ケイ素とハロゲンを
含む化合物、炭素とハロゲンを含む化合物、ゲルマニウ
ムとハロゲンを含む化合物等が挙げられる. これらの化合物は、それぞれ1種を単独で用いても、ま
た、適宜必要に応して2種以上を併用しても差支えない
. ケイ素とハロゲンを含む化合物としては、例え?鎖状又
は環状ンラン化合物の水素原子の一部乃至全部をハロゲ
ン原子で置換した化合物が用いられ、具体的には、例え
ば、SluYzu+z (uは1以上の整数、YはF,
CI,Br,及びIより選択される少なくとも1種の元
素である。}で示される鎖状ハロゲン化ケイ素、Siv
Yzv(Vは3以上の整数、Yは前述の意味を有する。
In the deposited film forming apparatus of the present invention, the raw material gas for film formation for keeping the precursor alive includes compounds containing silicon and halogen, compounds containing carbon and halogen, compounds containing germanium and halogen, etc. .. These compounds may be used alone or in combination of two or more as appropriate. What is an example of a compound containing silicon and halogen? A compound in which part or all of the hydrogen atoms of a chain or cyclic compound is replaced with a halogen atom is used, and specifically, for example, SluYzu+z (u is an integer of 1 or more, Y is F,
At least one element selected from CI, Br, and I. } chain silicon halide, Siv
Yzv (V is an integer of 3 or more, Y has the above-mentioned meaning.

)で示される環状ハロゲン化ケイ素、SiuHxY,(
u及びYは前連の意味を有するm X 十y = 2 
u又は2u+2である。)で示される鎖状又は環状化合
物などが挙げられる。
) Cyclic silicon halide, SiuHxY, (
u and Y have the meaning of the previous series m X y = 2
u or 2u+2. ), and the like.

具体的な化合物としては、例えばSiFa,(SiFz
)s + (SiFz)i + (SiFz)4+Sj
zFa .Si:+Fs ,Sit{Fs ,SiH■
F! ,SitHzF4.SizHaFj.SiCla
 * (SiClx’s .SiBr4,(S iBr
z)s.  S l!C j! 6 , S igBr
4.  S iH C 12 3 ,SiHBrz.S
iH 11 ,SizCj!,Fsなとのガス状態の又
は容易にガス化し得るものが挙げられる. これらのケイ素化合物は、1種を単独で用いても2種以
上を併用してもよい。
Specific compounds include, for example, SiFa, (SiFz
)s + (SiFz)i + (SiFz)4+Sj
zFa. Si:+Fs, Sit{Fs, SiH■
F! , SitHzF4. SizHaFj. SiCla
* (SiClx's .SiBr4, (SiBr
z) s. Sl! Cj! 6, SigBr
4. S iH C 12 3 , SiHBrz. S
iH 11, SizCj! , Fs, etc., which are in a gaseous state or can be easily gasified. These silicon compounds may be used alone or in combination of two or more.

また、炭素とハロゲンを含む化合物としては、例えば鎖
状又は環状炭化水素化合物の水素原子の一部乃至全部を
ハロゲン原子で置換した化合物が用いられ、具体的には
、例えば、CuYz@*1 ( (1は1以上の整数、
YはF, CIl, Br,及び.1より選択される少
なくとも1種の元素である。)で示される鎖状ハロゲン
化炭素、CvYzv(Vは3以上の整数、Yは前述の意
味を有する.)で示される環状ハロゲン化ケイ素、C.
I{.Y,(u及びYは前述の意味を有する,x+y=
2u又は2u+2である.)で示される鎖状又は環状化
合物などが挙げられる. 具体的な化合物としては例えばCF4.(CFよ),(
CFz)i .  (CF2)4 ,C2Fh,C*F
a .CHFs .CHzFz ,CC14 ,  (
cc1z)’sC Br4,(C Brx)s. Cx
C 1 b , CxBrh.CHCI ,CH 13
 ,CtC1,F3などのガス状態の又は容易にガス化
し得るものが挙げられる。
Further, as the compound containing carbon and halogen, for example, a compound in which part or all of the hydrogen atoms of a chain or cyclic hydrocarbon compound is replaced with a halogen atom is used, and specifically, for example, CuYz@*1 ( (1 is an integer greater than or equal to 1,
Y is F, CIl, Br, and . At least one element selected from 1. ), a cyclic silicon halide represented by CvYzv (V is an integer of 3 or more, Y has the above-mentioned meaning), C.
I{. Y, (u and Y have the above meanings, x+y=
It is 2u or 2u+2. ) chain or cyclic compounds. Specific compounds include, for example, CF4. (CF), (
CFz)i. (CF2)4 ,C2Fh,C*F
a. CHFs. CHzFz , CC14 , (
cc1z)'sC Br4, (C Brx)s. Cx
C 1 b , CxBrh. CHCI,CH13
, CtC1, F3, etc., which are in a gaseous state or can be easily gasified.

