JPH03241300A - Dome for high-speed projectile - Google Patents

Dome for high-speed projectile

Info

Publication number
JPH03241300A
JPH03241300A JP3459990A JP3459990A JPH03241300A JP H03241300 A JPH03241300 A JP H03241300A JP 3459990 A JP3459990 A JP 3459990A JP 3459990 A JP3459990 A JP 3459990A JP H03241300 A JPH03241300 A JP H03241300A
Authority
JP
Japan
Prior art keywords
dome
ceramic
transparent
mullite
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3459990A
Other languages
Japanese (ja)
Inventor
Kenichiro Shibata
柴田 憲一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3459990A priority Critical patent/JPH03241300A/en
Publication of JPH03241300A publication Critical patent/JPH03241300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

PURPOSE:To obtain a dome for a high-speed projectile having excellent hardness, strength and heat resistance and exhibiting sufficient durability even under high-velocity conditions, by composing a dome of a part made of a transparent spinel ceramic and a part made of a non-transparent mullite ceramic. CONSTITUTION:A dome for a high-speed projectile comprises a part made of a transparent spinel ceramic 1 and a part made of a non-transparent mullite ceramic 2. The spinel ceramic 1 is an oxide (MgAl2O4) comprising magnesia (MgO) and alumina (Al2O3), and is produced by a hot pressing method using a spinel powder, a normal-pressure sintering method with addition of a sintering aid, or the like. The mullite ceramic 2 is a non-transparent ceramic containing mullite (3Al2O3.2SiO2), as a main constituent, and traces of additive constituents such as MgO. It is possible to obtain a dome for high-speed projectile which has excellent hardness, strength and heat resistance, exhibits sufficient durability even under high-velocity conditions, as in the case of missiles, and which is suited to any of radio guidance type, infrared guidance type and combined guidance type high-speed projectiles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ミサイル等の高速飛翔体の先端部に装着され
、内部の電波アンテナや赤外線センサー等の装置を保護
するドーム(domθ)に関スル。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a dome (domθ) that is attached to the tip of a high-speed flying object such as a missile and protects internal devices such as a radio antenna and an infrared sensor. Sur.

〔従来の技術〕[Conventional technology]

ミサイルには地対空、空対空、空対地などの種類がある
が、その誘導方式は電波誘導式と赤外光誘導式とに大別
される。
There are various types of missiles, such as surface-to-air, air-to-air, and air-to-ground, but their guidance methods are broadly divided into radio wave guidance and infrared light guidance.

電波誘導式は目標物体の発する電波又は目標物体からの
反射電波を電波アンテナで受信して、目標物体の位置を
確認し誘導するものである。従って、電波誘導式ミサイ
ルのドームは電波を透過しやすい低誘電率ガラス等のガ
ラス材料で作製されていた。しかし、ガラス材料からな
るドームでは、より高速化したミサイル等の飛翔体にお
いては先端部が空力加熱により高温に加熱されるので、
耐熱性が不充分であった。
The radio wave guidance type uses a radio antenna to receive radio waves emitted by a target object or reflected radio waves from the target object to confirm the position of the target object and guide it. Therefore, the domes of radio-guided missiles are made of glass materials such as low dielectric constant glass that easily transmit radio waves. However, the tip of a dome made of glass material is heated to a high temperature by aerodynamic heating in faster flying objects such as missiles.
Heat resistance was insufficient.

一方、赤外光誘導式では目標物体の発する赤外光を赤外
線センサーで受光して、目標物体の位置を確認し、誘導
する。従って、赤外光誘導式ミサイルのドームは、弗化
マグネシウム(MgF )や硫化亜鉛(ZnS )等の
赤外光透過性の材料で作製されていた。しかし、MgF
 やZnS等は硬度が600以下程度と低いため、大気
中に浮遊する砂粒や氷粒等との衝突により表面が傷付き
透光性が低下しやすい欠点があった。又、耐熱性の点で
も、MgFやZnS等は融点又は昇菫点が900〜13
00C’であるため、超高速の飛翔条件下では充分とは
云えなかった。
On the other hand, in the infrared light guidance type, an infrared sensor receives infrared light emitted by a target object, confirms the position of the target object, and guides the target object. Therefore, the domes of infrared guided missiles have been made of materials that transmit infrared light, such as magnesium fluoride (MgF) and zinc sulfide (ZnS). However, MgF
Since the hardness of ZnS and the like is as low as about 600 or less, there is a drawback that the surface is easily damaged by collision with sand grains, ice grains, etc. floating in the atmosphere, and the translucency is easily reduced. Also, in terms of heat resistance, MgF, ZnS, etc. have melting points or ascending violet points of 900 to 13
00C', it could not be said to be sufficient under ultra-high-speed flight conditions.

