JPH0324212A - Tilting spout - Google Patents
Tilting spoutInfo
- Publication number
- JPH0324212A JPH0324212A JP16012989A JP16012989A JPH0324212A JP H0324212 A JPH0324212 A JP H0324212A JP 16012989 A JP16012989 A JP 16012989A JP 16012989 A JP16012989 A JP 16012989A JP H0324212 A JPH0324212 A JP H0324212A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- refractory
- impregnated
- tilting
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 50
- 239000002184 metal Substances 0.000 claims abstract description 50
- 238000004901 spalling Methods 0.000 abstract description 26
- 230000008595 infiltration Effects 0.000 abstract description 13
- 238000001764 infiltration Methods 0.000 abstract description 13
- 239000011819 refractory material Substances 0.000 abstract description 9
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 238000000465 moulding Methods 0.000 abstract description 4
- 239000011823 monolithic refractory Substances 0.000 description 45
- 239000002893 slag Substances 0.000 description 23
- 230000003628 erosive effect Effects 0.000 description 22
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 20
- 229910001220 stainless steel Inorganic materials 0.000 description 17
- 239000010935 stainless steel Substances 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000011148 porous material Substances 0.000 description 13
- 238000005470 impregnation Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910000805 Pig iron Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000011449 brick Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 229910000655 Killed steel Inorganic materials 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 239000000155 melt Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 241000218645 Cedrus Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- -1 chamotte Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000011328 necessary treatment Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Furnace Charging Or Discharging (AREA)
- Blast Furnaces (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、傾注樋に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a tilting gutter.
[従来の技術]
高炉溶銑は、複数の高炉主樋を通じて出銑される。高炉
主樋は、その途中にスラグ樋を有し、溶跣上を被覆して
いる必要量以外のスラグを排除している。高炉主樋の下
流末端の下方には、傾注樋が配置され溶跣鍋に分配され
るようになっている。[Prior Art] Blast furnace hot metal is tapped through a plurality of blast furnace main troughs. The blast furnace main trough has a slag trough in the middle, and removes slag other than the necessary amount covering the slag. A tilting trough is arranged below the downstream end of the blast furnace main trough to distribute the melt into the ladle.
この傾注樋は、湯当り部および場当り部から分岐した複
数の溶湯通路を有し、全体が揺動可能に支持されている
。高炉主樋の末端部から落下した溶跣(必要量のスラグ
を含む)を湯当り部で受け、一方側へ樋全体を傾けるこ
とによって溶跣を鍋に分配する。This tilting gutter has a hot water contact part and a plurality of molten metal passages branching from the hot water contact part, and is supported as a whole so as to be swingable. The slag (including the necessary amount of slag) that has fallen from the end of the blast furnace main trough is received by the hot water contact part, and the sludge is distributed into the pot by tilting the entire trough to one side.
この傾注樋は、上述の通り、溶跣分配装置であるため機
械的性能が要.求されるのみならず、高温である溶銑お
よび化学的活性なスラグと直接接触スルたメ、種々の損
傷を受ける。このため、傾注樋を杉成する耐火物成形体
にも種々の厳しい性質が要求される。As mentioned above, this tilting gutter is a melt distribution device, so it requires mechanical performance. Not only is this required, but direct contact with hot hot metal and chemically active slag can cause various types of damage. For this reason, various strict properties are required of the molded refractory material used to form the pouring trough.
まず、溶銑やスラグ(以下、スラグ等という)が耐火物
成形体の気孔内に浸入するのを防止する性質(以下耐浸
入性という)を有する必要がある。First, it is necessary to have a property (hereinafter referred to as infiltration resistance) that prevents hot metal and slag (hereinafter referred to as slag etc.) from infiltrating into the pores of the refractory molded body.
これは、スラグ等が耐火物成形体の気孔内へ浸入すると
、耐火物レンガの化学的摩耗、すなわち浸食や溶損が起
り、更にそれに付随して構造的スポーリングが起こり、
耐火物成形体が破損してしまうからである。このため傾
注樋用耐火物成形体に要求される性質として、第一に耐
浸入性、耐浸食性、および耐構造的スポーリング性があ
る。This is because when slag etc. infiltrates into the pores of the refractory molded body, chemical abrasion of the refractory bricks, that is, erosion and erosion, occurs, and accompanying this, structural spalling occurs.
This is because the refractory molded body will be damaged. For this reason, the properties required of a refractory molded article for tilting troughs include infiltration resistance, erosion resistance, and structural spalling resistance.
また、傾注樋用耐火物成形体は、溶鋼による急熱に対し
て安定性を有する必要がある。すなわち、急熱による熱
応力によって起こる熱的スポーリングを防止することが
必要である。したがって、傾注樋用耐火物成形体に要求
される性質として、第二に耐熱的スポーリング性がある
。Moreover, the refractory molded body for the tilting gutter needs to have stability against rapid heating caused by molten steel. That is, it is necessary to prevent thermal spalling caused by thermal stress caused by rapid heating. Therefore, the second property required of a refractory molded article for a tilting trough is heat resistance and spalling properties.