これらの炭素化合物は、1種を単独で用いても2種以上
を併用してもよい。
These carbon compounds may be used alone or in combination of two or more.

また、ゲルマニウムとハロゲンを含む化合物としては、
例えば鎖状又は環状水素化ゲルマニウム化合物の水素原
子の一部乃至全部をハロゲン原子で置換した化合物が用
いられ、具体的には、例えば、GeuYiu+z ( 
uは1以上の整数、YはF,C7!,Br及び【より選
択される少なくとも1種の元素である.)で示される鎖
状ハロゲン化ゲルマニウム、GevYiv(vは3以上
の整数、Yは前述の意味を有する。)で示される環状ハ
ロゲン化ゲルマニウム、GeuH,Yy (u及びYは
前述の意味を有する,x+y=2u又は2u+2である
。)で示される鎖状又は環状化合物などが挙げられる。
In addition, compounds containing germanium and halogen include:
For example, a compound in which part or all of the hydrogen atoms of a chain or cyclic germanium hydride compound is replaced with a halogen atom is used, and specifically, for example, GeuYiu+z (
u is an integer greater than or equal to 1, Y is F, C7! , Br and [. ) chain germanium halide, GevYiv (v is an integer of 3 or more, Y has the meaning above), cyclic germanium halide, GeuH,Yy (u and Y have the meaning above, x+y=2u or 2u+2), and the like.

具体的な化合物としては、例えばG e F a(C+
eFz)5+ <GeFx)b ,(GeFz)4.G
ezFb ,GeiFa ,GeHI?,,GeHzF
z .GetllzFaGezHsFi ,GeC l
,,(GeCAz)s ,GeBr4,(Gel3rz
)s. GezC l 6 ,  GetBrb. G
eH C j! sGeHBrz,GeH Iz ,G
ezCAzF*などのガス状態の又は容易にガス化し得
るものが挙げられる。
As a specific compound, for example, G e Fa (C+
eFz)5+ <GeFx)b, (GeFz)4. G
ezFb, GeiFa, GeHI? ,,GeHzF
Z. GetllzFaGezHsFi , GeCl
,,(GeCAz)s ,GeBr4,(Gel3rz
) s. GezCl 6 , GetBrb. G
eH C j! sGeHBrz,GeH Iz ,G
Examples include those that are in a gaseous state or can be easily gasified, such as ezCAzF*.

これらのゲルマニウム化合物は、1種を単独で用いても
2種以上を併用してもよい。
These germanium compounds may be used alone or in combination of two or more.

成膜用の原料ガスの複数を用いる場合には、予め混合し
て活性化空間内に導入することもできるし、あるいはこ
れらの戒膜用の原料ガスを夫々独立した供給源から各個
別に供給し、活性化空間に導入することもできる。
When using multiple raw material gases for film formation, they can be mixed in advance and introduced into the activation space, or these raw material gases for film formation can be supplied individually from independent sources. However, it can also be introduced into the activation space.

活性種の原料ガスとしては、水素を含むガスが用いられ
る。水素を含むガスとしては、水素単体、水素とハロゲ
ンを含む化合物(例えばH FH C #ガス等)、あ
るいはこれらと、不活性ガスを併用したものを挙げるこ
とができる。
A gas containing hydrogen is used as the raw material gas for the active species. Examples of the gas containing hydrogen include hydrogen alone, a compound containing hydrogen and a halogen (for example, H FH C # gas, etc.), or a combination of these and an inert gas.

不活性ガスとは、He,Ne,Ar,Kr,Xs等の希
ガスをさし、1種のみで用いても、2種以上併用しても
よい。
The inert gas refers to rare gases such as He, Ne, Ar, Kr, and Xs, and may be used alone or in combination of two or more.

本発明の堆積膜形威装置を用いて形威される堆積膜は、
威膜中又は戒III後に不純物元素でドーピングするこ
とが可能である.使用する不純物元素としては、p型不
純物として、周期律表第■族Aの元素、例えばB,Ae
,Ga,In,Tll等が好適なものとして挙げられ、
n型不純物としては、周期律表第V族Aの元素、例えば
P.As,Sb,Bi等が好適なものとして挙げられる
が、特にp型不純物としてB,Ga,n型不純物として
p,sb等が最適である。ドーピングされる不純物の量
は、所望される電気的、光学的特性に応して適宜決定さ
れる。
The deposited film formed using the deposited film forming apparatus of the present invention is
It is possible to dope with an impurity element during or after Precept III. As the impurity element to be used, as a p-type impurity, an element of Group Ⅰ A of the periodic table, such as B, Ae
, Ga, In, Tll, etc. are mentioned as suitable ones,
Examples of n-type impurities include elements of Group V A of the periodic table, such as P. Preferred examples include As, Sb, Bi, etc., and particularly suitable are B, Ga, etc. as p-type impurities, and p, sb, etc. as n-type impurities. The amount of impurities to be doped is appropriately determined depending on desired electrical and optical properties.

