JPH0324159A - Preparation of high strength, heat-and chemical-resistant polyarylene sulfide composite - Google Patents

Preparation of high strength, heat-and chemical-resistant polyarylene sulfide composite

Info

Publication number
JPH0324159A
JPH0324159A JP15879689A JP15879689A JPH0324159A JP H0324159 A JPH0324159 A JP H0324159A JP 15879689 A JP15879689 A JP 15879689A JP 15879689 A JP15879689 A JP 15879689A JP H0324159 A JPH0324159 A JP H0324159A
Authority
JP
Japan
Prior art keywords
composite
resistant
polyarylene sulfide
heat
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15879689A
Other languages
Japanese (ja)
Inventor
Masao Umezawa
正夫 梅澤
Sadao Miura
三浦 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP15879689A priority Critical patent/JPH0324159A/en
Publication of JPH0324159A publication Critical patent/JPH0324159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To improve the strength and heat and chemical resistance of a composite comprising a high-strength fibrous material and a polyarylene sulfide by irradiating the composite with rays of light. CONSTITUTION:A composite comprising a fibrous material (having a strength of 20g/d or higher, an elastic modulus of 400g/d or higher, and an aspect ratio of at least 10; e.g. glass fiber or carbon fiber) and a polyarylene sulfide (e.g. polyphenylene sulfide) and contg. at least three fibers of 10mum in diameter or thinner in each 1000 square mum of the cross section of the composite is irradiated with ultraviolet or visible rays at an illuminance of pref. 5lx or higher at above the glass transition point of the polyarylene sulfide (pref. in the range of from 50 deg.C above the glass transition point to about the m.p.) in an oxygen-contg. atmosphere until the surface of the composite becomes infusible or insol. in alpha-chloronaphthalene. Thus is obtd. a high-strength, heat- and chemical-resistant composite.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は.高強度(12)光照射が、アリーレンスルフ
ィド複合体の製法に関する.さらに詳しくは.高強度の
繊維で補強され,しかも.ポリアリーレンスルフィドは
溶剤に不溶で,かつ不融性である高強度(12)光照射
が、アリーレンスルフィド複合体の製法に関する. 〔従来の技術) ポリアリーレンスルフィドは耐熱性,耐薬品性,難燃性
等から,近年.特に展開が拡大されている.しかし,強
度が低いのは大きな欠点であった.また,熱で熔融した
り.高温の溶剤に溶解する欠点があった. かかる欠点を除去すべく本発明者らは.特開平1−98
633号公報に金属等を用いることにより不融化する提
案をしている.しかし,かかる方法の場合は,金属等の
除去が厄介である欠点があった. 一方,高強度化に関しては.硝子繊維等でポリアリーレ
ンスルフィドを補強することは広く行われている. しかし.高強度と(12)光照射が、を同時に満足する
物が無かった. 〔発明が解決しようとする課題〕 本発明の目的は,ポリアリーレンスルフィド複合体の■
強度、(2)耐熱性、(3)耐薬品性,を向上すると同
時に.■無用な物がないクリーンな複合体の製法.を提
供することにある.〔課題を解決するための手段〕 かかる現状にかんがみ,本発明者らは,従来の研究概念
に囚われることなく,鋭意検討を重ねた結果,本発明に
到達した.本発明は前記の課題を解決するため.以下の
構成を有する. 《1》  強度2 0 g/d.弾性率400g/d以
上,アスペクト比が10以上の繊維状物とポリアリーレ
ンスルフィドからなる複合体を該ポリアリーレンスルフ
ィドのガラス転位点以上の温度で光照射することを特徴
とする高強度(12)光照射が、ポリアリーレンスルフ
ィド複合体の製法(2)繊維状物が下記A〜Fの少なく
とも1fffiから選ばれたものである1に記載の高強
度(12)光照射が、ポリアリーレンスルフィド複合体
の製法A.ガラス繊維,B.炭素繊維,C.セラミンク
繊維,D.アラ文ド繊維.E.芳香族ポリイミド繊維,
F.ポリアリレート繊維および/またはポリエステルア
ミド繊維 (3)複合体は.繊維であり,かつ,該繊維の中に繊維
状物で太さが10μ以下であり.かつ複合体の横断面積
あたりの本数がiooo平方μ当り3本以上存在するl
または2に記載の高強度(12)光照射が、ポリアリー
レンスルフィド複合体の製法.(4)複合体は,繊維で
あり該繊維が織物構造を構成しているl〜3のいずれか
に記載の高強度(12)光照射が、ポリアリーレンスル
フィド複合体の製法.(5)ポリアリーレンスルフィド
が.下記A−Gの少なくとも1種から選ばれたものであ
る1に記載の高強度(12)光照射が、ポリアリーレン
スルフィド複合体の製法. A.ボリフェニレンスルフィド.B.ポリキシリレンス
ルフィド.C.ポリナフタレンスルフィド,D6ボリビ
フェニレンスルフィド ,F.ポリフェニレンスルフィ
ドヶトン.G.ボリフェニレンスルフィドスルホン. 《6》  複合体の形成が、(1)ポリアリーレンスル
フィドと熱可塑性液晶樹脂を熔融複合戒形する工程、(
2)該液晶樹脂のく融点−100)℃以上で熱処理する
工程.からなるlまたは5に記載の高強度(12)光照
射が、アリーレンスルフィド複合体の製法。
[Detailed Description of the Invention] [Industrial Application Field] The present invention... High intensity (12) light irradiation is involved in the preparation of arylene sulfide complexes. For more details. Reinforced with high-strength fibers, and moreover. Polyarylene sulfide is insoluble and infusible in solvents. High-intensity (12) light irradiation relates to a method for producing arylene sulfide composites. [Prior art] Polyarylene sulfide has become popular in recent years due to its heat resistance, chemical resistance, flame retardancy, etc. In particular, the expansion is expanding. However, its low strength was a major drawback. It can also be melted by heat. It has the disadvantage that it dissolves in high-temperature solvents. In order to eliminate such drawbacks, the present inventors. Japanese Patent Publication No. 1-98
Publication No. 633 proposes making it infusible by using metals, etc. However, this method has the disadvantage that it is difficult to remove metals, etc. On the other hand, regarding high strength. Reinforcing polyarylene sulfide with glass fibers, etc. is widely practiced. but. There was nothing that simultaneously satisfied both high intensity and (12) light irradiation. [Problems to be Solved by the Invention] The purpose of the present invention is to
At the same time, it improves strength, (2) heat resistance, and (3) chemical resistance. ■Clean composite manufacturing method free of unnecessary materials. The goal is to provide the following. [Means for Solving the Problems] In view of the current situation, the present inventors have arrived at the present invention as a result of intensive studies without being bound by conventional research concepts. The present invention aims to solve the above problems. It has the following configuration. <<1>> Strength 2 0 g/d. High strength (12) characterized in that a composite consisting of a fibrous material having an elastic modulus of 400 g/d or more and an aspect ratio of 10 or more and polyarylene sulfide is irradiated with light at a temperature higher than the glass transition point of the polyarylene sulfide. (12) The light irradiation is performed at high intensity according to the method for producing a polyarylene sulfide composite (2) wherein the fibrous material is selected from at least 1 fffi of the following A to F. Manufacturing method A. Glass fiber, B. Carbon fiber, C. Ceramink fiber, D. Arabido fiber. E. aromatic polyimide fiber,
F. The polyarylate fiber and/or polyesteramide fiber (3) composite is. A fiber, and the fiber contains a fibrous material with a thickness of 10 μm or less. and the number of fibers per cross-sectional area of the complex is 3 or more per iooo square μ.
Alternatively, the high-intensity (12) light irradiation described in 2 is a method for producing a polyarylene sulfide composite. (4) The composite is a fiber and the fiber constitutes a woven structure.(12) A method for producing a polyarylene sulfide composite in which the high intensity light irradiation is performed according to any one of 1 to 3. (5) Polyarylene sulfide. The high-intensity (12) light irradiation according to 1, which is selected from at least one of the following A to G, is performed in the method for producing a polyarylene sulfide composite. A. Polyphenylene sulfide. B. Polyxylylene sulfide. C. Polynaphthalene sulfide, D6 boribiphenylene sulfide, F. Polyphenylene sulfide. G. Polyphenylene sulfide sulfone. <<6>> The formation of the composite consists of (1) the step of melting and composite forming polyarylene sulfide and thermoplastic liquid crystal resin;
2) A step of heat treatment at a temperature above the melting point of the liquid crystal resin -100)°C. A method for producing an arylene sulfide complex in which the high-intensity (12) light irradiation according to item 1 or 5, comprising:

