JPH0590175A - Device and method for depositing film - Google Patents

Device and method for depositing film

Info

Publication number
JPH0590175A
JPH0590175A JP27473491A JP27473491A JPH0590175A JP H0590175 A JPH0590175 A JP H0590175A JP 27473491 A JP27473491 A JP 27473491A JP 27473491 A JP27473491 A JP 27473491A JP H0590175 A JPH0590175 A JP H0590175A
Authority
JP
Japan
Prior art keywords
film forming
film
wall
substrate
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27473491A
Other languages
Japanese (ja)
Inventor
Hideichiro Sugiyama
秀一郎 杉山
Masahiro Kanai
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27473491A priority Critical patent/JPH0590175A/en
Publication of JPH0590175A publication Critical patent/JPH0590175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the title device and method for depositing high quality film at a high deposition rate causing less adherence of a film to the inner surface of a film formation chamber. CONSTITUTION:The title deposited film formation device wherein a film formation space 106 is evacuated by an exhaust system and reactive gas and microwave energy are introduced into the film formation space 106 to form a deposited film on a substrate 105 by the glow discharge excited by the introduced microwave energy is composed of a double-structure wall of the film formation chamber 101 comprising electrically insulated inner wall 109 and outer wall 110, and a means impressing the inner wall of the film formation chamber 101 with a voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は堆積膜、とりわけ機能性
膜、殊に半導体デバイス、電子写真用の感光デバイス、
画像入力用のラインセンサー、撮像デバイス、光起電力
素子などに用いる非晶質乃至は結晶質の堆積膜を形成す
るのに好適な堆積膜形成装置及び堆積膜形成方法に関す
る。
FIELD OF THE INVENTION This invention relates to deposited films, especially functional films, especially semiconductor devices, photosensitive devices for electrophotography,
The present invention relates to a deposited film forming apparatus and a deposited film forming method suitable for forming an amorphous or crystalline deposited film used for an image input line sensor, an imaging device, a photovoltaic element, and the like.

【0002】[0002]

【従来の技術】従来、半導体デイバイス、電子写真用感
光体デイバイス再像入力用ラインセンサー、撮像デイバ
イス、光起電力デイバイス、その他各種エレクトロニク
ス素子、光学素子、等に用いる素子部材として、アモル
ファスシリコン、例えば水素又は/及びハロゲン(例え
ばフッ素、塩素等)で補償されたアモルファスシリコン
等のアモルファス材料で構成された半導体等用の堆積膜
が提案され、その中のいくつかは実用に付されている。
2. Description of the Related Art Conventionally, amorphous silicon, for example, has been used as an element member for semiconductor devices, electrophotographic photoconductor device reimage input line sensors, imaging devices, photovoltaic devices, and various other electronic devices and optical devices. Deposition films for semiconductors and the like, which are composed of amorphous materials such as amorphous silicon compensated with hydrogen or / and halogen (for example, fluorine, chlorine, etc.), have been proposed, and some of them have been put to practical use.

【0003】こうした堆積膜は、プラズマCVD法によ
り形成されることが知られている。すなわ、原料ガス
を、直流、高周波あるいはマイクロ波グロー放電によっ
て分解し、ガラス、石英、耐熱性合成樹脂フィルム、ス
テンレス、アルミニウムなどの材質からなる基体上に薄
膜状の堆積膜を形成する方法により形成されることが知
られており、そのための装置も各種提案されている。
It is known that such a deposited film is formed by a plasma CVD method. That is, the source gas is decomposed by direct current, high frequency or microwave glow discharge, and a thin film is formed on a substrate made of glass, quartz, heat resistant synthetic resin film, stainless steel, aluminum, etc. It is known to be formed, and various devices therefor have been proposed.

【0004】ところで、近年、マイクロ波グロー放電分
解を用いたプラズマCVD法が注目され、工業的利用へ
の研究がなされてきている。
By the way, in recent years, a plasma CVD method using microwave glow discharge decomposition has attracted attention, and studies for industrial use have been made.

【0005】そして、そうした公知のマイクロ波プラズ
マCVD法による堆積膜形成装置は代表的には、図6の
透視略図で示される装置構成のものである。
Then, such a known deposited film forming apparatus by the microwave plasma CVD method typically has an apparatus configuration shown in a schematic perspective view of FIG.