かかる不純物元素を威分として含む物質(不純物導入用
物質)としては、常温常圧でガス状態であるか、あるい
は少なくとも堆積膜形成条件下で気体であり、適宜の気
化装置で容易に気化しうる化合物を選択するのが好まし
い.具体的な化合物としては、例えばPHs ,PxH
s ,PFs ,PFs ,PCj!z ,AsHi 
+AsFs+AsFs .AsC1s *SbHs ,
SbFs ,SbHz ,BF3,BCI!s ,BB
 rs .BzHb ,B4Hll BSH9 ,Bs
H++,B h H +。,B4Hli AICIs等
を挙げることができる.不純物元素を含む化合物は、1
種を単独で用いても2種以上を併用してもよい。
The substance containing such an impurity element (substance for introducing impurities) is in a gaseous state at room temperature and normal pressure, or at least in a gaseous state under the conditions for forming a deposited film, and can be easily vaporized using an appropriate vaporization device. It is preferable to select compounds. Specific compounds include, for example, PHs, PxH
s, PFs, PFs, PCj! z , AsHi
+AsFs+AsFs. AsC1s *SbHs,
SbFs, SbHz, BF3, BCI! s,BB
rs. BzHb ,B4Hll BSH9 ,Bs
H++, B h H +. , B4Hli AICIs, etc. Compounds containing impurity elements are 1
A species may be used alone or two or more species may be used in combination.

不純物元素を成分として含む化合物は、ガス状態で直接
成膜空間内に導入することも水素を含むガスや、不活性
ガスと混合して成膜空間内に導入することもできるし、
或いは威膜用の原料ガスと同様に、あらかしめ活性化し
て、その後成膜空間に導入することもできる. 本発明において、活性種を生或させる方法としては、各
々の条件、装置を考慮してマイクロ波放電、高周波放電
等の電気エネルギーが使用されるが、所望により上記励
起エネルギーに加えてヒーター加熱、赤外線加熱等の熱
エネルギー、光エネルギー等の活性化エネルギー触媒と
の接触又は添加を行っても良い。
A compound containing an impurity element as a component can be directly introduced into the film formation space in a gaseous state, or can be mixed with a hydrogen-containing gas or an inert gas and introduced into the film formation space.
Alternatively, similar to the raw material gas for film formation, it can be pre-activated and then introduced into the film formation space. In the present invention, as a method for generating active species, electric energy such as microwave discharge and high frequency discharge is used in consideration of each condition and apparatus, but if desired, in addition to the above excitation energy, heater heating, Thermal energy such as infrared heating, or activation energy such as light energy may be used to contact or add the catalyst.

また、本発明において、前駆体を生或させる方法として
は、各々の条件、装置を考慮してマイクロ波放電、高周
波放電、低周波放電、直流放電等の電気エネルギー、光
エネルギー、熱エネルギー等の励起エネルギーが使用さ
れる。又、場合によっては、上記エネルギーを加えずに
原料ガスそのものを前駆体としてもよい. 以下、具体的な実施例装置により本発明を更に詳しく説
明するが、本発明はこれによって限定されるものではな
い. 装1む生L 第1図に、本発明の堆積膜形成装置の一例である概略斜
視図を示す.第2図は第l図に示す本発明の装置の活性
種生成部の一例の概略斜視図である. 第1図において、+01は真空容器、102は同軸管、
103は導波路、104は導波路の人口、105はチュ
ーナー、106はガス導入管、107は中心導体、10
8は磁石、109は導波路終端、110は加熱ホルダー
、111は基体、112はバルブ、113はポンプ、+
14は圧力計である. 本発明の実施例装置においては、第1図に示す活性種生
成部である同軸管102は円筒部の内径が30鶴φ、扁
平部分の長さが50amを有するものであり、同軸管1
02を真空容器+01の一部分に中心導体107を露出
する形で接続し、同軸管の他の終端はマイクロ波導波路
103の一部に露出する形で接続される。導波路の入口
104よリマイクロ波を導入し、導波路の一部と中心導
体とを終端するチューニング装置115と導波路の終端
109の位置を動かし、チューニングを取る装置105
によって、ガス導入管106により、導入されたガスの
プラズマを同軸管内に発生させる.真空容器101の内
部には、基体111を加熱するための加熱ホルダー11
0を置き、周囲に磁石108を配置することによって発
散磁界により同軸管中のプラズマを引き出し基板近傍ま
で持ってくることが可能となっている。
In addition, in the present invention, as a method for producing the precursor, electric energy such as microwave discharge, high frequency discharge, low frequency discharge, direct current discharge, light energy, thermal energy, etc. can be used in consideration of each condition and device. Excitation energy is used. In some cases, the raw material gas itself may be used as a precursor without applying the above energy. Hereinafter, the present invention will be explained in more detail with reference to specific embodiments, but the present invention is not limited thereto. Figure 1 shows a schematic perspective view of an example of the deposited film forming apparatus of the present invention. FIG. 2 is a schematic perspective view of an example of the active species generating section of the apparatus of the present invention shown in FIG. In Fig. 1, +01 is a vacuum container, 102 is a coaxial tube,
103 is a waveguide, 104 is a waveguide population, 105 is a tuner, 106 is a gas introduction pipe, 107 is a center conductor, 10
8 is a magnet, 109 is a waveguide end, 110 is a heating holder, 111 is a base, 112 is a valve, 113 is a pump, +
14 is a pressure gauge. In the apparatus according to the embodiment of the present invention, the coaxial tube 102 which is the activated species generating section shown in FIG.
02 is connected to a part of the vacuum vessel +01 in such a manner that the center conductor 107 is exposed, and the other end of the coaxial tube is connected to a part of the microwave waveguide 103 in such a manner that it is exposed. A tuning device 115 that introduces microwaves from the entrance 104 of the waveguide and terminates a part of the waveguide and the center conductor, and a device 105 that moves the position of the end 109 of the waveguide and performs tuning.
As a result, plasma of the gas introduced by the gas introduction pipe 106 is generated in the coaxial pipe. Inside the vacuum container 101, there is a heating holder 11 for heating the base 111.
0 and surrounding it with magnets 108, it is possible to draw out the plasma in the coaxial tube and bring it close to the substrate using a diverging magnetic field.

