JPH03242576A - Method for distinguishing underwater sound source - Google Patents

Method for distinguishing underwater sound source

Info

Publication number
JPH03242576A
JPH03242576A JP4012790A JP4012790A JPH03242576A JP H03242576 A JPH03242576 A JP H03242576A JP 4012790 A JP4012790 A JP 4012790A JP 4012790 A JP4012790 A JP 4012790A JP H03242576 A JPH03242576 A JP H03242576A
Authority
JP
Japan
Prior art keywords
sound source
underwater
water
autocorrelation
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4012790A
Other languages
Japanese (ja)
Inventor
Kunio Kondo
邦夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4012790A priority Critical patent/JPH03242576A/en
Publication of JPH03242576A publication Critical patent/JPH03242576A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically distinguish an underwater sound source from a surface sound source by placing an underwater microphone located at a distance within three times a depth of water from a water bottom directly under the sound source and using time difference wherein autocorrelation of an acoustic signal received by the microphone is maximum. CONSTITUTION:An underwater microphone 1 is located at a distance L three times a depth of water D from a position directly under a sound source 6. A signal S(t) 4 of the sound source received by the underwater microphone 1 is input to a correlation unit 2. The correlation unit 2 calculates an absolute value ¦R(t)¦ 5 of autocorrelation according to an equation. A distinguishing unit 3 calculates tau for which the absolute value of the autocorrelation ¦R(tau)¦ is a maximum, and when the value is larger than D/C, the sound source is determined to be on the surface and when the value is smaller than D/C, the sound source is determined to be in the water. C refers to the velocity of sound in the water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水中音源判別方式、特に、音源が海峡等の狭い
航路帯を通過する場合における水中音源と水上音源とを
自動的に判別する水中音源判別方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an underwater sound source discrimination method, particularly an underwater sound source that automatically discriminates between an underwater sound source and an above-water sound source when the sound source passes through a narrow channel zone such as a strait. Concerning sound source discrimination method.

〔従来の技術〕[Conventional technology]

従来、この種の判別は、目視又はレーダーによる水上音
源の有無の確認により行っていた。
Conventionally, this type of discrimination has been performed visually or by confirming the presence or absence of an underwater sound source using radar.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の水中音源判別方式は、目視又はレータ−
による水上音源の有無の確認で行なっており、音響信号
のみにもとづいて自動的に水中音源と水上音源との判別
を行なうことができないという欠点がある。
The conventional underwater sound source discrimination method described above is based on visual or
The problem is that it is not possible to automatically distinguish between underwater sound sources and overwater sound sources based only on acoustic signals.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の水中音源判別方式は、水深の1/2より浅い領
域に存在する音源が水面上に存在するのか水中に存在す
るのかを判別する水中音源判別方式であって、前記音源
の直下の水底位置から水深の3倍以内の距離の水底に接
地した水中マイクロフォンと、前記水中マイクロフォン
により受信された音響信号の自己相関を求める相関部と
、前記自己相関が最大となる時間差から音源が水面上に
存在するのか水中に存在するかを判別する判別部とを備
えて構成される。
The underwater sound source discrimination method of the present invention is an underwater sound source discrimination method for discriminating whether a sound source existing in an area shallower than 1/2 of the water depth exists on the water surface or underwater, and comprises: An underwater microphone that is grounded on the bottom of the water at a distance within three times the water depth from the position; a correlation unit that calculates the autocorrelation of the acoustic signals received by the underwater microphone; and a determination unit that determines whether the water is present in the water or in the water.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の水中音源判別方式の一実施例のブロッ
ク図、第2図は第1図の実施例における音源の音の伝搬
径路で音源が水面上にある場合の説明図、第3図は第1
図の実施例における音源の音の伝搬径路で音源が水中に
ある場合の説明図である。
FIG. 1 is a block diagram of an embodiment of the underwater sound source discrimination method of the present invention, FIG. 2 is an explanatory diagram of the sound propagation path of the sound source in the embodiment of FIG. 1 when the sound source is above the water surface, and FIG. The figure is the first
FIG. 3 is an explanatory diagram of the sound propagation path of the sound source in the illustrated embodiment when the sound source is underwater;

第2図では、水面上の音源6の音は水中マイクロフォン
7に径路Psnを通って直接に受信されるとともに、径
路PSRを通って水底及び水面で反射して受信される。
In FIG. 2, the sound from the sound source 6 on the water surface is directly received by the underwater microphone 7 through a path Psn, and is also reflected from the bottom and the water surface through a path PSR and received.

第2図において、径路R3Rは、音源6から放射される
音波の反射径路のうち、水中マイクロホンに届く径路を
たどるものの中では最もS/N (信号対雑音比)が良
好となるものを対象とし、水底、水面を3分割するP、
Q点で反射する。水中マイクロフォン1を音源6の直下
から水深りの3倍の距離りとしていることは、これ以上
の距離では有効なS/Nが確保できないほぼ限界距離を
択んだものである。
In Fig. 2, the path R3R is the one with the best S/N (signal-to-noise ratio) among the reflection paths of the sound waves emitted from the sound source 6 that reach the underwater microphone. , P that divides the water bottom and water surface into three parts,
It is reflected at Q point. Setting the underwater microphone 1 at a distance three times the depth of the water from directly below the sound source 6 was chosen as a nearly limit distance beyond which an effective S/N ratio could not be secured.