【0006】図6において、201は反応容器であり、
壁209により形づけられる真空気密化構造を成してい
る。202はマイクロ波電力を反応容器内に効率よく透
過し、かつ真空気密を保持し得るような材料、例えば、
石英ガラス、アルミナセラミックス等で形成された誘電
体窓である。203はマイクロ波の伝送部で主として金
属性の導波管からなっており、整合器アイソレーターを
介してマイクロ波電源(図示せず)に接続されている。
204は一端が真空容器201内に開口し、他端が排気
装置(図示せず)に連通している排気管である。205
は堆積膜形成用の基体であり、206は成膜空間を示
す。なお、207は基体ホルダーである。こうした従来
の堆積膜形成装置による堆積膜形成は以下のようにして
行なわれる。即ち、真空ポンプ(図示せず)により、真
空容器201内を脱気し、反応容器内圧力を1×10-4
Torr以下に調整する。次いで基体ホルダー207
に内蔵されたヒーターに通電して基体205の温度を膜
堆積に好適な温度に加熱保持する。原料ガス供給管兼バ
イアス電圧印加棒208を介して、例えば、アモルファ
スシリコン堆積膜を形成する場合であれば、シランガス
(SiH4)等の原料ガスが反応容器内に導入し、また
適当なバイアス電圧を印加する。それと同時併行的にマ
イクロ波電源(図示せず)に通電して周波数500MH
z以上の、好ましくは2.45GHzのマイクロ波を発
生させ、そのマイクロ波は導波管203を通じ、誘導体
窓202を介して反応容器201内に導入される。かく
して反応器201内のガスは、マイクロ波のエネルギー
により励起されて解離し、基体205の表面に堆積膜が
形成されるところとなる。
In FIG. 6, 201 is a reaction vessel,
It forms a vacuum tight structure that is shaped by the wall 209. Reference numeral 202 denotes a material capable of efficiently transmitting microwave power into the reaction container and maintaining vacuum airtightness, for example,
It is a dielectric window made of quartz glass, alumina ceramics, or the like. Reference numeral 203 denotes a microwave transmission unit, which is mainly composed of a metallic waveguide, and is connected to a microwave power source (not shown) via a matching device isolator.
An exhaust pipe 204 has one end opening into the vacuum container 201 and the other end communicating with an exhaust device (not shown). 205
Is a substrate for forming a deposited film, and 206 is a film forming space. Reference numeral 207 is a base holder. Formation of a deposited film by such a conventional deposited film forming apparatus is performed as follows. That is, the inside of the vacuum container 201 is degassed by a vacuum pump (not shown), and the pressure inside the reaction container is set to 1 × 10 −4.
Adjust to less than Torr. Then the substrate holder 207
By energizing a heater built in the substrate, the temperature of the substrate 205 is heated and maintained at a temperature suitable for film deposition. For example, in the case of forming an amorphous silicon deposited film, a source gas such as silane gas (SiH 4 ) is introduced into the reaction vessel through the source gas supply pipe / bias voltage application rod 208, and an appropriate bias voltage is applied. Is applied. At the same time, a microwave power source (not shown) is energized and a frequency of 500 MHz is applied.
A microwave of z or more, preferably 2.45 GHz is generated, and the microwave is introduced into the reaction vessel 201 through the waveguide 203 and the dielectric window 202. Thus, the gas in the reactor 201 is excited by the energy of microwaves and dissociates, and a deposited film is formed on the surface of the substrate 205.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来例では、成膜室201を形成する壁209が一重構造
であるため、基体205と壁209の内面とは同電位
(アース)になっている。そのため、基体205の近く
と成膜室201の壁209の内面の近くとは、同じ様な
プラズマ分布となってしまう。
However, in the above-mentioned conventional example, since the wall 209 forming the film forming chamber 201 has a single structure, the base 205 and the inner surface of the wall 209 have the same potential (earth). .. Therefore, the plasma distribution near the substrate 205 and the plasma distribution near the inner surface of the wall 209 of the film forming chamber 201 are similar.

【0008】そして、基体205の表面に形成する堆積
膜の成膜に主体的に寄与するものが中性ラジカル粒子で
あるところから、それ等の中性ラジカル粒子は、時とし
て多量に上述の壁209の内面上での堆積膜形成に消費
されてしまい、その結果、肝心の基体205の表面に飛
来する量は、その分減少するところとなり、同時にま
た、原料ガスの利用効率の減少、マイクロ波の放射効率
の低下をきたし、それにより基体205の表面上への膜
堆積速度が低下するのはもとより、形成される膜の品質
低下をもたらしてしまう。
Since the neutral radical particles mainly contribute to the formation of the deposited film formed on the surface of the base 205, the neutral radical particles are sometimes large in amount and the above-mentioned wall. 209 is consumed for the formation of a deposited film on the inner surface of 209, and as a result, the amount flying to the surface of the essential substrate 205 is reduced by that amount, and at the same time, the utilization efficiency of the raw material gas is reduced and the microwave is used. Radiation efficiency is lowered, which not only lowers the deposition rate of the film on the surface of the substrate 205, but also deteriorates the quality of the formed film.

【0009】さらにまた、上述した壁209の内面上へ
の堆積膜の形成が生じる場合、その膜は、ある程度の厚
みになるとフレーク状になって剥離し、成膜室201内
に飛散して基体205の表面上に付着してしまうことが
あり、その結果、基体205の表面上に形成される堆積
膜は製品として成立し得ないものになってしまう。
Furthermore, when a deposited film is formed on the inner surface of the wall 209 as described above, the film becomes flakes and peels off when it reaches a certain thickness and scatters into the film forming chamber 201 to form a substrate. It may adhere to the surface of the substrate 205, and as a result, the deposited film formed on the surface of the substrate 205 cannot be a product.

【0010】これ等の問題点を解決する手段として、成
膜室201の壁209の内面、そして、誘電体窓の定期
点検、交換等を行なう他、装置に特定のパラメーターを
選択して工程操作する手段を取りつける等の工夫がなさ
れている。しかし、いづれの工夫も品質の安定した堆積
膜製品を定常的にかつ効率的に製造し、それを低コスト
で安定供給するという要求を満たすものではない。
As means for solving these problems, the inner surface of the wall 209 of the film forming chamber 201 and the dielectric window are regularly inspected and replaced, and the process operation is performed by selecting a specific parameter for the apparatus. It has been devised such as installing the means to do. However, none of the contrivances satisfies the requirement of constantly and efficiently producing a deposited film product with stable quality and stably supplying the deposited film product at low cost.

【0011】一方、各種デイバイスが多様化してきてお
り、そのための素子部材即ち、各種特性等の要件を総じ
て満足すると共に適用対象、用途に相応し、そして場合
によってはそれが大面積化されたものである。安定な堆
積膜製品を低コストで定常的に供給されることが社会的
要求としてあり、この要求を満たす技術の開発が切望さ
れている状況がある。
On the other hand, various kinds of devices have been diversified, and element members therefor, that is, those satisfying requirements such as various characteristics as a whole, are suitable for the object of application and use, and in some cases have a large area. Is. It is a social requirement that a stable deposited film product is constantly supplied at a low cost, and there are situations in which there is a strong demand for the development of a technology that meets this requirement.