本発明の堆積膜形成装置における第2図に示す活性種生
成部分は大きく分けて2つの部分からなる。1つは外部
が絶縁体の円筒201からなり内部に線状の中心導体2
03を持ち、この同軸円筒部の先は、外部と隔絶するた
めに封じられ、中心導体の外部突出部205を有する形
状になっている。もう1つは同軸円筒部に接続部210
でつながる扁平形状を有する同軸アンテナ204からな
る部分で中心導体207は、線状の中心導体203につ
ながり板状の形状を有する.同軸円筒部201は扁平形
状筒部204と接合部210で連続的に接続されている
。中心導体203,207と外部同軸筒201.204
との間には空間があり、ガス導入口206より導入され
る活性種用の原ネ4ガスと外部より導入された電気エネ
ルギーにより、この空間にプラズマが励起される.外部
の絶縁体からなる円筒201及び扁平形状を有する筒1
04の材質は通常、石英等のガラス、AI.0,.S 
iN.BN等のセラミックスが用いられる.これらの材
質の筒の内部、内壁に絶縁性のコーティングがされてい
てもよい。
The active species generating portion shown in FIG. 2 in the deposited film forming apparatus of the present invention is roughly divided into two parts. One is a cylinder 201 with an insulating exterior and a linear central conductor 2 inside.
03, and the tip of this coaxial cylindrical portion is sealed to isolate it from the outside, and has a shape with an external protrusion 205 of the center conductor. The other is the connection part 210 to the coaxial cylinder part.
The central conductor 207 is connected to the linear central conductor 203 and has a plate-like shape. The coaxial cylinder part 201 is continuously connected to the flat cylinder part 204 at a joint part 210. Center conductor 203, 207 and outer coaxial tube 201, 204
There is a space between the two, and a plasma is excited in this space by raw gas for active species introduced from the gas inlet 206 and electrical energy introduced from the outside. A cylinder 201 made of an external insulator and a flat cylinder 1
The material of 04 is usually glass such as quartz, AI. 0,. S
iN. Ceramics such as BN are used. The inside and inner wall of the cylinder made of these materials may be coated with an insulating coating.

中心導体は通常良導体である金属、銅、アルミニウム、
真ちゅうなどが用いられるが、反応性のあるガスとの反
応を防ぐためにNi等のメッキがされていてもよい.活
性種を生成させる部分の形状については、円筒部分に同
軸モードの放電が形成されれば十分であり、扁平状部分
はこの放電がスムーズに広がるための形状を持っていれ
ばよい.第3図に別の形状の活性種生戒部分を持つ同軸
型アンテナの例を示す. 本発明の装置は同軸管が扁平状であるためプラズマがシ
ート状に形威され、長尺状の基体をプラズマにより処理
(エッチング、堆積、酸化等)することが可能である.
又、これらの基体を動かしたり、磁界を制御すること、
例えば、磁界に強弱をつけたり、回転磁界を用いたりし
て均一性を一層増すことも可能である.用いられる磁界
の強さは基体の近傍で好ましくは100〜1 200ガ
ウス、より好ましくは200〜1000ガウスである。
The center conductor is usually a metal that is a good conductor, such as copper, aluminum,
Brass or the like is used, but it may be plated with Ni or the like to prevent reaction with reactive gases. Regarding the shape of the part that generates active species, it is sufficient that a coaxial mode discharge is formed in the cylindrical part, and the flat part only needs to have a shape that allows this discharge to spread smoothly. Figure 3 shows an example of a coaxial antenna with a different shaped active species generating section. In the apparatus of the present invention, since the coaxial tube is flat, the plasma is formed in the form of a sheet, and it is possible to process (etch, deposit, oxidize, etc.) a long substrate with the plasma.
Also, moving these bases and controlling the magnetic field,
For example, it is possible to further increase the uniformity by increasing or decreasing the strength of the magnetic field or by using a rotating magnetic field. The strength of the magnetic field used is preferably 100-1200 Gauss, more preferably 200-1000 Gauss in the vicinity of the substrate.