(7)複合体の戒形が.ボリア゜リーレンスルフィドと
熱可塑性液晶樹脂を溶融複合紡糸する工程、(2)該液
晶樹脂の(融点−100)℃以上で複合繊維を熱処理す
る工程、(3)複合繊維を集合体とする工程.〈4)複
合繊維集合体を熱接着する工程(工程■1■.■の順序
は任意の順序が取れる),からなる1.5.6に記載の
高強度(12)光照射が、ポリアリーレンスルフィド複
合体の製法.(8)熔融複合戒形する工程が溶融複合紡
糸である6または7に記載の高強度(12)光照射が、
ポリアリーレンスルフィド複合体の製法.(9)  複
合体の形状が下記のいずれかである1.  67に記載
の高強度(12)光照射が、ボリアリーレンフィド複合
体. A.板,B.シート,C.ta維. aの 複合体の表面が,ポリアリーレンスルフィドで覆
われている1.6.7のいずれかに記載の高強度(12
)光照射が、ポリアリーレンスルフィド複合体の製法. (工1)光照射が,ポリアリーレンスルフィドの少なく
とも表層が不融化するまで処理するlに記載の高強度(
12)光照射が、ポリアリーレンスルフィド複合体の製
法. (12〉光照射が,ポリアリーレンスルフィドの少なく
とも表層がα−クロルナフタレンに不溶になるまで処理
する1または11に記載の高強度(12)光照射が、ポ
リアリーレンスルフィド複合体の製法.(13)光照射
の雰囲気が,含酸素雰囲気である1,11 .12のい
ずれかに記載の高強度(12)光照射が、ポリアリーレ
ンスルフィド複合体の製法.以下,さらに詳細に本発明
を説明する.本発明にかかるポリアリーレンスルフィド
とは,芳香族から主としてなり,かつ.主鎖の結合の少
なくとも一部がスルフィド結合からなるものである. 本発明においては,かかるボリマであれば,特に限定さ
れるものではなく,従来公知のポリマが広く通用出来る
. そして.特に好ましいものとしては,下記のものが挙げ
られる.即ち ボリフェニレンスルフィドおよびその共重合体,ボリフ
ェニレンスルフィドスルホンおよびその共重合体.ボリ
フエニレンスルフィドケトンおよびその共重合体,ボリ
フェニレンスルフィドスルホンケトンおよびその共重合
体,さらに,ポリナフタレンスルフィドおよびその共重
合体,ポリビイフェニレンスルフィドおよびその共重合
体,ポリキシリレンスルフィドおよびその共重合体等。
(7) The precept form of the complex is. A step of melt-spinning a polyarylene sulfide and a thermoplastic liquid crystal resin into a composite fiber, (2) a step of heat-treating the composite fiber at a temperature of (melting point -100)C or higher of the liquid crystal resin, and (3) a step of forming the composite fiber into an aggregate. <4) The high-intensity (12) light irradiation described in 1.5.6, which consists of the step of thermally bonding the composite fiber aggregate (steps ■1 and ■.■ can be performed in any order), Method for producing sulfide complexes. (8) The high intensity light irradiation according to 6 or 7, wherein the step of forming the melt composite is melt composite spinning.
Production method of polyarylene sulfide composite. (9) The shape of the complex is one of the following: 1. The high-intensity (12) light irradiation described in 67 was applied to the polyarylene phide complex. A. Board, B. Sheet, C. ta fiber. The high strength (12
) Light irradiation is a method for producing polyarylene sulfide composites. (Step 1) The high strength (
12) A method for producing a polyarylene sulfide composite in which light irradiation is performed. (12) The high intensity light irradiation described in 1 or 11, wherein the light irradiation is performed until at least the surface layer of the polyarylene sulfide becomes insoluble in α-chlornaphthalene. (12) The method for producing a polyarylene sulfide composite. ) High intensity according to any one of 1, 11 and 12, wherein the light irradiation atmosphere is an oxygen-containing atmosphere. The polyarylene sulfide according to the present invention is mainly composed of aromatics, and at least a portion of the bonds in the main chain are composed of sulfide bonds.In the present invention, if such a polymer is used, there are no particular limitations. Polyphenylene sulfide and its copolymers, polyphenylene sulfide sulfone and its copolymers are particularly preferred. Phenylene sulfide ketone and its copolymers, polyphenylene sulfide sulfone ketone and its copolymers, polynaphthalene sulfide and its copolymers, polybiphenylene sulfide and its copolymers, polyxylylene sulfide and its copolymers Combination etc.

これらの樹脂は戒形性が優れており.また.元々耐熱性
,耐薬品性とも優れているので好ましい。
These resins have excellent shapeability. Also. It is preferable because it has excellent heat resistance and chemical resistance.