【0012】本発明は、堆積速度が速く、かつ、高品質
の膜の形成が可能であり、しかも成膜室の内面への膜の
付着が少ない堆積膜形成装置及び堆積膜形成方法を提供
することを目的とする。
The present invention provides a deposited film forming apparatus and a deposited film forming method capable of forming a high quality film with a high deposition rate and less adhering the film to the inner surface of the film forming chamber. The purpose is to

【0013】[0013]

【課題を解決するための手段】本発明の堆積膜形成装置
は、真空気密が可能な成膜室と、前記成膜室内の成膜空
間を排気する排気手段と、前記成膜空間内に反応ガスを
導入する手段と、前記成膜空間内にマイクロ波を導入す
るための手段と、堆積膜を形成するための基体を前記成
膜室内において保持するための保持手段とを少なくとも
有し、前記成膜空間内を前記排気手段により排気し、前
記成膜空間内に反応ガス及びマイクロ波エネルギーを導
入し、導入したマイクロ波エネルギーにより励起される
グロー放電により、前記基体上に堆積膜を形成する堆積
膜形成装置において、前記成膜室を形づくる壁を、相互
に電気的に絶縁された内壁と外壁との2重構造とし、か
つ、前記成膜室の内壁に電圧を印加するための手段を設
けたことを特徴とする。
A deposited film forming apparatus according to the present invention comprises a film forming chamber capable of being airtight in vacuum, an exhaust means for exhausting a film forming space in the film forming chamber, and a reaction in the film forming space. At least a means for introducing a gas, a means for introducing a microwave into the film forming space, and a holding means for holding a substrate for forming a deposited film in the film forming chamber, The film forming space is evacuated by the evacuation means, a reaction gas and microwave energy are introduced into the film forming space, and a glow discharge excited by the introduced microwave energy forms a deposited film on the substrate. In the deposited film forming apparatus, the wall forming the film forming chamber has a double structure of an inner wall and an outer wall electrically insulated from each other, and means for applying a voltage to the inner wall of the film forming chamber is provided. Characterized by having That.

【0014】本発明の堆積膜形成方法は 成膜空間内を
排気し、前記成膜空間内に反応ガス及びマイクロ波エネ
ルギーを導入し、導入したマイクロ波エネルギーにより
励起されるグロー放電により、基体上に堆積膜を形成す
る堆積膜形成方法において、前記成膜室の内壁と基体と
の間に電位差をもたせながら成膜を行うことを特徴とす
る。
According to the method for forming a deposited film of the present invention, the inside of the film forming space is evacuated, the reaction gas and the microwave energy are introduced into the film forming space, and the glow discharge excited by the introduced microwave energy is applied on the substrate. In the deposited film forming method for forming a deposited film, the film is formed while a potential difference is provided between the inner wall of the film forming chamber and the substrate.

【0015】[0015]

【作用】以下に本発明の作用を詳細な構成とともに説明
する。
The operation of the present invention will be described below with reference to the detailed construction.

【0016】本発明者は、従来の装置における前述の問
題点を克服すべく、鋭意研究を続けた結果、マイクロ波
プラズマCVD装置で安定かつ良質の堆積膜を高速に得
るためには、成膜室を形成する壁を外壁と内壁との2重
構造とし、外壁と内壁とを電気的に絶縁し、さらに基体
と成膜室の内壁との間に電界がかかるように成膜室内壁
に電圧をかけることが必要であるとの知見を得た。
The present inventor has conducted extensive studies to overcome the above-mentioned problems in the conventional apparatus, and as a result, in order to obtain a stable and high-quality deposited film at high speed in the microwave plasma CVD apparatus, the film formation is performed. The wall forming the chamber has a double structure of an outer wall and an inner wall, the outer wall and the inner wall are electrically insulated, and a voltage is applied to the inner wall of the film forming chamber so that an electric field is applied between the substrate and the inner wall of the film forming chamber. We have found that it is necessary to apply

【0017】この電界には次の効果がある。This electric field has the following effects.

【0018】すなわち、例えば、成膜室の内壁に正の電
位を加え、基体をアースに落とした場合、成膜室と基体
との間に電界が生じ、その電界の方向が全て成膜室の内
壁から基体に向かうようになる。従って、プラズマの分
布が、基体の近くと成膜室の内壁の近くとで異なるた
め、成膜に主体的に寄与する中性ラジカル粒子の分布も
基体近くと成膜室の内壁近くとでは異なってくる。その
結果、適当な大きさの電界を加えることにより、基体上
にできるだけ選択的に、堆積膜を堆積できるようにな
る。しかも、成膜に主体的に寄与する中性ラジカル粒子
の密度が基体近くで高くなるようにすることで良質の堆
積膜を高速に堆積できる。
That is, for example, when a positive potential is applied to the inner wall of the film forming chamber and the substrate is grounded, an electric field is generated between the film forming chamber and the substrate, and the direction of the electric field is entirely in the film forming chamber. It goes from the inner wall toward the substrate. Therefore, since the distribution of plasma is different near the substrate and near the inner wall of the film forming chamber, the distribution of neutral radical particles that mainly contribute to film formation is also different near the substrate and near the inner wall of the film forming chamber. Come on. As a result, it becomes possible to deposit the deposited film on the substrate as selectively as possible by applying an electric field of an appropriate magnitude. Moreover, a high-quality deposited film can be deposited at high speed by increasing the density of the neutral radical particles that mainly contribute to film formation near the substrate.

【0019】逆に、成膜室の内壁に堆積する膜の堆積速
度を低下させることができるので、成膜室の内壁に堆積
した膜が剥離して基体に付着してしまうといったことが
起こりにくくなる。
On the contrary, since the deposition rate of the film deposited on the inner wall of the film forming chamber can be reduced, it is difficult for the film deposited on the inner wall of the film forming chamber to peel off and adhere to the substrate. Become.