さらに、傾注樋はその場当り部において、高炉主樋から
落下してくる溶鋼流の直撃を受けるため物理的摩耗が激
しい。場当り部の摩耗が激しくなると溶跣分配作業に多
大な影響を及ぼすこととなり、製銑操業全体に支障をき
たすことになる。Furthermore, the tilting trough is subjected to severe physical wear at the temporary part because it is directly hit by the molten steel flow falling from the blast furnace main trough. If the abrasion of the contact area becomes severe, it will have a significant impact on the smelt distribution work, and the entire ironmaking operation will be disrupted.
したがって、第三の性質として、耐摩耗性が必要である
。Therefore, wear resistance is required as a third property.
従来、傾注樋用耐火物成形体として、アルミナ・炭化ケ
イ素・黒鉛質不定形耐火物やアルミナ・シリカ質不定形
耐火物を鉄型伜に流し込んで成形した傾注撮が使用され
ていた。Conventionally, tilting molded refractories for tilting troughs have been used in which alumina/silicon carbide/graphite monolithic refractories or alumina/silica monolithic refractories are poured into iron molds and formed.
[発明が解決しようとする課題]
しかしながら、アルミナ・炭化ケイ素・黒鉛質不定形耐
火物は、その気孔内にスラグ等が浸入することによって
含有炭素が酸化され耐火物成形体自体が劣化してしまい
、二次的に浸食、耐構造的スポーリング、および熱的ス
ポーリングが起るという欠点があった。また、耐火物成
形体が劣化し耐火物強度が極端に低下するため、耐摩耗
性にも劣るという欠点があった。[Problem to be solved by the invention] However, in alumina/silicon carbide/graphite monolithic refractories, when slag etc. infiltrate the pores, the carbon contained therein is oxidized and the refractory molded body itself deteriorates. , secondary erosion, structural spalling, and thermal spalling were disadvantageous. Furthermore, since the refractory molded body deteriorates and the refractory strength is extremely reduced, there is a drawback that the abrasion resistance is also poor.
また、アルミナ・シリカ質耐火物成形体も多孔質である
ため、スラグ等の浸入を防止することができず、これに
よる浸食や構造的スポーリングを抑制することは実質的
に不可能たった。また、耐熱的スポーリング性も未だ十
分満足できるものではなかった。Further, since the alumina-siliceous refractory molded body is also porous, it is impossible to prevent the infiltration of slag and the like, and it is virtually impossible to suppress erosion and structural spalling caused by this. Moreover, the heat-resistant spalling property was still not fully satisfactory.
一般的に、スラグ等の浸入防止対策として、耐火物のち
密化が行われている。しかし、耐火物をち密化して耐浸
入性および耐浸食性を向上させると、逆に耐熱的スポー
リングが低下するという欠点がある。Generally, as a measure to prevent the infiltration of slag and the like, refractories are made denser. However, when refractories are densified to improve infiltration resistance and erosion resistance, there is a drawback in that heat-resistant spalling decreases.
このように、耐浸食性と耐熱的スポーリング性を共に向
上させることは困難なことであり、両者性質を併有する
傾注樋の開発が望まれていた。As described above, it is difficult to improve both erosion resistance and thermal spalling resistance, and it has been desired to develop a tilting gutter that has both properties.
さらに、溶鋼流による物理的摩耗に対して優れた耐摩粍
性を有する傾注樋の開発が望まれていた。Furthermore, it has been desired to develop a tilting trough that has excellent abrasion resistance against physical abrasion caused by molten steel flow.
本発明は上記事情に鑑みて為されたものであり、耐浸入
性、耐浸食性、耐構造的スポーリング性、耐熱的スポー
リング性、および耐摩耗性に優れた傾/l:樋を提供す
ることを目的とする。The present invention has been made in view of the above circumstances, and provides a gutter with excellent infiltration resistance, erosion resistance, structural spalling resistance, thermal spalling resistance, and abrasion resistance. The purpose is to
[課題を解決するための手段]
本発明の目的は、溶湯を受容する湯当り部および場当り
部から分岐する複数の溶湯通路を何する耐火部材と、前
記耐火部材を揺動可能に支持する支持部材とを具備し、
前記耐火部材が、不定形耐火物多孔体に金属を10〜7
0重量%の割合で含浸させた金属含浸耐火物成形体であ
ることを特徴とする傾注樋によって達或される。[Means for Solving the Problems] An object of the present invention is to provide a fireproof member for forming a contact portion for receiving molten metal and a plurality of molten metal passages branching from the contact portion, and a fireproof member that swingably supports the fireproof member. and a support member;
The refractory member includes a metal in an amorphous refractory porous body of 10 to 7
This is accomplished by means of a tilting trough, which is characterized by a metal-impregnated refractory molded body impregnated with a proportion of 0% by weight.