そしてかかる樹脂は,該樹脂のガラス転位温度以上で光
照射すると.安定的に不融化するのである. 次に本発明のもう一方の素材である繊維状物について述
べる. 本発明においては高強度のボリアリーレン人ルフィド複
合体とするために,高強度.高弾性率の繊維状物を用い
る.強度は20g/c1以上,弾性率は400g/dと
する.かかる値未満の繊維状物では,ポリアリーレンス
ルフィドの補強効果が弱く好ましくない.特に好ましい
のは強度が25g/d以上.弾性率が500g/d以上
のことである.また,その繊維状物のアスベクト比は,
IO以上とする.より好ましいのはアスペクト比が50
以上のことである.アスベクト比が高くなると,?i強
効果が高くなり好ましい.そして特に好ましいのは該繊
維状物が連続していることである.なお,ここで,アス
ペクト比とはuIA維状物の長さをその太さで割った比
率である.例えば,直径が10μで長さが1000μの
繊維のアスペクト比は100である. また繊維状物の太さは細いことが好ましい.より好まし
いのは10μ以下のことである.さらに好ましいのは8
μ以下である.si<なると.複合体の強度が向上する
し,また特に耐疲労性や耐衝撃強さが向上し,好ましい
. かかる繊維状物の形態は所諧,繊維であっても良いし,
また.一部がフィブリル化していても良い.また断面形
状も特に間ぼす,九断面,中空断面,H型断面,田型等
に代表される特殊中空断面,蓮根断面,L型,矩形,三
角断面等種々の形状のものが広く利用出来る. かかる繊維状物の製法は問わない.従来公知のものが広
く使える.そして,かかる繊維状物として特に好ましい
ものとして次のものが挙げられる.即ち. 各種のガラス繊維,炭素繊維,アルミナ繊維,シリコン
カーバイド繊維,チラノ繊維,各種のセラミックウイス
カー繊維等を代表とするセラミック繊維,ケブラーやテ
クノーラ等をはじめとするアラ文ド繊維,芳香族ポリイ
主ド繊維,液晶性を示す各種のポリアリレート繊維,同
様に液晶性を示すポリエステルアミド繊維等が代表的な
ものである. そして,かかる繊維状物は複合体の横断面積1000平
方μ当り3本以上存在することが好ましい.より好まし
いのは5本以上,特に好ましいのは10本以上存在する
ことである。こうすることにより複合体の力学的特性が
安定化する.そして,特に好ましいのは,かかる複合体
が織編物構造を形威していることである.織物としては
従来の織物はもとより,多軸織物,3次元織物等も特に
好ましいものである. そして,複合体の形状は特に問わない.板,シート状物
,繊維,また,その加工品,何れであっても良い。
When such a resin is irradiated with light at a temperature higher than the glass transition temperature of the resin. It becomes stably infusible. Next, the fibrous material, which is the other material of the present invention, will be described. In the present invention, in order to obtain a high-strength polyarylene-ruphide composite, high strength. A fibrous material with high elastic modulus is used. The strength is 20g/c1 or more, and the elastic modulus is 400g/d. Fibrous materials below this value are undesirable because the reinforcing effect of polyarylene sulfide is weak. Particularly preferred is one with a strength of 25 g/d or more. The elastic modulus is 500 g/d or more. In addition, the aspect ratio of the fibrous material is
Must be IO or higher. More preferably, the aspect ratio is 50.
That's all. What happens when the aspect ratio increases? It is preferable because the i-strong effect is high. It is particularly preferable that the fibrous material is continuous. Note that the aspect ratio here is the ratio of the length of the uIA filament divided by its thickness. For example, a fiber with a diameter of 10μ and a length of 1000μ has an aspect ratio of 100. In addition, it is preferable that the thickness of the fibrous material be thin. More preferably, the thickness is 10μ or less. More preferable is 8
It is less than μ. When si<. This is preferable because it improves the strength of the composite, and especially improves fatigue resistance and impact resistance. The form of such fibrous materials may be fibers,
Also. Part of it may be fibrillated. In addition, various cross-sectional shapes can be widely used, including special hollow cross-sections such as narrow cross-sections, nine cross-sections, hollow cross-sections, H-shaped cross-sections, rice-shaped cross-sections, lotus root cross-sections, L-shapes, rectangular cross-sections, triangular cross-sections, etc. .. The manufacturing method for such fibrous materials does not matter. Conventionally known ones can be widely used. The following are particularly preferred as such fibrous materials. That is. Various glass fibers, carbon fibers, alumina fibers, silicon carbide fibers, tyranno fibers, ceramic fibers such as various ceramic whisker fibers, Arabido fibers such as Kevlar and Technora, aromatic polyamide fibers, etc. Typical examples include various polyarylate fibers that exhibit liquid crystallinity, and polyesteramide fibers that also exhibit liquid crystallinity. It is preferable that three or more such fibrous materials exist per 1000 square μm of the cross-sectional area of the composite. More preferably, there are 5 or more, and particularly preferably 10 or more. This stabilizes the mechanical properties of the composite. What is particularly preferable is that such a composite has a woven or knitted structure. As for the woven fabric, not only conventional woven fabrics but also multiaxial woven fabrics, three-dimensional woven fabrics, etc. are particularly preferable. The shape of the complex is not particularly important. It may be a plate, a sheet, a fiber, or a processed product thereof.

光照射の容易性から,板.シート状物,繊維等の2次元
や1次元のものは特に好ましいものである.これらの製
法は,従来公知の技術が広く使えるものである. こうした本発明のポリアリーレンスルフィド複合体とし
て,特に好ましいものは,その表面がポリアリーレンス
ルフィドで被覆されていることである.ポリアリーレン
スルフィドは,本処理により耐熱性.耐薬品性とも向上
するので.それが表面を構威していると本発明のポリア
リーレンスルフィド複合体は耐熱性,耐薬品性等を同時
に発揮するのである。
Board because of its ease of light irradiation. Two-dimensional and one-dimensional objects such as sheet-like objects and fibers are particularly preferred. Conventionally known techniques can be widely used for these manufacturing methods. A particularly preferred polyarylene sulfide composite of the present invention is one whose surface is coated with polyarylene sulfide. Polyarylene sulfide becomes heat resistant through this treatment. It also improves chemical resistance. When this is present on the surface, the polyarylene sulfide composite of the present invention exhibits heat resistance, chemical resistance, etc. at the same time.