装亙斑主 第4図に本発明の大面lfi膜堆積装置の一例を示す.
第4図に示す装置は基体としてロール型基板を用い、3
N構造の膜を連続で堆積する装置である.ロール481
より基板411が供給され、真空容器461で加熱ホル
ダー470により予備加熱され、次の真空容器401に
送られる.真空容器401には基体加熱ホルダー410
が設置され、その上部から第2図に示す同軸管よりなる
活性化生戒部を有していて、ガス導入口406よりJ,
ク人したH2とA『の混合ガスをプラズマで励起し、活
性種を生戒する.それと同時にガス導入口416より前
駆体になる原料ガスを導入して、加がホルダー410上
をJ遇する基板4【1上に膜を堆積する。
Figure 4 shows an example of the large-area LFI film deposition apparatus of the present invention.
The device shown in FIG. 4 uses a roll type substrate as a base, and
This is a device that continuously deposits N-structured films. roll 481
A substrate 411 is supplied, preheated by a heating holder 470 in a vacuum container 461, and sent to the next vacuum container 401. A substrate heating holder 410 is installed in the vacuum container 401.
is installed, and has an activation section consisting of a coaxial pipe shown in Fig. 2 from the top, and J, J,
Excite a mixed gas of H2 and A with plasma to remove active species. At the same time, a raw material gas serving as a precursor is introduced from the gas inlet 416, and a film is deposited on the substrate 4[1] which extends over the holder 410.

次の真空容器421.44Lでは、真空容器401に導
入されたと異なるi?j駆体になる原料ガスを用いて異
なる種類の膜それぞれ堆積可能である。
In the next vacuum container 421.44L, a different i? It is possible to deposit different types of films using raw material gases that serve as precursors.

膜の均一性は、2.45CIIzのマイクロ波電源41
9,439.459からのマイクロ波エネルギーをそれ
ぞれのチューナー405,415.420,・・・で調
整することと、真空容器に配置した磁界発生用電磁石4
08.428,448の大きさを変化させて、プラズマ
の伸び具合を調節して良好なものにすることが可能であ
る.この場合の磁界のつよさは基板近傍で好ましくは1
00〜1200ガウス、より好ましくは200−100
0ガウスである. 以下、本発明の具体的実施例を示す。
The uniformity of the film was determined using a microwave power source of 2.45 CIIz.
The microwave energy from 9,439.459 is adjusted by each tuner 405, 415, 420,..., and the electromagnet 4 for generating a magnetic field placed in the vacuum container.
By changing the size of 08.428 and 448, it is possible to adjust the degree of plasma expansion to obtain a good result. In this case, the strength of the magnetic field is preferably 1 near the substrate.
00-1200 Gauss, more preferably 200-100
It is 0 Gauss. Specific examples of the present invention will be shown below.

失崖班上 第2図に示した同軸管よりなる活性種生戒部を有する第
1図に示した本発明の堆積膜形成装置を用いて、以下の
ような操作によってアモルファス・シリコン薄膜を堆積
した。
Using the deposited film forming apparatus of the present invention shown in FIG. 1, which has an active species trapping section made of a coaxial tube shown in FIG. 2, an amorphous silicon thin film was deposited by the following operations did.

まず、真空容器101を真空度I X I O −”T
orrまで真空ボンプ113を用いて引いた後、加熱ホ
ルダー110上に、50mmX300重■の大きさのガ
ラス基板を基体として設置し、基板温度200℃になる
まで加熱した。次に、活性種用の原糾ガス導入口106
よりボンへ(図示せず)マスフローコントローラー(図
示せず)を用いてI{.=20secs. A r =
 2 5 0 scCnの混合ガスを同軸管(円筒部内
径30mφ、扁平部分長さ500mm)に導入し、40
Wのパワーを加えた。次に電磁石108の磁界発生用コ
イルに電流を流して、ガラス基板上5cmの所の磁界の
強さを300ガウスとした。チューニングを電源と本体
との中間にあるスリー・スタプチューナー(図示せず)
と、導波管終端部のチューナー105及び同軸中心導体
終端のチューナー106を調節し、堆積室内の圧力を圧
力計114とバルブ112を用いて、圧力を0. 1 
5 Torrに保った後放電を励起した。放電は同軸管
内では弱く、ガラス基板近傍まで伸び、巾30cmを保
って安定して立っていた。
First, the vacuum container 101 is set to a vacuum degree of I
After the vacuum pump 113 was used to pull the glass substrate to a temperature of 50 mm x 300 mm, a glass substrate of 50 mm x 300 mm was placed as a base on the heating holder 110 and heated until the substrate temperature reached 200°C. Next, the raw starch gas inlet 106 for active species
I{. =20sec. A r =
A mixed gas of 250 scCn was introduced into a coaxial tube (cylindrical part inner diameter 30 mφ, flat part length 500 mm), and 40
Added the power of W. Next, a current was passed through the magnetic field generating coil of the electromagnet 108, and the strength of the magnetic field at a distance of 5 cm above the glass substrate was set to 300 Gauss. A three-stap tuner (not shown) is located between the power supply and the main unit for tuning.
Then, the tuner 105 at the end of the waveguide and the tuner 106 at the end of the coaxial center conductor are adjusted, and the pressure in the deposition chamber is adjusted to 0. 1
The discharge was excited after being maintained at 5 Torr. The discharge was weak inside the coaxial tube, and extended to the vicinity of the glass substrate, maintaining a stable width of 30 cm.