[作 用〕
本発明の傾注樋の耐火部材は、不定形耐火物成形体の気
孔内に金属を含浸させた金属含浸不定形耐火物成形体で
形威されている。不定形耐火物成形体の気孔内に金属を
含浸させることによって、その見掛け気孔率が通常の耐
火物レンガ等の見掛け気孔率より小さくなる。すなわち
、不定形耐火物成形体の気孔内に金属が充1真されてい
るので、不定形耐火物戊形体にスラグ等が浸入し難く、
耐浸入性が向上する。耐浸入性が向上するのに伴い耐浸
食性および耐構造的スポーリング性も向上する。[Function] The fireproof member of the tilting gutter of the present invention is formed of a metal-impregnated monolithic refractory molded body in which the pores of the monolithic refractory molded body are impregnated with metal. By impregnating the pores of the amorphous refractory molded body with metal, its apparent porosity becomes smaller than that of ordinary refractory bricks and the like. That is, since the pores of the monolithic refractory molded body are filled with metal, it is difficult for slag etc. to enter the monolithic refractory molded body.
Improves penetration resistance. As the infiltration resistance improves, the erosion resistance and structural spalling resistance also improve.
また、スラグ等による浸食などが小さいため、耐火物強
度の低下が小さく耐摩耗性が向上する。In addition, since erosion caused by slag and the like is small, the strength of the refractory is less reduced and wear resistance is improved.
さらに、金屈を含浸させることにより、傾注樋の熱伝導
率が向上し熱分散性が良好となり熱応力が発生し難く、
耐熱的スポーリング性も向上する。Furthermore, by impregnating Kinkutsu, the thermal conductivity of the tilting gutter is improved and heat dispersibility is improved, making it difficult for thermal stress to occur.
Heat-resistant spalling properties are also improved.
[実施例]
以下、図面を参照しながら、本発明の実施例について詳
細に説明する。[Examples] Examples of the present invention will be described in detail below with reference to the drawings.
第1a図は本発明の実施例に係る傾注樋を示す斜現図で
あり、第1b図は本発明の実施例に係る傾注樋を示す正
面図である。傾注樋1は外側が鉄皮2で覆われ、その内
側に耐火部材3が配置されている。この耐火部材3には
、場当り部4および複数の溶湯通路5が形成されている
。傾注樋1底部の鉄皮2には支持部材6が没けられてい
る。この支rf部材6は図示しない揺動装置と接続また
は一体化しており、この揺動装置による動作によって傾
注樋を揺動させ溶跣を分配することができる。FIG. 1a is a perspective view showing a tilting trough according to an embodiment of the present invention, and FIG. 1b is a front view showing a tilting trough according to an embodiment of the invention. The tilting gutter 1 is covered with an iron skin 2 on the outside, and a fireproof member 3 is arranged inside the iron skin 2. This refractory member 3 has a stop portion 4 and a plurality of molten metal passages 5 formed therein. A support member 6 is sunk into the iron skin 2 at the bottom of the tilting gutter 1. This supporting RF member 6 is connected or integrated with a swinging device (not shown), and the tilting gutter can be swinged by the operation of this swinging device to distribute the melt.
また、第1b図によると、支持部材6は金属板7に固定
されており、この金属板7には傾注樋1が揺動し過ぎな
いようにするための支持体8aおよび8bが設けられて
いる。Further, according to FIG. 1b, the support member 6 is fixed to a metal plate 7, and this metal plate 7 is provided with supports 8a and 8b to prevent the tilting gutter 1 from swinging too much. There is.
次いで、耐火部材3について詳しく説明する。Next, the fireproof member 3 will be explained in detail.
本発明において、耐火部材3は金属含浸不定形耐火物或
形体で形成されている。In the present invention, the refractory member 3 is formed of a metal-impregnated monolithic refractory or shaped body.
上述した通り、金属含浸不定形耐火物戊形体とは、不定
形耐火物或形体の気孔内に金属を含浸させたものである
。不定形耐火物成形体とは、耐火物原料とバインダーな
どの添加剤とを混合して金型に装入し、200〜600
℃の温度でベーキングしたものである。耐火物原料はど
のような材質でもよく、例えば高アルミナ質、アルミナ
・カーボン質、シャモット質、アルミナ・シリカ質、マ
グネシア質、マグネシア◆カーボン質およびアルミナ・
炭化ケイ素・黒鉛質などを用いることができる。As mentioned above, a metal-impregnated monolithic refractory body is a monolithic refractory body whose pores are impregnated with metal. A monolithic refractory molded product is produced by mixing refractory raw materials and additives such as a binder and charging the mixture into a mold.
It is baked at a temperature of ℃. The refractory raw material may be of any material, such as high alumina, alumina/carbon, chamotte, alumina/silica, magnesia, magnesia◆carbon, and alumina/carbon.
Silicon carbide, graphite, etc. can be used.
また、含浸させる金属はニッケル、ステンレス鋼、鉄、
クロムなど、どのような金属でもよい。In addition, the metals to be impregnated include nickel, stainless steel, iron,
It can be any metal, such as chromium.
また、金属は単独で含浸させることも、複数の金屈を組
合せて含浸させることもできる。Further, the metal can be impregnated alone or in combination with a plurality of metals.