【0020】さらに電界により加速されたイオン種が基
体上にボンバードを起こすことにより、堆積膜に局部的
にアニールを行ない、膜中のストレスを緩和し、欠陥を
減少させることで良質の堆積膜を得ることができる。
Further, the ion species accelerated by the electric field cause bombarding on the substrate, whereby the deposited film is locally annealed, stress in the film is relaxed, and defects are reduced, so that a good-quality deposited film is formed. Obtainable.

【0021】なお、本発明において発生させる好ましい
電界の強度は、原料ガス等の種類によっても異なるが、
15V/cm以上500V/cm以下が好ましく、30
V/cm以上150V/cm以下がより好ましい。かか
る範囲の電界強度の場合、成膜速度の向上、及び膜の電
気特性の向上がより一層認められる。
The preferable strength of the electric field generated in the present invention varies depending on the type of raw material gas and the like.
15 V / cm or more and 500 V / cm or less are preferable, and 30
V / cm or more and 150 V / cm or less are more preferable. When the electric field strength is within such a range, the film formation rate and the electric characteristics of the film are further improved.

【0022】本発明では堆積膜の原料ガスとしては、例
えば、シラン(SiH4)、ジシラン(Si26)等の
アモルファスシリコン形成原料ガス、ゲルマン(GeH
4)等の他の機能性堆積膜形成原料ガス又は、それらの
混合ガスが挙げられる。
In the present invention, the source gas for the deposited film is, for example, amorphous silicon forming source gas such as silane (SiH 4 ) or disilane (Si 2 H 6 ), germane (GeH).
Other functional deposited film forming raw material gases such as 4 ) or a mixed gas thereof can be used.

【0023】希釈ガスとしては水素(H2)、アルゴン
(Ar)、ヘリウム(He)、等が挙げられる。
Examples of the diluent gas include hydrogen (H 2 ), argon (Ar) and helium (He).

【0024】また、堆積膜のバンドキャップ巾を変化さ
せる等の特性改善ガスとして、窒素(N2)、アンモニ
ア(NH3)等の窒素原子を含む元素、酸素(O2)、酸
化窒素(NO)、酸化二窒素(N2O)等酸素原子を含
む元素、メタン(CH4)、エタン(C26)エチレン
(C24)、アセチレン(C22)、プロパン(C
38)等の炭化水素、四フッ化ケイ素(SiF4)、六
フッ化二ケイ素(Si26)、四フッ化ゲルマニウム
(GeF4)等のフッ素化物又はこれらの混合ガスが挙
げられる。
Further, as a characteristic improving gas for changing the band cap width of the deposited film, an element containing a nitrogen atom such as nitrogen (N 2 ) or ammonia (NH 3 ), oxygen (O 2 ), nitric oxide (NO ), Elements containing oxygen atoms such as dinitrogen oxide (N 2 O), methane (CH 4 ), ethane (C 2 H 6 ) ethylene (C 2 H 4 ), acetylene (C 2 H 2 ), propane (C
Hydrocarbons such as 3 H 8 ), fluorinated compounds such as silicon tetrafluoride (SiF 4 ), disilicon hexafluoride (Si 2 F 6 ), germanium tetrafluoride (GeF 4 ), or a mixed gas thereof. ..

【0025】又、ドーピングを目的としてジボラン(B
76)、フッ化硼素(BF3)、ホスフィン(PH3)等
のドーパントガスを同時に放電空間(成膜空間)に導入
しても本発明は同様に有効である。
For the purpose of doping, diborane (B
The present invention is similarly effective even if a dopant gas such as 7 H 6 ), boron fluoride (BF 3 ) or phosphine (PH 3 ) is simultaneously introduced into the discharge space (film forming space).

【0026】基体材質としては、例えば、ステンレス、
Al、Cr、Mo 、Au、In、Nb、Te、V、T
i、Pt、Pd、Fe等の金属、これらの合金又は表面
を導電処理したポリカーボネート等の合成樹脂、ガラ
ス、セラミック、紙等が本発明では通常使用される。
The base material is, for example, stainless steel,
Al, Cr, Mo , Au, In, Nb, Te, V, T
Metals such as i, Pt, Pd, and Fe, their alloys or surfaces
Conductive treated polycarbonate and other synthetic resins, glass
Soot, ceramics, paper, etc. are commonly used in the present invention.

【0027】基体の短手方向は、10mm以上が好まし
く、特に、20mm以上500mm以下に最適である。基体
の長さには特に制限はなく、帯状基体を用いた連続成膜
にも適用できる。
The lateral direction of the substrate is preferably 10 mm or more, and most preferably 20 mm or more and 500 mm or less. The length of the substrate is not particularly limited, and it can be applied to continuous film formation using a strip substrate.

【0028】本発明での堆積膜形成時の基体の温度はい
ずれの温度でも有効だが、特に20℃以上500℃以下
が好ましく、50℃以上450℃以下がより良好な効果
を示すためより好ましい。
The temperature of the substrate during the formation of the deposited film in the present invention is effective at any temperature, but it is particularly preferably 20 ° C. or higher and 500 ° C. or lower, and more preferably 50 ° C. or higher and 450 ° C. or lower because it exhibits better effects.