次に前駆体用の原料ガス導入口116より、ボンヘ(図
示セス)、マスフローコントローラー〈図示せず〉を用
いてSiF4ガスを30secmの流量で10分間導入
したところ、ガラス基板上に5000人のa−S i 
 (H,  F)膜が堆1貞した。
Next, SiF4 gas was introduced for 10 minutes at a flow rate of 30 sec from the raw material gas inlet 116 for the precursor using a gas flow controller (not shown) and a mass flow controller (not shown). -Si
(H, F) The membrane was deposited.

上記の方法で得られた膜の均一性を測定したところ、3
00amX50mmのガラス基板内で±5%以内の分布
になっていた. 次に試料表面の縦、横、それぞれ25關間隔に真空渾着
によって導電率測定用の/lのギヤ,プ電極(t極間隔
2 0 0 pm)を20m形成し、各部分での暗導電
率、光導電率(6 3 3 nm、4×1 0 ”ph
otons /d ・Sの単色光照射)及びそのバラツ
キを測定した. その結果、暗導電率は1.2 X I O−” S/c
m(3 0 0 k)の±5%以内、光導電率は2.3
×1 0−’S/cm (3 0 0 k)の±7%以
内の値を示し、良質な膜がほぼ均一に堆積していること
が確かめられた。
When the uniformity of the film obtained by the above method was measured, it was found that 3
The distribution was within ±5% within the 00 am x 50 mm glass substrate. Next, 20 m of /l gear and pull electrodes (t-pole spacing: 200 pm) for conductivity measurement were formed by vacuum clamping at 25-square intervals on the sample surface vertically and horizontally, and the dark conductivity at each part was measured. rate, photoconductivity (633 nm, 4×10”ph
otons /d ・S monochromatic light irradiation) and its variation were measured. As a result, the dark conductivity was 1.2 X I O-”S/c
m (300 k) within ±5%, photoconductivity is 2.3
The value was within ±7% of ×10-'S/cm (300k), and it was confirmed that a high-quality film was deposited almost uniformly.

大旌斑主 実施例1で用いたのと同し本発明の堆積膜形成装置を用
いて以下のような操作によってアモルファス・シリコン
、ゲノレマニウム薄膜を50貫員×3 0 0 amの
大きさのガラス基板上に堆積した。堆積時の手順、堆積
時の諸条件については成膜原料の前駆体用ガスをS +
 F aガス3QsccmにGeF41. O scc
mを加えて、ガス導入口116より真空容器内に導入し
た以外は実施例lと全く同一の条件を用いた。ガラス基
板上にはIO分間の成膜時間で7200人のa−SiG
e (H,F)膜が堆+iした.上記の方法で得られた
膜の均一性は300■mX5Qmの基板内で±6%の分
布になっていた。
Using the same deposited film forming apparatus of the present invention as used in Example 1, an amorphous silicon and genomicanium thin film was formed on a glass with a size of 50 mm x 300 am by the following operations. deposited on the substrate. Regarding the deposition procedure and various conditions during deposition, the precursor gas for the film forming raw material is S +
Fe gas 3Qsccm and GeF41. O scc
The conditions were exactly the same as in Example 1, except that the gas was added to the gas and introduced into the vacuum vessel through the gas inlet 116. 7200 a-SiG films were deposited on a glass substrate with a deposition time of IO minutes.
e (H,F) film was deposited. The uniformity of the film obtained by the above method had a distribution of ±6% within the 300 m x 5 Qm substrate.

次に実施例lと同様に、導電率の分布を測定した.暗導
電率は1. l X 1 0”’S/cm (3 0 
0 k)の±7%以内、光導電率は1.2 X I O
−’S/cs(3 0 0 k)の±7.5%以内の値
を示し、良質な膜がほぼ均一に堆積していることが確か
められた。
Next, the conductivity distribution was measured in the same manner as in Example 1. Dark conductivity is 1. l X 10”'S/cm (30
Within ±7% of 0 k), photoconductivity is 1.2 X I O
-'S/cs (300 k) within ±7.5%, and it was confirmed that a good quality film was deposited almost uniformly.