金属含浸量は、耐火物レンガ等の重量に対して約10〜
70重量%の範囲内で、所望の効果が得られるよう適宜
選択する。金1714 a浸量の下限値を約10重量%
に限定した理由は、傾注樋として十分な耐熱的スポーリ
ング性の効果を得るためには、10重量%以上の金属を
含浸させる必要があるからである。また、上限値を70
重量%に限定した理由は、高温での耐摩耗性を維持しつ
つ、含浸し得る金属の最大量が約70重量%だからであ
る。The amount of metal impregnation is approximately 10 to 10% of the weight of the refractory brick, etc.
It is appropriately selected within the range of 70% by weight so as to obtain the desired effect. The lower limit of gold 1714 a immersion amount is approximately 10% by weight.
The reason for this limitation is that in order to obtain a sufficient heat-resistant spalling effect as a tilting trough, it is necessary to impregnate the metal in an amount of 10% by weight or more. Also, the upper limit is set to 70
The reason for this limitation is that the maximum amount of metal that can be impregnated while maintaining wear resistance at high temperatures is approximately 70% by weight.
さらに、傾注樋の耐火部材3全体に金属が含浸している
ことが好ましいのは当然のことであるが、特に湯当り部
4および溶湯通路5はスラグ等による損傷が激しいので
、湯当り部4および溶湯通路5の金属含浸量を他の部分
の金属含浸量より多くすることもできる。Furthermore, it is natural that it is preferable that the entire fireproof member 3 of the tilting gutter is impregnated with metal, but since the hot water contact portion 4 and the molten metal passage 5 are particularly susceptible to severe damage due to slag etc. Also, the amount of metal impregnated in the molten metal passage 5 can be made larger than the amount of metal impregnated in other parts.
以下、本発明の傾注樋の製造方法を簡単に説明する。Hereinafter, a method for manufacturing a tilting gutter according to the present invention will be briefly described.
まず初めに、所望の材質の耐火物原料とバインダーなど
の添加物とを所望の配合割合で混合し、得られた混合物
を傾注樋用金型に装入する。これヲ約350〜400℃
の温度でベーキングし、傾注樋の形状を有する不定形耐
火物戊形体を得る。First, a refractory raw material of a desired material and an additive such as a binder are mixed at a desired mixing ratio, and the resulting mixture is charged into a mold for a tilting gutter. This is about 350-400℃
A monolithic refractory body having the shape of a tilting trough is obtained by baking at a temperature of .
次いで、この不定形耐火物或形体を、含浸させる金属の
融点以上に予熱し脱気する予熱・脱気した不定形耐火物
成形体を、゛溶融金属中に浸漬し加圧する。金属含浸量
は印加する圧力と、不定形耐火物を成形する際に気孔率
を調節することによって行うことができる。その後、必
要に応じて再び研磨加工を施したり、その他必要な処理
を施し所望の傾注樋を製造する。Next, this monolithic refractory or molded body is preheated to a temperature higher than the melting point of the metal to be impregnated and degassed.The preheated and degassed monolithic refractory molded body is immersed in molten metal and pressurized. The amount of metal impregnation can be determined by adjusting the applied pressure and the porosity when molding the monolithic refractory. After that, polishing is performed again as necessary, and other necessary treatments are performed to manufacture the desired tilting trough.
以下、本発明の傾注樋の耐火部材、すなわち金属含浸不
定形耐火物成形体の試験結果を示し具体的に説明する。Hereinafter, test results of the fireproof member of the tilting gutter of the present invention, that is, the metal-impregnated monolithic refractory molded body will be shown and specifically explained.
耐浸入性および耐浸食性
上述した方法により、アルミナ質不定形耐火物成形体に
ステンレス鋼を含浸させた。ステンレス鋼含浸量は、前
記不定形耐火物成形体の重最に対して、0〜80重量。Infiltration resistance and erosion resistance An alumina monolithic refractory molded body was impregnated with stainless steel by the method described above. The amount of stainless steel impregnated is 0 to 80% by weight based on the maximum weight of the monolithic refractory molded body.
予熱・脱気した不定形耐火物威形体を、溶融金属中に浸
漬し加圧する。この方法により、不定形耐火物成形体の
気孔内に金属を含浸させることができる。その後、必要
%のあいだで変化させた。ステンレス鋼含浸量の調整は
、上述の方法において印加する圧力と、成形時おける耐
火物の気孔率とを調節することにより行うことができる
。A preheated and degassed monolithic refractory body is immersed in molten metal and pressurized. By this method, metal can be impregnated into the pores of the amorphous refractory molded body. Thereafter, it was varied between the required percentages. The amount of stainless steel impregnated can be adjusted by adjusting the pressure applied in the above method and the porosity of the refractory during molding.
このようにして製造された金属含浸不定形耐火物成形体
を、溶鋼およびスラグに8時間暴露し、不定形耐火物或
形体の気孔内に浸入したスラグの深さ(以下、スラグ浸
入深さという)と、溶鋼およびスラグによる浸食の程度
(以下、浸食指数という)を調べた。The metal-impregnated monolithic refractory molded body thus produced was exposed to molten steel and slag for 8 hours, and the depth of the slag that had penetrated into the pores of the monolithic refractory or shaped body (hereinafter referred to as slag penetration depth) was measured. ) and the degree of erosion by molten steel and slag (hereinafter referred to as the erosion index).