【0029】本発明でのマイクロ波の反応炉までの導入
方法として例えば導波管又は同軸ケーブルによる方法が
挙げられ、反応炉内への導入は、1つ又は複数の誘電体
窓からの導入、又は炉内へアンテナを設置する方法が挙
げられる。このとき、炉内へのマイクロ波の導入窓の材
質としては、アルミナ、窒化アルミニウム、窒化ケイ
素、炭化ケイ素、酸化ケイ素、酸化ベリリウム、テフロ
ン、ポリスチレン等マイクロ波の損出の少ない材料が通
常使用される。
Examples of the method of introducing microwaves to the reaction furnace in the present invention include a method using a waveguide or a coaxial cable. The introduction into the reaction furnace is performed through one or a plurality of dielectric windows. Alternatively, a method of installing the antenna in the furnace may be used. At this time, as a material for the introduction window of the microwave into the furnace, materials such as alumina, aluminum nitride, silicon nitride, silicon carbide, silicon oxide, beryllium oxide, Teflon, polystyrene, etc. which are less likely to cause microwave loss are usually used. It

【0030】[0030]

【実施例】以下、本発明による実施例を図面を用い詳し
く説明するが、本発明の範囲は、これによって限定され
るものではない。
Embodiments of the present invention will now be described in detail with reference to the drawings, but the scope of the present invention is not limited thereto.

【0031】(実施例1)図1は、実施例1で使用した
堆積膜形成装置の透視略図である。
Example 1 FIG. 1 is a schematic perspective view of a deposited film forming apparatus used in Example 1.

【0032】図1において、101は成膜室であり、真
空気密化構造を成している。102はマイクロ波電力を
成膜室内に効率良く透過し、かつ真空気密を保持し得る
ような材料、例えば、石英ガラス、アルミナセラミック
等で形成された誘電体窓である。103はマイクロ波の
伝送部で主として金属性の導波管からなっており、整合
器アイソレーターを介してマイクロ波電源(図示せず)
に接続されている。104は一端が成膜室101内に開
口し、他端が排気装置(図示せず)に連通している排気
管である。105は堆積膜形成用の基体であり、106
は成膜空間を示す。
In FIG. 1, 101 is a film forming chamber, which has a vacuum airtight structure. Reference numeral 102 denotes a dielectric window formed of a material capable of efficiently transmitting microwave power into the film forming chamber and maintaining vacuum tightness, for example, quartz glass or alumina ceramic. Reference numeral 103 denotes a microwave transmission section, which is mainly composed of a metal waveguide, and a microwave power source (not shown) via a matching device isolator.
It is connected to the. An exhaust pipe 104 has one end opening into the film forming chamber 101 and the other end communicating with an exhaust device (not shown). Reference numeral 105 denotes a substrate for forming a deposited film, and 106
Indicates a film forming space.

【0033】107はヒーターが内蔵された基体ホルダ
ーあでる。108は原料ガス供給管であり、本例では、
絶縁体112により後述する内壁と電気的に絶縁されて
いる。
Reference numeral 107 designates a base holder having a built-in heater. Reference numeral 108 is a source gas supply pipe, and in this example,
The insulator 112 electrically insulates the inner wall described later.

【0034】109は成膜室の内壁、110は成膜室外
壁を示す。すなわち、成膜室を形成する壁は、内壁10
9と外壁110との2重構造となっている。内壁109
と外壁110とは絶縁層(図示せず)によって電気的に
絶縁されている。また、内壁109は、絶縁体113に
より基体ホルダー107と電気的に絶縁されている。本
例では、内壁109に電圧を印加するための手段は電源
111と配線114とにより構成され、配線114の一
端は内壁109に電気的に接続されている。もちろん配
線114は外壁110から電気的に絶縁されている。
Reference numeral 109 denotes an inner wall of the film forming chamber, and 110 denotes an outer wall of the film forming chamber. That is, the wall forming the film forming chamber is the inner wall 10
It has a double structure of 9 and the outer wall 110. Inner wall 109
The outer wall 110 and the outer wall 110 are electrically insulated by an insulating layer (not shown). Further, the inner wall 109 is electrically insulated from the base body holder 107 by the insulator 113. In this example, the means for applying a voltage to the inner wall 109 is composed of the power supply 111 and the wiring 114, and one end of the wiring 114 is electrically connected to the inner wall 109. Of course, the wiring 114 is electrically insulated from the outer wall 110.

【0035】本堆積膜形成装置による堆積膜形成はバイ
アス電圧を内壁109に加えて、成膜空間内に電界をか
けること以外は、従来技術で示した堆積膜形成装置と同
様に行なう。
The deposited film formation by the present deposited film forming apparatus is performed in the same manner as the deposited film forming apparatus shown in the prior art except that a bias voltage is applied to the inner wall 109 and an electric field is applied in the film forming space.

【0036】図1に示した装置を用いて、表1に示す条
件で基体105上にアモルファスシリコン膜を堆積し
た。
Using the apparatus shown in FIG. 1, an amorphous silicon film was deposited on the base 105 under the conditions shown in Table 1.

【0037】基体は、30cm角、厚さ0.1mmの表面
を鏡面研磨したSUS304ステンレスを用いた。ま
た、マイクロ波電源は日本高周波製(2.45GHz)
のものを用いた。
The substrate used was SUS304 stainless steel having a 30 cm square and 0.1 mm thick surface mirror-polished. The microwave power source is made by Japan High Frequency (2.45 GHz).
I used the one.

【0038】[0038]

【表1】 本例では、基体105はアースにとり、成膜室101の
内壁109に電圧を加え、前記基体105と成膜室10
1の内壁109との間に電界をかけた状態でその電界の
強度を変えて、アモルファスシリコン膜を堆積した。
[Table 1] In this example, the substrate 105 is grounded, and a voltage is applied to the inner wall 109 of the film forming chamber 101 so that the substrate 105 and the film forming chamber 10 are connected to each other.
An amorphous silicon film was deposited by changing the strength of the electric field while applying an electric field to the inner wall 109 of No. 1.

【0039】図2には電界の強度のと成膜速度との関係
を示し、図3には電界の強度と導電率との関係を示す。
FIG. 2 shows the relationship between the strength of the electric field and the film formation rate, and FIG. 3 shows the relationship between the strength of the electric field and the conductivity.