犬益斑ユ 第2図に示した同軸管よりなる活性種生成部を有する第
4図に示した本発明の堆積膜形成装置を用いて、ステン
レス(中30cII)のロール状の基板上に堆41膜形
成を行い、この装置でステンレス基板の上に真空容器4
01ではn型層を、真空容器421ではi型層を、真空
容2i441ではp型層を堆積して、pin型太陽電池
を作製した.成膜条件のうち、各ガス導入口406.4
+6426.436.446,/156より流すガス種
流量、及び印加マイクロ波電力をそれぞれ第1表のよう
に変えたほかは、実施例1と同様にしてロール型ステン
レス基板を動かしながら連続で、3人/seeの速度で
膜堆積を行った.保たれた膜はn,j型層はアモルファ
ス、p型層は微結晶であった・ 次いでI二部1[極としてITO透明電極をl clI
+ Mの窓の開いたマスクを用いて、600人の厚さに
形成し、また取り出し用のクシ形の集主主極をマスクを
用いて膜厚2μmで草着形威した。30caX3Q.c
m角の大きさの中で9つのpinセル(而積1−)の特
性のバラツキを測定した。100mWecJAのAM−
 1を照射して開放電圧、短絡電流を7Illl定した
ところ、開放電圧は±2%以内、短絡雷?kは±6%以
内の範囲に入っており、均一性が高いことが確かめられ
た. 〔発明の効果の概要〕 本発明の堆積膜形成装置によれば、基体が大面積の場合
でも、ロール状の連続している基体の場合でも、活性化
装置を大型化あるいは多数化することなく良質で均一な
堆積膜を形成することができ、堆積膜形成装置の簡素化
をすることができる.
Using the deposited film forming apparatus of the present invention shown in FIG. 4, which has an active species generating section consisting of a coaxial tube shown in FIG. 41 film was formed, and this device was used to form a vacuum container 4 on the stainless steel substrate.
A pin type solar cell was fabricated by depositing an n-type layer in 01, an i-type layer in vacuum vessel 421, and a p-type layer in vacuum vessel 2i441. Among the film forming conditions, each gas inlet 406.4
+6426.436.446, /156, the flow rate of the gas species and the applied microwave power were changed as shown in Table 1, respectively. Film deposition was performed at a speed of one person/see. In the preserved film, the n- and j-type layers were amorphous and the p-type layer was microcrystalline.
A mask with a +M window was used to form a film with a thickness of 600 mm, and a comb-shaped main pole for extraction was formed using a mask to a film thickness of 2 μm. 30caX3Q. c.
Variations in the characteristics of nine pin cells (product 1-) within a m-square size were measured. 100mWecJA's AM-
1 was irradiated and the open circuit voltage and short circuit current were determined at 7Illll, the open circuit voltage was within ±2%, short circuit lightning? k was within ±6%, confirming high uniformity. [Summary of Effects of the Invention] According to the deposited film forming apparatus of the present invention, even when the substrate has a large area or is continuous in the form of a roll, the activating device can be used without increasing the size or number of activation devices. A high-quality, uniform deposited film can be formed, and the deposited film forming apparatus can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の堆積膜形成装置の一例を示す概略斜視
図、第2図は、本発明の堆積膜形7i!2装置の扁平形
状を有する同軸型アンテナを用いた活性種導入部分の一
例を示す図、第3図は、本発明の堆積膜形成装置の活性
種導入部分の別の例を示す図、第4図は、ロール状の連
続基板を用いる場合に応用した本発明の堆積膜形戊装置
の概略図(A)と活性種生成部の側面図(B)。 lot,401.421,441・・・真空容器、10
2,202,302,402,422.442・・同軸
管、103,403,423,443・・・導波路、1
04・・・導波路人口、lQ5.115,405,41
5,420,425,435,440,445,455
,460・・・チューナー、106,116206,3
06,406,416,426.436446,456
・・・ガス導入口、107,203,207,208,
303,307,308.407427,447・・・
中心導体、108,408428.448・・・磁石、
109.209・・・4波路終端、110,410,4
30,450・・・加熱ホルダー、111,411・・
・基体、1 1 2,4 1 2.432  452・
・・バルプ、1 1 3,4 1 3,4 3 3,4
53・・・ボンブ、114・・・圧力計、201,30
1円筒、204.30.1・・・扁平形状、205,3
05・・・導体外部突出部、210・・・接合部、41
9  439.459・・・マイクロ波電源、481 
 482・・・ロール、4 8 3,4 8 4,4 
8 5,486・・・ガスゲート。 第1図
FIG. 1 is a schematic perspective view showing an example of the deposited film forming apparatus of the present invention, and FIG. 2 is a schematic perspective view showing an example of the deposited film forming apparatus of the present invention. FIG. 3 is a diagram showing another example of the active species introduction part of the deposited film forming apparatus of the present invention, and FIG. The figures are a schematic diagram (A) of the deposited film forming apparatus of the present invention applied when using a roll-shaped continuous substrate and a side view (B) of the active species generation section. lot, 401.421,441...vacuum container, 10
2,202,302,402,422.442...Coaxial tube, 103,403,423,443...Waveguide, 1
04...Waveguide population, lQ5.115,405,41
5,420,425,435,440,445,455
,460...tuner, 106,116206,3
06,406,416,426.436446,456
...Gas inlet, 107, 203, 207, 208,
303,307,308.407427,447...
Center conductor, 108,408428.448... magnet,
109.209...4 wave path termination, 110,410,4
30,450...Heating holder, 111,411...
・Substrate, 1 1 2, 4 1 2.432 452・
...bulp, 1 1 3,4 1 3,4 3 3,4
53...Bomb, 114...Pressure gauge, 201,30
1 cylinder, 204.30.1... flat shape, 205,3
05...Conductor external protrusion, 210...Joint part, 41
9 439.459...Microwave power supply, 481
482...Roll, 4 8 3, 4 8 4, 4
8 5,486...Gas Gate. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  真空容器と、該真空容器内に堆積膜形成用基体を保持
する手段と、該真空容器内に堆積膜形成用の原料となる
前駆体を導入する手段と、前記前駆体と相互作用をする
活性種を生成し、前記真空容器内に導入する手段と、真
空容器内を排気する手段よりなり、前記真空容器内で前
駆体と活性種とを相互作用させて前記基体上に堆積膜を
形成する堆積膜形成装置において、活性種を生成し導入
する手段の活性種生成部が扁平形状を有する同軸型アン
テナからなり、前記同軸部分で生成された活性種を真空
容器内に導入することを特徴とする堆積膜形成装置。
a vacuum container, a means for holding a substrate for forming a deposited film in the vacuum container, a means for introducing into the vacuum container a precursor that becomes a raw material for forming a deposited film, and an activity that interacts with the precursor. The method comprises a means for generating a species and introducing it into the vacuum container, and a means for evacuating the inside of the vacuum container, and allows the precursor and the active species to interact in the vacuum container to form a deposited film on the substrate. The deposited film forming apparatus is characterized in that an active species generating section of the means for generating and introducing active species comprises a coaxial antenna having a flat shape, and the active species generated at the coaxial section is introduced into the vacuum container. Deposited film forming equipment.
JP15676389A 1989-06-21 1989-06-21 Deposited film forming device Pending JPH0324269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15676389A JPH0324269A (en) 1989-06-21 1989-06-21 Deposited film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15676389A JPH0324269A (en) 1989-06-21 1989-06-21 Deposited film forming device