第2図は、横軸にステンレス鋼含浸量をとり、縦軸にス
ラグ浸入深さをとって、ステンレス鋼含浸量がスラグ浸
入深さに及ぼす影響について調べたグラフ図である。FIG. 2 is a graph showing the influence of the stainless steel impregnation amount on the slag penetration depth, with the horizontal axis representing the stainless steel impregnation amount and the vertical axis representing the slag penetration depth.
この図から明らかな通り、アルミナ質レンガの気孔内に
ステンレス鋼を含浸させることにより、スラグ浸入深さ
が小さくなることがわかった。As is clear from this figure, it was found that the slag penetration depth was reduced by impregnating the pores of the alumina brick with stainless steel.
第3図は、横軸にステンレス鋼含浸量をとり、縦軸に浸
食指数をとって、ステンレス鋼含浸量が、金屈含浸不定
形耐火物成形体の浸食に及ぼす影響について調べたグラ
フ図である。Figure 3 is a graph showing the influence of stainless steel impregnation on the erosion of Kinku-impregnated monolithic refractories, with the horizontal axis representing the stainless steel impregnation amount and the vertical axis representing the erosion index. be.
浸食指数とは、ステンレス鋼を含浸させていないアルミ
ナ質不定形耐火物成形体の浸食の程度を基準(+00)
として、種々の含浸量でステンレス鋼を含浸させたアル
ミナ質不定形耐火物成形体の浸食の程度を表わしたもの
である。すなわち、浸食指数が100未満のときは、ス
テンレス鋼を含浸させたことにより浸食が小さくなった
ことを示し、耐浸食性が向上したことを示している。Erosion index is based on the degree of erosion of an alumina monolithic refractory molded body that is not impregnated with stainless steel (+00)
, which shows the degree of corrosion of alumina monolithic refractory molded bodies impregnated with stainless steel at various impregnation amounts. That is, when the erosion index is less than 100, it indicates that the corrosion is reduced by impregnating the stainless steel, and the corrosion resistance is improved.
この図から明らかな通り、アルミナ質不定形耐火物成形
体の気孔内にステンレス鋼を含浸させることにより、不
定形耐火物成形体の浸食が小さくなることがわかった。As is clear from this figure, it was found that by impregnating the pores of the alumina-based monolithic refractory molded body with stainless steel, the erosion of the monolithic refractory molded body was reduced.
これは、ステンレス鋼を含浸させることにより、不定形
耐火物成形体の見掛け気孔率が小さくなり、スラグ等の
浸入が阻止されるためである。したがって、この効果は
ステンレス鋼の代わりに他の金属を含浸した場合にも得
られるものと推察される。This is because impregnation with stainless steel reduces the apparent porosity of the monolithic refractory molded body and prevents the infiltration of slag and the like. Therefore, it is presumed that this effect can also be obtained when other metals are impregnated instead of stainless steel.
耐熱的スポーリング性
■急冷試験
上述した方法により、アルミナシリカ質不定形耐火物或
形体レンガの気孔内に銑鉄を種々の含浸量で含浸させた
。跣鉄含浸量は、前記耐火物重量に対して、20重量%
および60重量%であった。Heat Resistance Spalling Properties - Rapid Cooling Test By the method described above, pig iron was impregnated into the pores of alumina-silica monolithic refractories or shaped bricks in various amounts. The amount of iron impregnation is 20% by weight based on the weight of the refractory material.
and 60% by weight.
このようにして製造された金属含浸不定形耐火物成形体
を、それぞれ所定の温度(l00℃ごと)まで加熱し、
その後水中で急冷してそれぞれの強度を測定した。得ら
れた各々の温度を加熱急冷前の耐火物強度で除して、強
度指数を算出した。The metal-impregnated monolithic refractory molded bodies produced in this way are heated to a predetermined temperature (every 100°C),
Thereafter, the samples were rapidly cooled in water and their respective strengths were measured. A strength index was calculated by dividing each obtained temperature by the refractory strength before heating and quenching.
なお、比較耐火物として、金属を含浸させていないアル
ミナシリカ質不定形耐火物或形体も同様の試験を行った
。As a comparative refractory, a similar test was also conducted on an alumina-siliceous monolithic refractory that was not impregnated with metal.
第4図は、横軸に不定形耐火物成形体の急冷温度差(Δ
T)をとり、縦軸に不定形耐火物成形体の強度指数をと
って、各種金属含浸量の不定形耐火物成形体の耐熱的ス
ポーリング性について間接的に調べたグラフ図である。In Figure 4, the horizontal axis shows the quenching temperature difference (Δ
It is a graph diagram in which the heat-resistant spalling properties of monolithic refractory molded bodies with various metal impregnation amounts are indirectly investigated, with T) taken and the strength index of the monolithic refractory molded bodies taken on the vertical axis.