次に本発明の特に好ましいポリアリーレンスルフィド複
合体の製法について述べる, 即ち.ポリアリーレンスルフィドと熱可塑性の液晶樹脂
を溶融戒形して,液晶樹脂を該複合体の中で繊維状構造
を形威せしめ,次に,該液晶樹脂のく融点−100)℃
以上の温度で熱処理し,次に光照射する方法である. 本発明に用いる液晶樹脂は,従来公知のものが広く通用
出来,特に限定されるものではない。
Next, a particularly preferred method for producing a polyarylene sulfide composite of the present invention will be described. The polyarylene sulfide and thermoplastic liquid crystal resin are melted and shaped to form a fibrous structure in the composite, and then the liquid crystal resin has a melting point of −100°C.
This method involves heat treatment at a temperature above, followed by light irradiation. The liquid crystal resin used in the present invention is not particularly limited, and conventionally known ones can be widely used.

ポリアリーレンスルフィドと液晶樹脂を複合戒形して,
液晶樹脂を繊維状にする方法は両者の粘度を2倍以内に
し.熔融混合することにより可能である.なお,両者の
粘度はできるだけ,近いことが好ましい,なお.単に.
両者を熔融混合しただけでは,複合体の表面がポリアリ
ーレンスルフィド以外の液晶樹脂で形成されることもあ
るのでその外側にポリアリーレンスルフィドの流を作り
.両者を口金部等で合流せしめ,ポリアリーレンスルフ
ィド複合体の表面がポリアリーレンスルフィドで作られ
た構造にすることは極めて好ましいことである. そして,複合溶融戒形として,特に好ましいのは複合溶
融紡糸である.溶融紡糸の場合,引き取り速度を高速化
出来るので.液晶樹脂の配向を高度に高く出来る利点が
ある. 複合熔融紡糸の方法としては,各種の方法が挙げられる
が,芯一鞘法,所51 1高分子配列体法.ブレンド紡
糸法,分割剥離型法,また,芯一鞘法と分割剥離型法を
組み合わせた芯が分割剥離型でその外にさらに鞘がある
複合分割剥離型法.また芯がブレンドで,その外に鞘が
ある複合ブレンド紡糸法等が,好ましいもの゛として挙
げられる.そして,特に好ましいのは,芯一鞘法,高分
子配列体法,分割剥離型,複合分割剥離型法である.か
かる方法を取ると,液晶樹脂成分とポリアリーレンスル
フィト成分の戒分比率を複合体のどこでも均一に出来る
.また,紡糸する時.高速で紡糸できるので繊維の配向
を高く出来る.このため高強度・高弾性率の繊維に出来
るのである.次にこうして得られた複合体を該液晶樹脂
の(融点−100)℃以上の温度で必要に応じて熱処理
する.熱処理は空気中でも良いが,窒素等の不活性ガス
や真空下で実施することか特に好ましい.こうすること
により,ポリアリーレンスルフィドの中の液晶樹脂から
なる繊維状物は,強度が容易に2 0 g/dを超過す
る.なお,@処理温度は液晶樹脂の融点近傍や,元の融
点以上で実施しても良い.液晶樹脂は熱処理により.そ
の融点が上昇するので,元の融点以上で熱処理すること
も有効である. なお,特に.複合溶融戒形が複合熔融紡糸であり,該繊
維から更に,棒や板やシート状物等に加工する時には,
適宜,繊維を多数収束しトウや,また織物.不織布等の
繊維集合体にして,さらに熱接着等をすることが好まし
い. 次に光照射について述べる. 光をポリアリーレンスルフィド複合体に照射する時の温
度が低いと,なぜかしらポリアリーレンスルフィドにミ
クロなクランク等が発生することが多く得られた物の物
性が安定化せず好ましくない.また,低温での光照射に
は時間がかかり,実用的でない欠点もある. 照射する光は紫外線でも良いし,可視光でも何等かまわ
ない. そして,照射する時の該ポリアリーレンスルフィドの温
度は.該ボリマのガラス転位点以上である。照射する時
の温度がガラス転位点未満であると,前記の問題が発生
し,効果が低くなり,産業的視点からは効果が無い.そ
して.処理温度は高い方が効果は高<.(ガラス転位温
度+50)℃以上の温度で光照射することが好ましい.
処理する最高温度は融点近傍でもよい.また.ポリアリ
ーレンスルフィドは光照射により融点が上昇する場合も
あるので1場合によっては,光照射前の融点以上の温度
で処理しても良い場合もある.なお,ボリフェニレンス
ルフィドスルホンのように明瞭な融点を示さないものも
あるので,光照射の最高温度は十分に事前テストして決
めるべきものである.つまり,最高処理温度に関しては
,ポリマ種に最通な温度を選択すべきである. また,特に高温で光照射すると.樹脂や樹脂成形物が変
形することも多いので,急激に高温で光照射する前に,
事前に高温で熱処理し,熱による変形をおさえた後に光
照射し.高温光照射による寸法変化を押さえることは.
特に好ましい方法である.また,低温から除々に高温に
昇温しながら光照射することが好ましい.また,低温の
照射部,高温の照射部等,多段階で光照射することも好
ましい方法である.これらの方法はポリアリーレンスル
フィドの成形物がフィルムや多孔フィルム.繊維やその
加工品である布帛,多孔膜等の場合特に好ましい方法で
ある. なお.一般にポリマはオリゴマー等の低分子量物を含有
しているので.該物が高温処理によりボリマから蒸発し
て.発光機器に付着し,効率を低下せしめることもある
ので,ポリマのモノマー等の蒸発性物の除去を行い,し
かる後に光照射することは.特に重要である.また,蒸
発モノマ一等の拡散気流をコントロールして,光源に付
着しないようにすることも重要である.即ち,ポリアリ
ーレンスルフィド複合体を経方向に置き,ないし連続的
に経方向に移動させながら,またポリアリーレンスルフ
ィド複合体近傍の気流の流れを下方から上方に流すよう
にコントロールし,横方法から光照射することは特に有
効である. そして,光照射する雰囲気としては.@素を含んだ雰囲
気で実施することが好ましい.即ち,空気中は特に好ま
しい雰囲気である.また,酸素を多くした高酸素空気や
オゾンを含んだ雰囲気で実施してもなんら構わない. 次に照射する光の量,時間は,目的,用途により,さら
に.ボリマ種,ボリマ戒形物の形状,雰囲気温度,雰囲
気中の酸素の量,ボリマ中の添加物.光の波長等により
大幅に変わるので,一概には言えない. しかし,1ルックス以上の光を1秒以上照射することが
好ましい.より好ましいのは,5ルックス以上の光を照
射することである. 照射時間.照射量,温度の通正化を図ることによりポリ
アリーレンスルフィドは不融になる.またα−クロルナ
フタリンにも不溶になる.なお.本発明のボリアリーレ
ンスルフイド複合体のポリアリーレンスルフィドが総て
,不溶,不融になっても特に問題点はないが,用途によ
っては複合体の表面のみが不融化していたり,耐薬品性
が向上していても良い場合もあるので,光照射は目的,
用途を明確にして実施することが好ましい. 本発明のポリアリーレンスルフィドまたは,液晶樹脂に
は各種の顔料.カルシウム等をはじめとする増量材,螢
光材等が添加されていても良い.また特に液晶樹脂には
耐光材,遮光材等が添加されていても何等構わない. 本発明の高耐熱性ポリアリーレンスルフィドは,ポリア
リーレンスルフィドの従来の特徴と.同時に強度,耐熱
性,耐薬品性,N燃性,絶縁性も有するので.多くの分
野に展開可能である.その一例を下記する. 電気絶縁基材.プリント基盤,半田フリープリント基盤
,各種の基盤,耐熱布帛.耐熱板.耐薬品用板,耐熱フ
ィルター.構造材,耐熱性電気絶縁材料.慴動部材,フ
ィルター,耐熱フィルター.耐薬品性フィルター,耐熱
性補強材.難燃性資材,fi燃性壁材,インテリジェン
トビル用壁材,耐熱・難燃性資材,航空機用内装材.航
空機用壁材,床材,椅子,自動車用基材,a燃性床材,
H燃性木材代替材,ガスケト,防火資材,防火服.消火
シート等 以下,実施例により.さらに詳しく説明する.なお,当
然のことではあるが5本発明がこれら実施例に拘束され
ないことはいうまでもない.〔実施例〕 実施例 l 下記の通り,ボリフエニレンスルフイドを海底分,液晶
ポリエステルを島或分にして高分子配列体繊維を作り,
引続き,製布し.次に該布帛を固相重合し,次に熱プレ
スにより該布帛を板にし,更に光照射し,高強度(12
)光照射が、アリーレンスルフィド複合体とした.各工
程とも,特にトラブルはなかった. A.製糸条件 下記の通り高分子配列体繊維を作った.A.製糸条件 ■i戒分. 東レ・フィリンブスペトローリアム社製の
ボリフェニレンスルフィド。
By combining polyarylene sulfide and liquid crystal resin,
The method of making liquid crystal resin into fibers is to reduce the viscosity of both to within twice. This is possible by melt mixing. It is preferable that the viscosities of both be as close as possible. simply.
If the two are simply melt-mixed, the surface of the composite may be formed of a liquid crystal resin other than polyarylene sulfide, so a flow of polyarylene sulfide is created on the outside. It is extremely preferable to merge the two at a mouthpiece or the like so that the surface of the polyarylene sulfide composite has a structure made of polyarylene sulfide. As a composite melt-spinning method, particularly preferred is composite melt-spinning. In the case of melt spinning, the take-up speed can be increased. It has the advantage of being able to highly align the liquid crystal resin. Various methods can be used for composite melt spinning, including the core-one-sheath method and the one-polymer array method. Blend spinning method, split-peel method, and composite split-peel method in which the core is split-peel type and there is an additional sheath. Preferred methods include a composite blend spinning method in which the core is a blend and the outer shell is a sheath. Particularly preferred are the core-sheath method, the polymer array method, the segmented and peeled method, and the composite segmented and peeled method. By adopting such a method, the ratio of the liquid crystal resin component to the polyarylene sulfite component can be made uniform throughout the composite. Also, when spinning. Since it can be spun at high speed, it is possible to achieve high fiber orientation. For this reason, fibers with high strength and high modulus of elasticity can be produced. Next, the composite thus obtained is heat treated at a temperature higher than (melting point -100)C of the liquid crystal resin, if necessary. Heat treatment may be carried out in air, but it is particularly preferable to carry out heat treatment in an inert gas such as nitrogen or under vacuum. By doing this, the strength of the fibrous material made of liquid crystal resin in polyarylene sulfide easily exceeds 20 g/d. Note that the treatment temperature may be near the melting point of the liquid crystal resin or above the original melting point. Liquid crystal resin is produced by heat treatment. Since the melting point increases, heat treatment above the original melting point is also effective. In addition, especially. Composite melt spinning is composite melt spinning, and when the fibers are further processed into rods, plates, sheets, etc.