Publications (1)

Publication Number Publication Date
JPH0324269A true JPH0324269A (en) 1991-02-01

Family

ID=15634784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15676389A Pending JPH0324269A (en) 1989-06-21 1989-06-21 Deposited film forming device

Country Status (1)

Country Link
JP (1) JPH0324269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267261A (en) * 2008-04-28 2009-11-12 Ebatekku:Kk Thin film manufacturing apparatus, thin film manufacturing method, thin film solar cell manufacturing apparatus, and thin film solar cell manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267261A (en) * 2008-04-28 2009-11-12 Ebatekku:Kk Thin film manufacturing apparatus, thin film manufacturing method, thin film solar cell manufacturing apparatus, and thin film solar cell manufacturing method

Similar Documents

Publication Publication Date Title
US4998503A (en) Apparatus for forming functional deposited film by microwave plasma CVD process
US20020098297A1 (en) Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
US4760008A (en) Electrophotographic photosensitive members and methods for manufacturing the same using microwave radiation in magnetic field
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
KR100325500B1 (en) Method of producing thin semiconductor film and apparatus therefor
JP3630831B2 (en) Method for forming deposited film
JPS61222121A (en) Functional deposit-film and method and apparatus for manufacturing said film
JPH0324269A (en) Deposited film forming device
JPS62151572A (en) Deposited film forming device
JPH0420985B2 (en)
JPH04323378A (en) Deposited film forming equipment by plasma chemical vapor deposition method
JPH09256160A (en) Plasma cvd device and deposited film forming method by plasma cvd
JP2609866B2 (en) Microwave plasma CVD equipment
JPH0647734B2 (en) Deposited film formation method
JP3272187B2 (en) Apparatus and method for forming semiconductor thin film
JPS63216331A (en) Formation of deposit film
JPS6345374A (en) Device for forming functional deposited film
JPH02174223A (en) Plasma vapor growth device, usage thereof and formation of film
JPS63234513A (en) Deposition film formation
JPH0590175A (en) Device and method for depositing film
JPS63297565A (en) Method and device for forming functional deposited film
JPS63222424A (en) Method and apparatus for forming deposited film
JPS63274770A (en) Device for forming functional deposited film
JPS63301518A (en) Formation of deposited film
JPS6347363A (en) Formation of functional deposited film