図中において、自三角は銑鉄を20重量%含浸させたア
ルミナシリカ質不定形耐火物成形体の結果を、白四角は
銑鉄を60重量%含浸させたアルミナシリカ質不定形耐
火物成形体の結果を、白丸は比較耐火物の結果をそれぞ
れ示している。In the figure, the triangles represent the results for an alumina-silica monolithic refractory molded body impregnated with 20% by weight of pig iron, and the white squares represent the results for an alumina-siliceous monolithic refractory molded body impregnated with 60% by weight of pig iron. The white circles indicate the results for comparative refractories.
この図によると、比較耐火物は温度差が約400℃にな
ると、急激な強度低下が認められる。これに対し、銑鉄
を20重量%含浸させた金属含浸不定形耐火物成形体も
温度差が約400℃になると強度低下が認められるが、
比較耐火物の強度低下と比べると緩やかであった。また
、銑鉄を60重量%含浸させた金属含浸不定形耐火物成
形体は、温度差が約600℃になるまで加熱急冷前と同
等の強度を有し、それ以上の温度差になっても比較的緩
やかな強度低下を示した。According to this figure, when the temperature difference becomes about 400°C, the strength of the comparative refractories rapidly decreases. On the other hand, a metal-impregnated monolithic refractory molded body impregnated with 20% by weight of pig iron also exhibits a decrease in strength when the temperature difference reaches approximately 400°C.
The decrease in strength was gradual compared to that of comparative refractories. In addition, the metal-impregnated monolithic refractory molded body impregnated with 60% by weight of pig iron has the same strength as before heating and quenching until the temperature difference reaches approximately 600°C, and even when the temperature difference is greater than that, the strength is comparable. showed a gradual decrease in strength.
■曲げ強度試験
上述した方法により、アルミナ質不定形耐火物成形体の
気孔内に30重量%のアルミギルド鋼を含浸させ、室温
から1200℃の温度範囲内において、耐火物温度が2
00℃上昇するごとに曲げ強度を測定した。■Bending strength test By the method described above, 30% by weight of aluminum guild steel is impregnated into the pores of an alumina monolithic refractory molded body, and the refractory temperature is 2.
The bending strength was measured every time the temperature increased by 00°C.
なお、比較耐火物として、金属を含浸させていないアル
ミナ質不定形耐火物成形体も同様の試験を行った。As a comparative refractory, a similar test was also conducted on an alumina shaped refractory molded body that was not impregnated with metal.
第5図は、横軸に不定形耐火物成形体温度をとり、横軸
に不定形耐火物成形体の曲げ強度をとって、金屈含浸不
定形耐火物成形体と従来の不定形耐火物成形体の■げ強
度を比較したグラフ図である。Figure 5 shows the temperature of the monolithic refractory molded product on the horizontal axis and the bending strength of the monolithic refractory molded product on the horizontal axis. FIG. 3 is a graph comparing the breakage strength of molded bodies.
図中において、黒丸はアルミキルド鋼を30m量%含浸
させた不定形耐火物成形体の結果を、白丸は比較耐火物
の桔果を示している。In the figure, the black circles show the results of a monolithic refractory molded body impregnated with 30 m% of aluminum killed steel, and the white circles show the results of a comparative refractory.
この図から明らかな通り、アルミキルド鋼を含浸させた
不定形耐火物成形体は、比較耐火物と比べ、曲げ強度が
大きいことがわかった。As is clear from this figure, it was found that the monolithic refractory molded body impregnated with aluminum killed steel had higher bending strength than the comparative refractory.
以上述べた急冷試験と曲げ強度試験は、耐熱的スポーリ
ング性の大小を調べる目安となるものであり、一般に強
度および曲げ強度が大きいと耐熱的スポーリング性も大
きいと推M1することができる。The quenching test and bending strength test described above serve as a guideline for examining the magnitude of heat-resistant spalling properties, and it can be generally assumed that the greater the strength and bending strength, the greater the heat-resistant spalling properties M1.
このように、熱衝撃に対して金属含浸不定形耐火物或形
体が安定である理由は、金属を含浸させたため、熱伝導
率が上昇し熱応力が発生し難くなったためと考えられる
。The reason why metal-impregnated monolithic refractories are stable against thermal shocks is thought to be that impregnation with metal increases thermal conductivity and makes it difficult to generate thermal stress.
上述のように優れた耐浸入性、耐浸食性、耐構造的スポ
ーリング性、および耐熱的スポーリング性を有する金属
含浸不定形耐火物成形体で形成された本発明の傾注樋が
、上記金属含浸不定杉耐火物成形体と同様の効果を有す
るということは当然のことである。The tilting gutter of the present invention is formed of a metal-impregnated monolithic refractory molded body having excellent infiltration resistance, erosion resistance, structural spalling resistance, and heat-resistant spalling resistance as described above. It is a matter of course that it has the same effect as the impregnated irregular cedar refractory molded body.
以下、金属含浸不定形耐火物成形体で形成された本発明
の傾注樋を、実際に高炉主樋の下流末端部の下方に設置
して用いたー実施例を示すが、本発明は以下の実施例に
限定されるものではない。Hereinafter, an example will be shown in which a tilting gutter of the present invention formed of a metal-impregnated monolithic refractory molded body was actually installed and used below the downstream end of a blast furnace main gutter. It is not limited to the examples.