【0040】但し、図2の横軸は基体表面近傍の電界の
強度、縦軸は、触針式の膜厚計で測定した膜厚から求め
た成膜速度をあらわす。
However, the horizontal axis in FIG. 2 represents the strength of the electric field in the vicinity of the substrate surface, and the vertical axis represents the film formation rate obtained from the film thickness measured by a stylus type film thickness meter.

【0041】図3の横軸は基体の表面近傍の電界の強
度、縦軸は堆積膜表面にITO透明導電膜をつけ、ステ
ンレス基体との間で測定した導電率を示す(光導電率は
AM1.5、100mW照射時の値)。
The abscissa of FIG. 3 shows the electric field strength near the surface of the substrate, and the ordinate shows the conductivity measured with the ITO transparent conductive film on the surface of the deposited film (the photoconductivity is AM1). 0.5, value at 100 mW irradiation).

【0042】これらの結果から、次の知見が得られた。From these results, the following findings were obtained.

【0043】負電界がかかった基体では、基体の表面近
傍の電界により変化したプラズマの広がりの効果と、プ
ラスイオンが基体表面をボンバードしたアニールする効
果により、15V/cm以上の電界から、成膜速度の向
上と、電気特性導電率の向上とが得られた(図2、図
3) この効果は、30V/cmでほぼ最大に達し、電界が1
00V/cmまでは、一定の効果が得られた。ところ
が、電界が150V/cm以上になると、成膜速度は一
定のままであるが、暗導電率は増加し、光導電率は、低
下しはじめる。これは基体に対するボンバードが過剰と
なり、ボンバードによる膜中のダングリングボンドの発
生等の構造の破壊による劣化の効果がアニールによるス
トレスの解消の効果に対して無視できなくなるためと考
えられる。
In the case of a substrate to which a negative electric field is applied, film formation is performed from an electric field of 15 V / cm or more due to the effect of plasma expansion changed by the electric field near the surface of the substrate and the effect of annealing by bombarding the substrate surface with positive ions. An improvement in speed and an improvement in electrical characteristic conductivity were obtained (FIGS. 2 and 3). This effect reached almost the maximum at 30 V / cm, and the electric field was 1
Up to 00 V / cm, a certain effect was obtained. However, when the electric field is 150 V / cm or more, the film formation rate remains constant, but the dark conductivity increases and the photoconductivity starts to decrease. It is considered that this is because the bombardment against the substrate becomes excessive and the effect of deterioration due to structural destruction such as generation of dangling bonds in the film due to bombardment cannot be ignored with respect to the effect of stress relief by annealing.

【0044】また、全ての実験が終了した後でも成膜室
の内壁に堆積した堆積膜の剥離は認められなかった。
Further, no peeling of the deposited film deposited on the inner wall of the film forming chamber was observed even after all the experiments were completed.

【0045】(比較例1)図6で示した従来例の装置を
用い、実施例1と全く同じ条件(表1)で、アモルファ
スシリコン膜を堆積した。
(Comparative Example 1) An amorphous silicon film was deposited under exactly the same conditions as in Example 1 (Table 1) using the conventional apparatus shown in FIG.

【0046】このとき、基体205と成膜室201の壁
209とをアースにとり、バイアス印加棒208に電圧
を加え、成膜空間206内に電界をかけた状態でその電
界の強度を変えてアモルファスシリコン膜を堆積した。
At this time, the substrate 205 and the wall 209 of the film forming chamber 201 are grounded, a voltage is applied to the bias applying rod 208, and an electric field is applied in the film forming space 206 to change the strength of the electric field and the amorphous state. A silicon film was deposited.

【0047】図4には電界の強度と成膜速度との関係を
示し、図5には電界の強度と導電率との関係を示す。
FIG. 4 shows the relationship between the strength of the electric field and the film formation rate, and FIG. 5 shows the relationship between the strength of the electric field and the conductivity.

【0048】但し、図4の横軸は基体表面近傍の電界の
強度を、縦軸は触針式の膜厚計で測定した膜厚から求め
た成膜速度をあらわす。
However, the horizontal axis of FIG. 4 represents the strength of the electric field in the vicinity of the substrate surface, and the vertical axis represents the film formation rate obtained from the film thickness measured by a stylus type film thickness meter.

【0049】図5の横軸は基体表面近傍の電界の強度
を、縦軸は、堆積膜表面にITO透明導電膜をつけ、ス
テンレス基体との間で測定した導電率を示す(光導電率
はAM1.5、100mW照射時の値)。
In FIG. 5, the horizontal axis represents the electric field strength near the surface of the substrate, and the vertical axis represents the conductivity measured with the ITO transparent conductive film on the surface of the deposited film (the photoconductivity is AM 1.5, value at 100 mW irradiation).

【0050】これらの結果から、実施例1と同様に15
V/cm以上の電界から、成膜速度と電気特性の向上が
認められ、この効果は、30V/cmでほぼ最大に達し
た。しかしながら、実施例1の効果と比較すると、成膜
速度において実施例1の方が最大5%高く、また光導電
率と暗導電率との比においても、実施例1の方がかなり
大きくなっている。
From these results, as in Example 1, 15
From the electric field of V / cm or more, the film formation rate and the electric characteristics were improved, and this effect reached a maximum at 30 V / cm. However, in comparison with the effect of Example 1, the film forming rate of Example 1 is higher by up to 5%, and the ratio of photoconductivity to dark conductivity is also significantly higher in Example 1. There is.

【0051】また、本比較例1の全ての実験が終了した
後成膜室内を観察すると、成膜室の壁内表面に堆積した
堆積膜の剥離がわずかにみられた。
Further, when the inside of the film forming chamber was observed after all the experiments of this Comparative Example 1 were completed, a slight separation of the deposited film deposited on the inner surface of the wall of the film forming chamber was observed.