さて、受信音は、音源6が発生した信号を径路PSDと
PSRを介して受け、(1)式で示す時間差で加算され
たものとなる。
Now, the received sound is obtained by receiving the signals generated by the sound source 6 via the paths PSD and PSR, and adding them with the time difference shown by equation (1).

ここでCは水中での音速である。Here, C is the speed of sound in water.

(1)式は、PSDが明らかにJ1直12であり、また
、PSRは3aで、a =  D ’ + (3戸であ
ることから容易に誘導できる。
Equation (1) can be easily derived from the fact that the PSD is clearly J1 shift 12, the PSR is 3a, and a = D' + (there are 3 houses).

第3図では、水中の音源6の音は水中マイクロフォン1
に径路PDDを通って直接に受信されるとともに、最も
S/Nがいい状態で水中マイクロフォンlに入力される
反射径路音は水中マイクロフォン1の水面に対する鏡像
点Rと音源6を結ぶ線と水面との交点Sで正反射し、径
路PDRを介して入力される。従って受信音は、これら
2つの時間差で音源6が発生した信号を加算したものと
なる。この場合の時間差は次の(2)式で示される。
In Fig. 3, the sound of underwater sound source 6 is transmitted by underwater microphone 1.
The reflected path sound that is directly received through the path PDD and input into the underwater microphone 1 with the best S/N is the line connecting the mirror image point R of the underwater microphone 1 on the water surface and the sound source 6 and the water surface. It is specularly reflected at the intersection S and is input via the path PDR. Therefore, the received sound is the sum of the signals generated by the sound source 6 with these two time differences. The time difference in this case is expressed by the following equation (2).

のτは明らかに(1)式又は(2)式で示す受信時間差
・・・・・ (2) ここで、Aは音源6の水深である。
Obviously, τ is the reception time difference shown in equation (1) or (2) (2) where A is the water depth of the sound source 6.

(2)式は、PDRは音源6とR点間の距離であり、第
3図からPDDとともにその誘導は明らかである。
In equation (2), PDR is the distance between the sound source 6 and point R, and its guidance is clear from FIG. 3 as well as PDD.

次に、第1図の実施例について、第2,3図を参照しつ
つ説明する。
Next, the embodiment shown in FIG. 1 will be described with reference to FIGS. 2 and 3.

水中マイクロフォン1で受信された音源の信号S (t
) 4は、相関部2に入力される。相関部2では(3)
式により自己相関の絶対値IR(t]5を求める。
The sound source signal S (t
) 4 is input to the correlation section 2. In correlation part 2 (3)
The absolute value of autocorrelation IR(t]5 is determined by the formula.

R(τ)1=l÷S 5(1)・5(t−τ)dtl・
・・・・・(3)ここでTは積分時間であり、0より大
きい数である。自己相関の絶対値5は音源6が水面上に
ある場合には(1)式の時間差、水中にある場合には(
2)式の時間差にτが一致するときに最大値をとる。
R(τ)1=l÷S 5(1)・5(t−τ)dtl・
(3) Here, T is the integration time and is a number greater than 0. The absolute value 5 of the autocorrelation is the time difference in equation (1) when the sound source 6 is above the water surface, and (
2) The maximum value is taken when τ matches the time difference in the equation.