Appropriately, a large number of fibers are converged to form a tow or a woven fabric. It is preferable to make it into a fiber aggregate such as non-woven fabric and then thermally bond it. Next, we will discuss light irradiation. If the temperature at which the polyarylene sulfide composite is irradiated with light is low, for some reason microscopic cracks often occur in the polyarylene sulfide, which is not desirable as the physical properties of the resulting product are not stabilized. Additionally, light irradiation at low temperatures takes time, making it impractical. The light to be irradiated may be ultraviolet rays or visible light. The temperature of the polyarylene sulfide during irradiation is. The glass transition temperature is higher than the glass transition point of the polymer. If the temperature at the time of irradiation is below the glass transition point, the above-mentioned problem will occur, the effectiveness will be low, and there will be no effect from an industrial perspective. and. The higher the treatment temperature, the higher the effect. It is preferable to irradiate with light at a temperature of (glass transition temperature + 50)°C or higher.
The maximum temperature for processing may be close to the melting point. Also. Since the melting point of polyarylene sulfide may increase when exposed to light, in some cases it may be possible to treat it at a temperature higher than the melting point before irradiation with light. Note that there are some substances, such as polyphenylene sulfide sulfone, that do not exhibit a clear melting point, so the maximum temperature for light irradiation should be determined through sufficient prior testing. In other words, the maximum processing temperature should be selected to be compatible with the polymer type. Also, especially when exposed to light at high temperatures. Resin and resin molded products often deform, so before exposing them to light at sudden high temperatures,
It is heat-treated at high temperatures in advance to suppress deformation caused by heat, and then irradiated with light. To suppress dimensional changes caused by high-temperature light irradiation.
This is a particularly preferred method. Furthermore, it is preferable to irradiate light while gradually raising the temperature from a low temperature to a high temperature. It is also a preferable method to irradiate light in multiple stages, such as a low-temperature irradiation area and a high-temperature irradiation area. These methods produce polyarylene sulfide molded products such as films or porous films. This method is particularly preferable for fibers and their processed products, such as fabrics and porous membranes. In addition. Polymers generally contain low molecular weight substances such as oligomers. This material evaporates from the volima due to high temperature treatment. Do not irradiate light after removing vaporizable substances such as polymer monomers, as they may adhere to light-emitting devices and reduce efficiency. This is particularly important. It is also important to control the diffusion air flow of the evaporated monomer to prevent it from adhering to the light source. That is, the polyarylene sulfide composite is placed in the longitudinal direction or continuously moved in the longitudinal direction, and the airflow near the polyarylene sulfide composite is controlled to flow from below to above, and the light is emitted from the lateral direction. Irradiation is particularly effective. And as for the atmosphere in which the light is irradiated. It is preferable to carry out the test in an atmosphere containing @ elements. In other words, air is a particularly favorable atmosphere. There is no problem even if the test is carried out in high-oxygen air containing a large amount of oxygen or in an atmosphere containing ozone. The amount and time of the next irradiation will depend on the purpose and application. Borima species, shape of Borima articles, ambient temperature, amount of oxygen in the atmosphere, additives in Borima. It cannot be generalized as it varies greatly depending on the wavelength of the light, etc. However, it is preferable to irradiate light of 1 lux or more for 1 second or more. It is more preferable to emit light of 5 lux or more. Irradiation time. Polyarylene sulfide becomes infusible by regulating the irradiation dose and temperature. It is also insoluble in α-chlornaphthalene. In addition. There is no particular problem if all of the polyarylene sulfide in the polyarylene sulfide composite of the present invention becomes insoluble or infusible, but depending on the application, only the surface of the composite may be infusible or chemically resistant. In some cases, it is good even if the properties are improved, so the purpose of light irradiation is
It is preferable to clarify the purpose and implement it. Various pigments may be used in the polyarylene sulfide or liquid crystal resin of the present invention. Fillers such as calcium, fluorescent materials, etc. may be added. Furthermore, it does not matter if light-resistant materials, light-shielding materials, etc. are added to the liquid crystal resin. The highly heat-resistant polyarylene sulfide of the present invention has the characteristics of conventional polyarylene sulfide. At the same time, it has strength, heat resistance, chemical resistance, nitrogen flammability, and insulation properties. It can be deployed in many fields. An example is shown below. Electrical insulation base material. Printed boards, solder-free printed boards, various boards, heat-resistant fabrics. Heat-resistant plate. Chemical resistant plate, heat resistant filter. Structural materials, heat-resistant electrical insulation materials. Moving parts, filters, heat-resistant filters. Chemical-resistant filter, heat-resistant reinforcing material. Flame-retardant materials, fi-flammable wall materials, wall materials for intelligent buildings, heat-resistant and flame-retardant materials, interior materials for aircraft. Wall materials for aircraft, floor materials, chairs, base materials for automobiles, flammable floor materials,
H-flammable wood substitute materials, gaskets, fire prevention materials, fire prevention clothing. Fire extinguishing sheets, etc. Below are examples. Let me explain in more detail. It goes without saying that the present invention is not limited to these embodiments. [Example] Example 1 As shown below, a polymer array fiber was made by using polyphenylene sulfide as the seabed part and liquid crystal polyester as the island part.
Continue making cloth. Next, the fabric is subjected to solid phase polymerization, and then the fabric is made into a plate by heat pressing, and is further irradiated with light to give a high strength (12
) Light irradiation resulted in an arylene sulfide complex. There were no particular problems in each process. A. Polymer array fibers were made under the following spinning conditions. A. Silk spinning conditions■i precepts. Polyphenylene sulfide manufactured by Toray Filimbus Petroleum.