【0052】このように、基体と成膜室の内壁との間に
電界をかけることにより、成膜速度は高まり、電気特性
は向上し、さらに成膜室の内壁の表面に堆積する膜の堆
積速度を低下できることが判明した。
As described above, by applying an electric field between the substrate and the inner wall of the film forming chamber, the film forming rate is increased, the electrical characteristics are improved, and the film deposited on the surface of the inner wall of the film forming chamber is deposited. It turns out that the speed can be reduced.

【0053】(実施例2、比較例2)図1、図6に示し
た装置を用いてそれぞれ表2に示す条件で基体上にアモ
ルファスシリコンゲルマニウム膜を堆積した。
Example 2 and Comparative Example 2 An amorphous silicon germanium film was deposited on a substrate under the conditions shown in Table 2 using the apparatus shown in FIGS. 1 and 6.

【0054】実施例1、比較例1と同様に成膜室の内壁
に電圧を加えた場合の方が従来例であるバイアス電圧印
加棒に電圧を加えた場合よりも成膜速度は大きくなり、
また光導電率と暗導電率との比も同様に大きくなった。
また、電界と導電率との関係は実施例1や比較例1と同
様っであった。つまり、15V/cm以上の電界から成
膜速度と電気特性の向上が認められ、この効果は30V
/cmでほぼ最大に達し、電界が100V/cmまでは
一定の効果が得られた。ところが電界が150V/cm
以上になると、逆に暗導電率は増加し、光導電率は低下
しはじめた。
As in Example 1 and Comparative Example 1, when the voltage was applied to the inner wall of the film forming chamber, the film forming rate was higher than when the voltage was applied to the bias voltage applying rod which is the conventional example.
The ratio of photoconductivity to dark conductivity also increased.
The relationship between the electric field and the conductivity was the same as in Example 1 and Comparative Example 1. That is, an improvement in film formation rate and electrical characteristics was observed from an electric field of 15 V / cm or more, and this effect was 30 V.
/ Cm, the maximum was reached, and a certain effect was obtained up to an electric field of 100 V / cm. However, the electric field is 150 V / cm
On the contrary, the dark conductivity increased and the photoconductivity started to decrease.

【0055】[0055]

【表2】 (実施例3)放電を安定する目的で、原料ガスと同時に
放電を安定させるガスを放電空間に導入し、堆積膜を形
成した。
[Table 2] (Example 3) For the purpose of stabilizing the discharge, a gas for stabilizing the discharge was introduced into the discharge space at the same time as the raw material gas to form a deposited film.

【0056】本実施例では、放電を安定させるガスとし
ては、アルゴンAr及び四フッ化ケイ素SiF4を用い
た。表2及び表3に示す条件に従い、実施例1と同様に
基体に、電圧を印加した結果、放電の安定化のために、
電気特性の向上が、放電を安定されるガスなしの場合よ
り上まわっていた以外は、実施例1と同様の結果が得ら
れた。
In this example, argon Ar and silicon tetrafluoride SiF 4 were used as the gas for stabilizing the discharge. According to the conditions shown in Tables 2 and 3, a voltage was applied to the substrate in the same manner as in Example 1, and as a result, in order to stabilize the discharge,
The same results as in Example 1 were obtained, except that the improvement in electrical characteristics was superior to that in the case of no gas for stabilizing the discharge.

【0057】このとき、Ar及びSiF4 の比率を0.
1%〜25%まで変えたところ、電気特性の向上分の絶
対値が、混合比によって変化するものの、電界が15V
/cm以上500V/cm以下好ましくは30V/cm
以上300V/cm以下では成膜速度の向上及び電気特
性の向上が認められた。
At this time, the ratio of Ar and SiF 4 is set to 0.
When changed from 1% to 25%, the absolute value of the improvement in electrical characteristics changes depending on the mixing ratio, but the electric field is 15 V.
/ Cm or more and 500 V / cm or less, preferably 30 V / cm
Above 300 V / cm, it was confirmed that the film formation rate and the electrical characteristics were improved.

【0058】SiF4が25%以下では、いずれの場合
も、本発明は効果があるが特に、SiF4 が2%から1
5%の範囲は大きな効果が認められた。
[0058] In the SiF 4 is 25% or less, in any case, the present invention particularly, but is effective, SiF 4 from 2% 1
A large effect was recognized in the range of 5%.

【0059】[0059]

【発明の効果】本発明によれば、成膜室の内壁に電圧印
加手段を設けて、成膜空間内に電界をかけられるように
することで、堆積膜の特性を向上させ、成膜速度を高め
ることができる。
According to the present invention, the voltage applying means is provided on the inner wall of the film forming chamber so that an electric field can be applied in the film forming space, whereby the characteristics of the deposited film are improved and the film forming rate is improved. Can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の特徴を最もよくあらわした、堆積膜形
成装置の透視略図。
FIG. 1 is a perspective schematic view of a deposited film forming apparatus that best shows the features of the present invention.

【図2】本発明の装置を用いた場合の電界と成膜速度と
の関係を示すグラフ。
FIG. 2 is a graph showing a relationship between an electric field and a film formation rate when the device of the present invention is used.

【図3】本発明の装置を用いた場合の電界と導電率との
関係を示すグラフ。
FIG. 3 is a graph showing the relationship between electric field and conductivity when the device of the present invention is used.

【図4】従来の装置を用いた場合の電界と成膜速度との
関係を示すグラフ。
FIG. 4 is a graph showing a relationship between an electric field and a film formation rate when a conventional device is used.

【図5】従来の装置を用いた場合の電界と導電率との関
係を示すグラフ。
FIG. 5 is a graph showing the relationship between electric field and electric conductivity when a conventional device is used.