(実施例1)
アルミナ質耐火物原料と、バインダーとしてアルミナセ
メントとを完全に混合し、得られた混合物を水5 !I
! Q 96でπlnし、傾注樋用金型中に装入した。(Example 1) An alumina refractory raw material and alumina cement as a binder are completely mixed, and the resulting mixture is mixed with 5! I
! It was πln at Q96 and charged into a mold for a tilting trough.
これを450℃の温度でベーキングし、見掛け気孔率が
23容積%に調整されたアルミナ質不定形耐火物成形体
を製造した。次いで、このアルミナ質不定形耐火物成形
体をI650℃に予熱し脱気した。その後、アルミキル
ド鋼の溶湯に浸漬し、8 kg / cJの圧力を印加
してアルミキルド鋼を含浸させた。金属含浸後の見掛け
気孔率は、0.4容積%であった。This was baked at a temperature of 450° C. to produce an alumina shaped refractory molded body with an apparent porosity adjusted to 23% by volume. Next, this alumina amorphous refractory molded body was preheated to 650° C. and degassed. Thereafter, it was immersed in molten aluminum killed steel, and a pressure of 8 kg/cJ was applied to impregnate the aluminum killed steel. The apparent porosity after metal impregnation was 0.4% by volume.
このようにして製造された本発明の傾注樋を高炉主樋下
流末端部の下方に配置し、その寿命を調べた。この傾注
樋の寿命は損耗100I1−のとき終了したと判断した
。The tilting gutter of the present invention manufactured in this manner was placed below the downstream end of the blast furnace main gutter, and its lifespan was investigated. The life of this tilting trough was judged to have ended when the wear was 100I1-.
この傾注樋の寿命は、150時間であった。The life of this tilting trough was 150 hours.
(実施例2)
アルミナシリカ質耐火物原料と、バインダーとしてコロ
イダルシリ力とを完全に混合し、得られた混合物を傾注
樋用金型中に装入した。これを800℃の温度でベーキ
ングし、見掛け気孔率が25容積%に調整されたアルミ
ナシリカ質不定形耐火物成形体を製逍した。次いで、二
のアルミナシリカ質不定形耐火物成形体を1500℃に
予熱し脱気した。その後、ステンレス鋼の溶湯に浸漬し
、3 kg / cjの圧力を印加してステンレス鋼を
含浸させた。金属な浸後の見掛け気孔率は、1.4容積
%であった。(Example 2) An alumina-siliceous refractory raw material and colloidal silica as a binder were thoroughly mixed, and the resulting mixture was charged into a mold for a tilting gutter. This was baked at a temperature of 800° C. to produce an alumina-silica amorphous refractory molded body with an apparent porosity adjusted to 25% by volume. Next, the second alumina-siliceous amorphous refractory molded body was preheated to 1500°C and degassed. Thereafter, it was immersed in molten stainless steel and a pressure of 3 kg/cj was applied to impregnate the stainless steel. The apparent porosity after metallic immersion was 1.4% by volume.
このようにして製造された本発明の傾注樋を高炉主樋下
流末端部の下方に配置し、その方命を調べた。この傾注
樋の寿命は、130時間であった。The tilting gutter of the present invention thus manufactured was placed below the downstream end of the blast furnace main gutter, and its design was investigated. The life of this tilting trough was 130 hours.
(比較例)
アルミナー炭化ケイ素一黒鉛質耐火物原料と、バインダ
ーとしてアルミナセメントとを完全に混合し、得られた
混合物を水5.6重量%で混練し、傾注樋用金型中に装
入した。これを1000℃の温度でベーキングし、見掛
け気孔率が18容積%に調整されたアルミナー炭化ケイ
素一黒鉛質不定形耐火物成形体を製造した。(Comparative example) Alumina silicon carbide - graphite refractory raw material and alumina cement as a binder are completely mixed, the resulting mixture is kneaded with 5.6% by weight of water, and charged into a mold for tilting gutter. did. This was baked at a temperature of 1000° C. to produce an alumina-silicon carbide-graphite monolithic refractory molded body with an apparent porosity adjusted to 18% by volume.
このようにして製造された傾注樋を高炉主樋下流末端部
の下方に配置し、その寿命を調べた。この傾注樋の力命
は、70時間であった。The tilting gutter manufactured in this way was placed below the downstream end of the blast furnace main gutter, and its lifespan was investigated. The power life of this tilting trough was 70 hours.
[発明の効果]
本発明によれば、耐浸入性、耐浸食性、耐構造的スポー
リング性、耐熱的スポーリング性、および耐摩耗性に優
れた傾注樋が提供される。[Effects of the Invention] According to the present invention, a tilting gutter with excellent infiltration resistance, erosion resistance, structural spalling resistance, heat spalling resistance, and abrasion resistance is provided.