上記した如く、従来の高速飛翔体用ドームは、いずれも
材質的に耐熱性や硬度に問題があった。
As mentioned above, all conventional domes for high-speed flying objects have problems in terms of heat resistance and hardness of the materials.

しかも、最近米国ではミサイル誘導の妨害ニ対向するた
め、赤外光誘導式と電波誘導式を組合せた複合誘導式が
研究されているが、従来のドーム材料であるガラス又は
MgF  やZnS等では、複合誘導式に適応出来るよ
う赤外光と電波の両方を透過し且つ高速下で耐久性のあ
るドームを作製することが難しかった。
Moreover, in recent years in the United States, research has been conducted on a composite guidance system that combines an infrared light guidance system and a radio wave guidance system in order to counter missile guidance jamming, but conventional dome materials such as glass, MgF, and ZnS cannot be used. It has been difficult to create a dome that can transmit both infrared light and radio waves and is durable under high speed conditions so that it can be applied to a composite induction system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、硬度や強度及び耐熱
性に優れ、高速下でも充分な耐久性を有すると共に、将
来の複合誘導式にも対応出来る高速飛翔体用ドームを提
供することを目的とする。
In view of such conventional circumstances, an object of the present invention is to provide a dome for high-speed flying objects that has excellent hardness, strength, and heat resistance, has sufficient durability even at high speeds, and is compatible with future composite guidance systems. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

−f、記目的を達成するため、本発明における高速飛翔
体用ドームは、透光性スピネルセラミックスノ部分と、
非透光性ムライト質セラミックスの部分とからなること
を特徴とする。
-f. In order to achieve the above object, the dome for a high-speed flying object in the present invention includes a translucent spinel ceramic part,
It is characterized by consisting of a non-transparent mullite ceramic part.

スピネルセラミックスは、マグネシア(MgO)とアル
ミナ(At O)よりなる酸化物(MgAIO)であっ
て、スピネル粉末のホットプレス法や焼結助剤を添加し
た常圧焼結法などにより製造される。製造条件を選択す
ることによって可視光から赤外光まで良好な透光性を有
するものが製造でき、特に波長3〜5μmの赤外光の透
過性に優れており、表面に反射防止コーティングを施せ
ば更に透光性を向上させることが出来る。又、透光性ス
ピネルセラミックスは電波透過性にも優れている。
Spinel ceramics are an oxide (MgAIO) made of magnesia (MgO) and alumina (At 2 O), and are manufactured by hot pressing of spinel powder or pressureless sintering with the addition of a sintering aid. By selecting the manufacturing conditions, it is possible to manufacture products that have good transparency from visible light to infrared light, and are particularly good at transmitting infrared light with a wavelength of 3 to 5 μm, and can be coated with an anti-reflection coating on the surface. Furthermore, the translucency can be further improved. Translucent spinel ceramics also have excellent radio wave transparency.

−2方、ムライト質セラミックスは、ムライト(3AI
0 ・2SiO)を主成分とし、微量のMgO等の添加
成分を含有する非透光性セラミックスであるが、誘電率
が低く電波透過性に優れている。又、ムライト質セラミ
ックスは、スリップキャスティング法による製造技術が
開発され、比較的大型の材料も比較的安価に製造出来る
利点がある。
-On the other hand, mullite ceramics are mullite (3AI
Although it is a non-light-transmitting ceramic containing 0.0 .2SiO) as a main component and a small amount of additive components such as MgO, it has a low dielectric constant and excellent radio wave transparency. Furthermore, a manufacturing technology for mullite ceramics has been developed using the slip casting method, which has the advantage that relatively large materials can be manufactured at relatively low cost.

本発明のドームは、かかる透光性スピネルセラミックス
の部分と非透光性ムライト質七うミックスの部分とから
なり、各部分を耐熱性接着剤で接着するか又はガラスペ
ースト等で接合することにより、所定のドーム形状に構
成したものである。
The dome of the present invention is composed of a translucent spinel ceramic part and a non-translucent mullite seven-piece mix, and each part is bonded with a heat-resistant adhesive or glass paste or the like. , which is constructed in a predetermined dome shape.