【図6】従来の堆積膜形成装置の透視略図。FIG. 6 is a schematic perspective view of a conventional deposited film forming apparatus.

【符号の説明】[Explanation of symbols]

101 成膜室、 102 誘電体窓、 103 導波管、 104 排気管、 105 基体、 106 成膜空間(放電空間)、 107 基体ホルダー、 108 原料ガス供給管、 109 内壁、 110 外壁、 111 電源、 112 絶縁体、 113 絶縁体、 114 配線、 201 成膜室、 202 誘電体窓、 203 導波管 204 排気管、 205 基体、 206 成膜空間(放電空間)、 207 基体ホルダー、 208 原料ガス供給管兼バイアス電圧印加棒、 209 壁。 101 deposition chamber, 102 dielectric window, 103 waveguide, 104 exhaust pipe, 105 substrate, 106 deposition space (discharge space), 107 substrate holder, 108 source gas supply pipe, 109 inner wall, 110 outer wall, 111 power supply, 112 insulator, 113 insulator, 114 wiring, 201 film forming chamber, 202 dielectric window, 203 waveguide 204 exhaust pipe, 205 substrate, 206 film forming space (discharge space), 207 substrate holder, 208 source gas supply pipe A bias voltage applying rod, 209 wall.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空気密が可能な成膜室と、前記成膜室
内の成膜空間を排気する排気手段と、前記成膜空間内に
反応ガスを導入する手段と、前記成膜空間内にマイクロ
波を導入するための手段と、堆積膜を形成するための基
体を前記成膜室内において保持するための保持手段とを
少なくとも有し、前記成膜空間内を前記排気手段により
排気し、前記成膜空間内に反応ガス及びマイクロ波エネ
ルギーを導入し、導入したマイクロ波エネルギーにより
励起されるグロー放電により、前記基体上に堆積膜を形
成する堆積膜形成装置において、前記成膜室を形づくる
壁を、相互に電気的に絶縁された内壁と外壁との2重構
造とし、かつ、前記成膜室の内壁に電圧を印加するため
の手段を設けたことを特徴とする堆積膜形成装置。
1. A film forming chamber capable of being airtight in vacuum, an exhaust unit for exhausting a film forming space in the film forming chamber, a unit for introducing a reaction gas into the film forming space, and an inside of the film forming space. At least a means for introducing a microwave and a holding means for holding a substrate for forming a deposited film in the film forming chamber, the inside of the film forming space is exhausted by the exhausting means, A wall forming the film forming chamber in a deposited film forming apparatus for forming a deposited film on the substrate by introducing a reactive gas and microwave energy into the film forming space and glow discharge excited by the introduced microwave energy. Is a double structure of an inner wall and an outer wall electrically insulated from each other, and means for applying a voltage is provided on the inner wall of the film forming chamber.
【請求項2】 成膜空間内を排気し、前記成膜空間内に
反応ガス及びマイクロ波エネルギーを導入し、導入した
マイクロ波エネルギーにより励起されるグロー放電によ
り、基体上に堆積膜を形成する堆積膜形成方法におい
て、前記成膜室の内壁と基体との間に電位差をもたせな
がら成膜を行うことを特徴とする堆積膜形成方法。
2. A deposition film is formed on a substrate by evacuating the film forming space, introducing a reaction gas and microwave energy into the film forming space, and performing glow discharge excited by the introduced microwave energy. In the deposited film forming method, the film is formed while a potential difference is provided between the inner wall of the film forming chamber and the substrate.
JP27473491A 1991-09-26 1991-09-26 Device and method for depositing film Pending JPH0590175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27473491A JPH0590175A (en) 1991-09-26 1991-09-26 Device and method for depositing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27473491A JPH0590175A (en) 1991-09-26 1991-09-26 Device and method for depositing film

Publications (1)

Publication Number Publication Date
JPH0590175A true JPH0590175A (en) 1993-04-09

Family

ID=17545839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27473491A Pending JPH0590175A (en) 1991-09-26 1991-09-26 Device and method for depositing film

Country Status (1)

Country Link
JP (1) JPH0590175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236810B1 (en) 1996-12-03 2001-05-22 Komatsu, Ltd. Fluid temperature control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236810B1 (en) 1996-12-03 2001-05-22 Komatsu, Ltd. Fluid temperature control device

Similar Documents

Publication Publication Date Title
US6065425A (en) Plasma process apparatus and plasma process method
Kakiuchi et al. Atmospheric-pressure low-temperature plasma processes for thin film deposition
US5443645A (en) Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
CA1323528C (en) Method for preparation of multi-layer structure film
EP1188847B1 (en) Plasma processing method and apparatus
JPH0510428B2 (en)
JPH11243062A (en) Method and device for plasma cvd
JP3630831B2 (en) Method for forming deposited film
US5433790A (en) Deposit film forming apparatus with microwave CVD method
US5449880A (en) Process and apparatus for forming a deposited film using microwave-plasma CVD
JPH0590175A (en) Device and method for depositing film
JPH0790591A (en) Microwave plasma cvd system and formation of deposited film
KR100256192B1 (en) Plasma process apparatus and plasma process method
KR100269930B1 (en) Plasma processing apparatus and plasma processing method
JPH09268370A (en) Plasma cvd system and formation of deposited film by plasma cvd
JP2695155B2 (en) Film formation method
JP2925310B2 (en) Deposition film formation method
JPH11131244A (en) High-frequency electrode for plasma generation, plasma cvd device composed by the electrode, and plasma cvd method
JP2867150B2 (en) Microwave plasma CVD equipment
JP3347383B2 (en) Microwave plasma processing equipment
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP2553337B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPH0426764A (en) Built-up film forming device
JPH05291149A (en) Plasma cvd device
JP2001335944A (en) System and method for plasma treatment