このように、本発明の傾注樋は耐浸入性、耐浸食性、耐
構造的スポーリング性、耐熱的スポーリング性、および
耐摩耗性が総合的に向上する結果、傾注樋の寿命を延長
することができ、製銑操業を円滑に行うことができる。Thus, the tilting gutter of the present invention has comprehensively improved infiltration resistance, erosion resistance, structural spalling resistance, thermal spalling resistance, and abrasion resistance, thereby extending the service life of the leaning gutter. This allows for smooth ironmaking operations.
第1a図は、本発明の実施例に係る傾注樋の斜視図。
第1b図は、本発明の実施例に係る傾注樋の正面図。
第2図ないし第5図は、それぞれ本発明の傾注樋を構或
する耐火部材の効果を説明するためのグラフ図。
1・・・傾注樋、2・・・鉄皮、3・・・耐火部材、4
・・・湯当り部、5・・・溶湯通路、6・・・支持部材
、7・・・金属板、8a、8b・・・支持体FIG. 1a is a perspective view of a tilting trough according to an embodiment of the present invention. FIG. 1b is a front view of a tilting gutter according to an embodiment of the present invention. FIGS. 2 to 5 are graphs for explaining the effects of the fireproof member constituting the tilting gutter of the present invention, respectively. 1...Tilting gutter, 2...Iron shell, 3...Fireproof member, 4
... Molten metal contact portion, 5... Molten metal passage, 6... Support member, 7... Metal plate, 8a, 8b... Support body
Claims (2)
する複数の溶湯通路を有する耐火部材と、前記耐火部材
を揺動可能に支持する支持部材とを具備し、 前記耐火部材が、不定形耐火物多孔体に金属を10〜7
0重量%の割合で含浸させた金属含浸耐火物成形体であ
ることを特徴とする傾注樋。(1) A fireproof member having a contact portion for receiving molten metal and a plurality of molten metal passages branching from the contact portion, and a support member that swingably supports the fireproof member, wherein the fireproof member has a non-contact part. 10 to 7 pieces of metal in a shaped refractory porous body
A tilting gutter characterized in that it is a metal-impregnated refractory molded body impregnated at a ratio of 0% by weight.
つ前記支持部材が金属板と固定されていることを特徴と
する請求項1記載の傾注樋。(2) The tilting gutter according to claim 1, wherein the metal-impregnated refractory molded body is covered with a metal plate, and the support member is fixed to the metal plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16012989A JPH0619093B2 (en) | 1989-06-22 | 1989-06-22 | Inclined gutter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16012989A JPH0619093B2 (en) | 1989-06-22 | 1989-06-22 | Inclined gutter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0324212A true JPH0324212A (en) | 1991-02-01 |
JPH0619093B2 JPH0619093B2 (en) | 1994-03-16 |
Family
ID=15708498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16012989A Expired - Lifetime JPH0619093B2 (en) | 1989-06-22 | 1989-06-22 | Inclined gutter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0619093B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0392749U (en) * | 1989-10-13 | 1991-09-20 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080123A (en) * | 2009-10-08 | 2011-04-21 | Nippon Steel Engineering Co Ltd | Tilting runner apparatus for molten iron |
-
1989
- 1989-06-22 JP JP16012989A patent/JPH0619093B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0392749U (en) * | 1989-10-13 | 1991-09-20 |
Also Published As
Publication number | Publication date |
---|---|
JPH0619093B2 (en) | 1994-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900000139B1 (en) | Refractories for slide gate | |
PL196613B1 (en) | Carbonaceous refractory and method for preparing the same | |
KR20010015859A (en) | Unburned carbon-containing refractory material and vessel for molten metal | |
JP4855339B2 (en) | Amorphous refractories and methods for producing refractories | |
JP2900605B2 (en) | Metal impregnated refractories | |
JPH0324212A (en) | Tilting spout | |
CN111732417A (en) | Scouring-resistant ultra-low-carbon magnesia-carbon brick with excellent oxidation resistance and preparation method thereof | |
US6645425B1 (en) | Refractory batch, in particular for the production of a shaped body, and process for producing the shaped body | |
JPH0118030B2 (en) | ||
JPS6348830B2 (en) | ||
JP3750927B2 (en) | Manufacturing method of refractory block for blast furnace | |
JP4323732B2 (en) | Insulating castable refractory | |
JPS62158561A (en) | Nozzle for low-temperature casting of molten steel | |
JP4234804B2 (en) | Plate brick for sliding nozzle device | |
JP2727266B2 (en) | Nozzle for continuous casting for steelmaking | |
JP4087474B2 (en) | Porous plug and manufacturing method thereof | |
JPH058020A (en) | Ladle and tundish for casting | |
JP2022062354A (en) | Lower nozzle for slide gate, and low nozzle plate for slide gate | |
JPS639908B2 (en) | ||
JPH09301782A (en) | Ceramic fiber formed article excellent in molten nonferrous metal resistance and its manufacture | |
KR100544063B1 (en) | sliding plate refractory for flow controling of molten metal | |
JP3492885B2 (en) | Slide gate plate | |
JPH0710430B2 (en) | Sliding nozzle | |
JP3692387B2 (en) | Manufacturing method of sliding gate plate | |
JP4303530B2 (en) | Method for forming lining of nozzle refractory |