■島威分:ヘキストセラニーズ社製の液晶ボリエステル
 ベクトラ A  950. ■島/海−35/65(重量比).島数−36■紡糸温
度−305℃ ■紡速−2000m/分 ■延伸倍率一無し. B.得られた繊維の特性 ■繊度−15d ■強度−4g/d ■伸度−2.1% ■島の太さ一約4μ ■ポリアリーレンスルフィド複合体横断面当りの繊維の
本数−1000平方μ当り約29本■アスベクト比一島
繊維は連続繊維につき,事実状無限大 C.製布と固相重合 次に本繊維を綾織に製織した.次に該織物を孔の開いた
ステンレスの筒に巻,中から窒素ガスを出しながら25
0℃で1時間,次に270℃で3時間熱処理した. 次に本織物を3枚積層して,減圧した区画にて285℃
に加熱した平板プレスでプレスし.3枚を熱接着し,ポ
リアリーレンスルフィド複合体からなる板とした. D.光照射:耐光性試験用のウェザオメーターを用い.
空気中で咳板を275℃に加熱して,表裏各々5分間光
照射した.得られた板は,黒褐色に変色した.本板は3
50℃の空気中に放置しても,その形状を保持するもの
であった.また. LO■は36ε高<.M燃性に優れ
るものであった.また,250℃のアルファークロルナ
フタレにも溶解しない等,高温の薬品にも極めて耐性の
あるものであった.次に本板を強制的に燃したところ,
布帛形状をほぼ保持したまま炭化した. また,プリン
ト基盤用の半田に対する耐性を測定したところ,特に問
題ないものであった.また.vi板の曲げ強度は,ボリ
フェニレンスルフィドのみからなるものを同様にして作
った物の約3倍(光は未照射のポリフェニレンスルフィ
ドのみからなる板の3倍〉,衝撃強度は.約25倍と極
めて高いものであった.即ち.@熱性のプリント基盤と
して特に適するものであった. 比較例として,照射前の板の耐熱性を調べたところ,板
は約280℃で大きく変形し,350℃ではポリアリー
レンスルフィドが溶融脱落した。
■Shima Ibun: Liquid crystal polyester Vectra A 950 manufactured by Hoechst Celanese. ■Island/sea-35/65 (weight ratio). Number of islands: 36 ■ Spinning temperature: 305°C ■ Spinning speed: 2000 m/min ■ Stretching ratio: None. B. Characteristics of the obtained fiber ■Fineness - 15d ■Strength - 4g/d ■Elongation - 2.1% ■Thickness of island approximately 4μ ■Number of fibers per cross section of polyarylene sulfide composite - per 1000 square μ Approximately 29 pieces ■Aspect ratio Ichishima fibers are continuous fibers, and in fact have an infinite C. Fabric making and solid phase polymerization Next, this fiber was woven into a twill weave. Next, the fabric was wrapped around a perforated stainless steel cylinder, and the fabric was heated for 25 minutes while blowing out nitrogen gas from inside.
Heat treatment was performed at 0°C for 1 hour and then at 270°C for 3 hours. Next, three layers of this fabric were layered and heated to 285°C in a reduced pressure section.
Press with a heated flat plate press. The three sheets were thermally bonded to form a board made of polyarylene sulfide composite. D. Light irradiation: Use a weatherometer for light resistance testing.
The cough plate was heated to 275°C in the air and exposed to light for 5 minutes on each side. The resulting board turned blackish brown. The main board is 3
It retained its shape even when left in air at 50°C. Also. LO■ is 36ε high<. M has excellent flammability. It was also extremely resistant to high-temperature chemicals, as it did not dissolve in alpha chlornaphthalene at 250°C. Next, when I forcibly burned the main board,
The fabric was carbonized while retaining its shape. We also measured its resistance to solder for printed circuit boards and found that there were no particular problems. Also. The bending strength of the VI plate is about 3 times that of a similarly made plate made of only polyphenylene sulfide (3 times that of a plate made of only unirradiated polyphenylene sulfide), and the impact strength is about 25 times. In other words, it was particularly suitable as a thermal printed board. As a comparative example, when the heat resistance of the board before irradiation was investigated, it was found that the board deformed significantly at about 280°C, and at 350°C. In this case, polyarylene sulfide melted and fell off.