判別部3は、自己相関の絶対値5のIR(τ)1のτな
変化し、その値が最大となるτを求める。こる。第4図
に示すように音源直下の水底の位置と水中マイクロフォ
ンの設置位置の距離りが水深の3倍以内(3D以下)で
音源の水深Aが水深の+自己相関の絶対値IR(τ)1
が最大となるτを水源が水中にあるものと判別する。
The determining unit 3 changes IR(τ)1 of the absolute value 5 of the autocorrelation by τ, and determines τ at which the value becomes the maximum. Koru. As shown in Figure 4, when the distance between the underwater microphone position and the underwater microphone installation position is within 3 times the water depth (3D or less), the sound source water depth A is the water depth + the absolute value of autocorrelation IR (τ). 1
The water source is determined to be underwater when τ is the maximum.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、音源直下の水底位置から
水深の3倍以内の距離に設置された水中マイクロフォン
と、水中マイクロフォンにより受信された音響信号の自
己相関を求める相関部と、自己相関が最大となる時間差
から音源が水面上に存在するのか、水中に存在するのか
を判別する判別部を有することにより音響信号のみで音
源が水面上にあるのか水中にあるのかを判別できる効果
がある。
As explained above, the present invention includes an underwater microphone installed at a distance within three times the water depth from the bottom position directly below the sound source, a correlation section that calculates the autocorrelation of the acoustic signal received by the underwater microphone, and a correlation unit that calculates the autocorrelation of the acoustic signal received by the underwater microphone. By having a discriminating part that discriminates whether the sound source is on the water surface or underwater based on the maximum time difference, it is possible to discriminate whether the sound source is on the water surface or underwater only by the acoustic signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の水中音源判別方式の一実施例を示すブ
ロック図、第2図は第1図の実施例で音源が水面にある
場合の音波伝搬径路な示す説明図、第3図は第1図の実
施例で音源が水中にある場合の音波伝搬径路を示す説明
図、第4図は第1図の実施例で自己相関の絶対値の最大
値を与える時間差と、水中マイクロフォンと音源間の距
離との関係を示す図である。 1・・・・・・水中マイクロフォン、2・・・・・・相
関部、3・・・・・・判別部、4・・・・・・水中マイ
クロフォンの受信音波S (t)、5・・・・・・自己
相関の絶対値、A・・・・・・音源の水深、D・・・・
・・水深、L・・・・・・音源直下の水底位置と水中マ
イクロフォンの設置位置間の距離。
FIG. 1 is a block diagram showing an embodiment of the underwater sound source discrimination method of the present invention, FIG. 2 is an explanatory diagram showing the sound wave propagation path in the embodiment of FIG. 1 when the sound source is on the water surface, and FIG. Fig. 4 is an explanatory diagram showing the sound wave propagation path when the sound source is underwater in the embodiment shown in Fig. 1, and Fig. 4 shows the time difference giving the maximum absolute value of autocorrelation in the embodiment shown in Fig. It is a figure which shows the relationship with the distance between. 1... Underwater microphone, 2... Correlation section, 3... Discrimination section, 4... Received sound wave S (t) of underwater microphone, 5... ... Absolute value of autocorrelation, A ... Water depth of the sound source, D ...
...Water depth, L...Distance between the water bottom position directly below the sound source and the installation position of the underwater microphone.

Claims (1)

【特許請求の範囲】[Claims] 水深の1/2より浅い領域に存在する音源が水面上に存
在するのか水中に存在するのかを判別する水中音源判別
方式であって、前記音源の直下の水底位置から水深の3
倍以内の距離の水底に設置した水中マイクロフォンと、
前記水中マイクロフォンにより受信された音響信号の自
己相関を求める相関部と、前記自己相関が最大となる時
間差から音源が水面上に存在するのか水中に存在するか
を判別する判別部とを備えて成ることを特徴とする水中
音源判別方式。
This is an underwater sound source discrimination method that determines whether a sound source existing in an area shallower than 1/2 of the water depth exists on the water surface or underwater, the method comprising:
An underwater microphone installed on the bottom of the water within twice the distance,
A correlation unit that calculates an autocorrelation of the acoustic signal received by the underwater microphone, and a discrimination unit that determines whether the sound source is on the water surface or underwater based on the time difference at which the autocorrelation is maximum. This underwater sound source discrimination method is characterized by:
JP4012790A 1990-02-20 1990-02-20 Method for distinguishing underwater sound source Pending JPH03242576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4012790A JPH03242576A (en) 1990-02-20 1990-02-20 Method for distinguishing underwater sound source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4012790A JPH03242576A (en) 1990-02-20 1990-02-20 Method for distinguishing underwater sound source

Publications (1)

Publication Number Publication Date
JPH03242576A true JPH03242576A (en) 1991-10-29

Family

ID=12572148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4012790A Pending JPH03242576A (en) 1990-02-20 1990-02-20 Method for distinguishing underwater sound source

Country Status (1)

Country Link
JP (1) JPH03242576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988090A (en) * 2011-11-24 2014-08-13 丰田自动车株式会社 Sound source detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103988090A (en) * 2011-11-24 2014-08-13 丰田自动车株式会社 Sound source detection device

Similar Documents

Publication Publication Date Title
US6421299B1 (en) Single-transmit, dual-receive sonar
US20190018124A1 (en) Echo sounding apparatus and echo sounding method
JPH03242576A (en) Method for distinguishing underwater sound source
US4982384A (en) Split beam sonar
US5089996A (en) Transducer device for acoustic log
KR20060135715A (en) Device for avoiding obstacles for high-speed multi-hulled watercraft
JP2780698B2 (en) Underwater vehicle detection device
JPH0720230A (en) Sonar depression angle controller
JP2002168937A (en) Device and method for detecting position of submerged target
JP2850871B2 (en) Active signal processing circuit
JPS6144382A (en) Active sonar apparatus
JP3039492B2 (en) Underwater detection method using active sonar and active sonar device
JP3535271B2 (en) Sonar
WO1987007949A1 (en) Detection system for subsea installations, particularly pipelines
RU2161319C1 (en) Method for detection of underwater objects on sea bound in shallow sea
JP3162873B2 (en) Ship speed measuring device
JP2982765B2 (en) Transmission level measurement device
JPH0980147A (en) Ultrasonic underwater detector
JPH04213084A (en) Active sonar device
RU2137663C1 (en) Method of breaking ice cover
JPH0560073B2 (en)
JP3106334B2 (en) Hydrophone
JP3388660B2 (en) Underwater position measurement method and device
Hermand et al. Channel‐adaptive matched filter processing of large time‐bandwidth product signals: Preliminary results
JPS61151487A (en) Sonar apparatus