また,250℃のアルファークロルナフタレには容易に
溶解するものであった. なお,本発明の液晶樹脂からなる$ilIi維の強度は
ポリアリーレンスルフィドが不融・不溶なので,測定不
可能であるので.高分子配列体繊維の強度から逆算した
ところ,強度−2 7 g/d.弾性率=650g/d
であった. 実施例 2 東レ・フィリップスペトローリアム社製のボリフエニレ
ンスルフィドに硝子繊維(直径一約6μ,平均長さ−3
00μ)が40重量%分散された市販の板に実施例1と
同様に光照射した.得られた板は.黒褐色に変色した.
本板は350℃の空気中に放置しても.その形状を保持
するものであった.また,Lotは36と高く.H燃性
に優れるものであった.また,250℃のアルファーク
ロルナフタレにも熔解しない等,高温の薬品にも極めて
耐性のあるものであった.次に本板を強制的に燃したと
ころ,板状をほぼ保持したまま炭化した.また,プリン
ト基盤用の半田に対する耐性を測定したところ,特に問
題ないものであった.なお,光未照射の板は約280℃
で大きく変形し,350℃ではポリアリーレンスルフィ
ドが熔融脱落した.また.半田耐性もなかった.250
℃のアルファークロルナフタレには容易に熔解するもの
であった. 〔発明の効果〕 本発明の構成をとることにより,下記の大きな効果をも
たらす.
In addition, it was easily dissolved in alpha chlornaphthalene at 250°C. It should be noted that the strength of the $ilIi fiber made of the liquid crystal resin of the present invention cannot be measured because polyarylene sulfide is infusible and insoluble. When calculated backward from the strength of the polymer array fiber, the strength was -27 g/d. Elastic modulus = 650g/d
Met. Example 2 Glass fibers (diameter: about 6μ, average length: -3
A commercially available plate containing 40% by weight of 00μ) dispersed therein was irradiated with light in the same manner as in Example 1. The resulting board is. It turned blackish brown.
This board can be left in air at 350°C. It maintained its shape. Also, the Lot is high at 36. It had excellent H flammability. It was also extremely resistant to high-temperature chemicals, such as not melting even in alpha chlornaphthalene at 250°C. Next, when the board was forcibly burnt, it carbonized while retaining most of its shape. We also measured its resistance to solder for printed circuit boards and found that there were no particular problems. Note that the temperature of the unirradiated plate is approximately 280℃.
At 350°C, the polyarylene sulfide melted and fell off. Also. It also had no solder resistance. 250
It was easily dissolved in alpha chlornaphthalene at ℃. [Effects of the Invention] The configuration of the present invention brings about the following great effects.

Claims (13)

【特許請求の範囲】[Claims] (1)強度20g/d、弾性率400g/d以上、アス
ペクト比が10以上の繊維状物とポリアリーレンスルフ
ィドからなる複合体を該ポリアリーレンスルフィドのガ
ラス転位点以上の温度で光照射することを特徴とする高
強度耐熱耐薬品性ポリアリーレンスルフィド複合体の製
(1) A composite consisting of a fibrous material having a strength of 20 g/d, an elastic modulus of 400 g/d or more, and an aspect ratio of 10 or more and polyarylene sulfide is irradiated with light at a temperature higher than the glass transition point of the polyarylene sulfide. Manufacturing method for characteristic high-strength, heat-resistant and chemical-resistant polyarylene sulfide composites
(2)繊維状物が下記A〜Fの少なくとも1種から選ば
れたものである請求項1に記載の高強度耐熱耐薬品性ポ
リアリーレンスルフィド複合体の製法。 A、ガラス繊維、B、炭素繊維、C、セラミック繊維、
D、アラミド繊維、E、芳香族ポリイミド繊維、F、ポ
リアリレート繊維および/またはポリエステルアミド繊
(2) The method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite according to claim 1, wherein the fibrous material is selected from at least one of the following A to F. A, glass fiber, B, carbon fiber, C, ceramic fiber,
D, aramid fiber, E, aromatic polyimide fiber, F, polyarylate fiber and/or polyesteramide fiber
(3)複合体は、繊維であり、かつ、該繊維の中に繊維
状物で太さが10μ以下であり、かつ複合体の横断面積
あたりの本数が1000平方μ当り3本以上存在する請
求項1または2に記載の高強度耐熱耐薬品性ポリアリー
レンスルフィド複合体の製法。
(3) A claim in which the composite is a fiber, and the fiber has a fibrous substance with a thickness of 10μ or less, and the number of fibers per 1000 square μ of the composite is 3 or more per cross-sectional area of the composite. A method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite according to item 1 or 2.
(4)複合体は、繊維であり該繊維が織物構造を構成し
ている請求項1〜3のいずれかに記載の高強度耐熱耐薬
品性ポリアリーレンスルフィド複合体の製法。
(4) The method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite according to any one of claims 1 to 3, wherein the composite is a fiber and the fiber constitutes a woven structure.
(5)ポリアリーレンスルフィドが、下記A〜Gの少な
くとも1種から選ばれたものである請求項1に記載の高
強度耐熱耐薬品性ポリアリーレンスルフィド複合体の製
法。 A、ポリフェニレンスルフィド、B、ポリキシリレンス
ルフィド、C、ポリナフタレンスルフィド、D、ポリビ
フェニレンスルフィド、F、ポリフェニレンスルフィド
ケトン、G、ポリフェニレンスルフィドスルホン。
(5) The method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite according to claim 1, wherein the polyarylene sulfide is selected from at least one of the following A to G. A, polyphenylene sulfide, B, polyxylylene sulfide, C, polynaphthalene sulfide, D, polybiphenylene sulfide, F, polyphenylene sulfide ketone, G, polyphenylene sulfide sulfone.
(6)複合体の形成が、(1)ポリアリーレンスルフィ
ドと熱可塑性液晶樹脂を熔融複合成形する工程、(2)
該液晶樹脂の(融点−100)℃以上で熱処理する工程
、からなる請求項1または5に記載の高強度耐熱耐薬品
性アリーレンスルフィド複合体の製法。
(6) The formation of the composite includes (1) a step of melting and composite molding polyarylene sulfide and thermoplastic liquid crystal resin; (2)
6. The method for producing a high-strength, heat-resistant and chemical-resistant arylene sulfide composite according to claim 1, comprising the step of heat-treating the liquid crystal resin at (melting point -100)C or higher.
(7)複合体の成形が、ポリアリーレンスルフィドと熱
可塑性液晶樹脂を溶融複合紡糸する工程、(2)該液晶
樹脂の(融点−100)℃以上で複合繊維を熱処理する
工程、(3)複合繊維を集合体とする工程、(4)複合
繊維集合体を熱接着する工程(工程(2)、(3)、(
4)の順序は任意の順序が取れる)、からなる請求項1
、5、6に記載の高強度耐熱耐薬品性ポリアリーレンス
ルフィド複合体の製法。
(7) Molding of the composite is a step of melting and spinning polyarylene sulfide and a thermoplastic liquid crystal resin, (2) a step of heat-treating the composite fiber at a temperature of (melting point -100)°C or higher of the liquid crystal resin, (3) composite (4) Step of thermally bonding the composite fiber aggregate (Steps (2), (3), (
4) can be in any order). Claim 1
A method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite as described in , 5 and 6.
(8)溶融複合成形する工程が溶融複合紡糸である請求
項6または7に記載の高強度耐熱耐薬品性ポリアリーレ
ンスルフィド複合体の製法。
(8) The method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite according to claim 6 or 7, wherein the step of melt composite forming is melt composite spinning.
(9)複合体の形状が下記のいずれかである請求項1、
6、7に記載の高強度耐熱耐薬品性ポリアリーレンフィ
ド複合体。 A、板、B、シート、C、繊維。
(9) Claim 1, wherein the shape of the composite body is any of the following:
6. The high-strength heat-resistant and chemical-resistant polyarylene oxide composite described in 6 and 7. A, board, B, sheet, C, fiber.
(10)複合体の表面が、ポリアリーレンスルフィドで
覆われている請求項1、6、7のいずれかに記載の高強
度耐熱耐薬品性ポリアリーレンスルフィド複合体の製法
(10) The method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite according to any one of claims 1, 6, and 7, wherein the surface of the composite is covered with polyarylene sulfide.
(11)光照射が、ポリアリーレンスルフィドの少なく
とも表層が不融化するまで処理する請求項1に記載の高
強度耐熱耐薬品性ポリアリーレンスルフィド複合体の製
法。
(11) The method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite according to claim 1, wherein the light irradiation is performed until at least the surface layer of the polyarylene sulfide becomes infusible.
(12)光照射が、ポリアリーレンスルフィドの少なく
とも表層がα−クロルナフタレンに不溶になるまで処理
する請求項1または11に記載の高強度耐熱耐薬品性ポ
リアリーレンスルフィド複合体の製法。
(12) The method for producing a high-strength, heat-resistant and chemical-resistant polyarylene sulfide composite according to claim 1 or 11, wherein the light irradiation is performed until at least the surface layer of the polyarylene sulfide becomes insoluble in α-chlornaphthalene.
(13)光照射の雰囲気が、含酸素雰囲気である請求項
1、11、12のいずれかに記載の高強度耐熱耐薬品性
ポリアリーレンスルフィド複合体の製法。
(13) The method for producing a high-strength heat-resistant and chemical-resistant polyarylene sulfide composite according to any one of claims 1, 11, and 12, wherein the atmosphere of light irradiation is an oxygen-containing atmosphere.
JP15879689A 1989-06-21 1989-06-21 Preparation of high strength, heat-and chemical-resistant polyarylene sulfide composite Pending JPH0324159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15879689A JPH0324159A (en) 1989-06-21 1989-06-21 Preparation of high strength, heat-and chemical-resistant polyarylene sulfide composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15879689A JPH0324159A (en) 1989-06-21 1989-06-21 Preparation of high strength, heat-and chemical-resistant polyarylene sulfide composite

Publications (1)

Publication Number Publication Date
JPH0324159A true JPH0324159A (en) 1991-02-01

Family

ID=15679537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15879689A Pending JPH0324159A (en) 1989-06-21 1989-06-21 Preparation of high strength, heat-and chemical-resistant polyarylene sulfide composite

Country Status (1)

Country Link
JP (1) JPH0324159A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594191A1 (en) * 1992-10-23 1994-04-27 Phillips Petroleum Company Process for the removal of lower molecular weight fractions of poly(arylene sulfide) polymers
KR20040083143A (en) * 2003-03-21 2004-10-01 신승태 A sinker
EP2562221A4 (en) * 2010-04-23 2013-10-30 Polyplastics Co Polyarylene sulfide resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594191A1 (en) * 1992-10-23 1994-04-27 Phillips Petroleum Company Process for the removal of lower molecular weight fractions of poly(arylene sulfide) polymers
KR20040083143A (en) * 2003-03-21 2004-10-01 신승태 A sinker
EP2562221A4 (en) * 2010-04-23 2013-10-30 Polyplastics Co Polyarylene sulfide resin composition

Similar Documents

Publication Publication Date Title
US3529044A (en) Production of inorganic fibrous materials
US5286553A (en) Composite sheet for fibrous reinforcing material
KR100230025B1 (en) Fiber reinforced porous sheets
JPS6175880A (en) Size agent
US3859158A (en) Production of pervious low density carbon fiber reinforced composite articles
US3925587A (en) Pervious low density carbon fiber reinforced composite articles
EP0330179A2 (en) Process for producing non-woven fabrics of carbon fibers
JPH0324159A (en) Preparation of high strength, heat-and chemical-resistant polyarylene sulfide composite
US3839529A (en) Preparation of polyamide-imide filaments
JP2006152533A (en) Polyparaphenylene terephthalamide fiber composite and its application
KR102266753B1 (en) Polyimide based carbon fiber with excellent flexibility and manufacturing method thereof
US3993829A (en) Production of pervious low density carbon fiber reinforced composite articles
JP4381576B2 (en) Heat resistant nonwoven fabric
JPH0544146A (en) High-tenacity sheetlike material and its production
JP2000239925A (en) Resin-reinforcing material and composite material
JP6613165B2 (en) High strength heat resistant sheet
JP3354988B2 (en) Chemical resistant filter medium and method for producing the same
KR19990036900A (en) Non-woven reinforcement for printed wiring boards and its manufacturing method
US3955256A (en) Process for the production of a carbon tape
JPH03260177A (en) Fiber sheet-like article having excellent heat resistance and chemical resistance
JPH0345634A (en) Preparation of high-modulus polyarylene sulfide
JPH03168220A (en) Composite material
JPH03113016A (en) Conjugate aramid yarn and production thereof
JPH1181031A (en) Sheath-core type conjugate fiber
KR101893291B1 (en) Aligned meta-aramid nanofiber with enhanced chemical stability and mechanical property and Method of preparing the same