本発明のドームの一具体例を第1図及び第2図に示した
。ドームは全体が中空の半球状であり、半球の約半分は
透光性スピネルセラミックス1からなり、残りの半分は
非透光性ムライト質セラミックス2で構成され、両者は
耐熱性接着剤で接着しである。赤外光を透過する透光性
スピネルセラミックス1の部分の内側には赤外線センサ
ー3が配置され、非透光性ムライト質セラミックス2の
内側には電波アンテナ4が配置されており、赤外光誘導
式、電波誘導式、及び複合誘導式のいずれにも適用出来
るようになっている。尚、透光性スピネルセラミックス
1の部分と非透光性ムライト質セラミックス2の部分の
大きさは、誘導方式等に応じて相互に調製することが可
能である。
A specific example of the dome of the present invention is shown in FIGS. 1 and 2. The dome has a hollow hemispherical shape, and about half of the hemisphere is made of translucent spinel ceramics 1, and the other half is made of non-translucent mullite ceramics 2, both of which are bonded with a heat-resistant adhesive. It is. An infrared sensor 3 is placed inside the translucent spinel ceramic 1 that transmits infrared light, and a radio antenna 4 is placed inside the non-transparent mullite ceramic 2 to guide infrared light. It can be applied to any type, radio wave induction type, and composite induction type. The sizes of the translucent spinel ceramic 1 portion and the non-translucent mullite ceramic 2 portion can be mutually adjusted depending on the induction method and the like.

上記具体例では半球状のドームを図示したが、空気抵抗
の少ない流線形、コーン状、角錐状等のドーム形状も可
能である。
In the above specific example, a hemispherical dome is illustrated, but dome shapes such as streamlined, cone-shaped, pyramid-shaped, etc., which have less air resistance, are also possible.

〔作用〕[Effect]

本発明のドームにおいては、−上記の如く透光性スピネ
ルセラミックスの部分が赤外誘導式に、及び非透光性ム
ライト質セラミックスの部分が電波誘導式に夫々対応し
て構成され、従って複合誘導式にも対応することが可能
である。
In the dome of the present invention, as described above, the translucent spinel ceramic portion is configured to correspond to the infrared induction type, and the non-transparent mullite ceramic portion is configured to correspond to the radio wave induction type. It is also possible to correspond to formulas.

尚、上記の如く透光性スピネルセラミックスは透光性と
共に電波透過性を有するので、透光性スピネルセラミッ
クスのみで構成したドームは電波誘導式、赤外誘導式及
び複合誘導式のいずれにも対応出来る。しかし、複合誘
導式では、ドーム内側に赤外線センサーと電波アンテナ
の両方を収容する必要があり、ドームサイズが必然的に
大きくなるので、ドーム全体を透光性スピネルセラミッ
クスのみで作製することは製造技術上[tであり、製造
出来たとしても極めてコスト高となる欠点がある。
As mentioned above, translucent spinel ceramics has both translucency and radio wave transparency, so domes made only of translucent spinel ceramics are compatible with radio wave induction, infrared induction, and composite induction. I can do it. However, with the composite induction type, it is necessary to house both the infrared sensor and the radio antenna inside the dome, which inevitably increases the dome size. Above [T], even if it can be manufactured, it has the drawback of being extremely expensive.

然るに本発明では、ドームのほぼ半分を非加圧焼結で安
価に製造できる非透光性ムライ)lセラミックスで構成
するので、簡単に低コストで製造できる利点がある。
However, in the present invention, since approximately half of the dome is made of non-transparent ceramics that can be manufactured at low cost by non-pressure sintering, there is an advantage that the dome can be easily manufactured at low cost.

本発明のドームを構成する透光性スピネルセラミックス
と非透光性ムライト質セラミックスは、従来のドーム材
料である低誘電率ガラス及びMgFやZnS等と比較し
て格段に高い強度、硬度、及び耐熱性を具えている。例
えば、曲げ強度は約17に9/闘2程度で硬度は110
0〜1300程度以上と高く、砂粒や氷粒の衝突に対し
ても傷つきにくく、従って耐久性に優れている。この耐
久性は円錐や角錐の形状に形成することにより更に助長
される。又、融点が1800〜2000 C”以上と耐
熱性にも優れているため、高速での空力加熱による昇温
にも充分耐えることが出来る。
The translucent spinel ceramics and non-translucent mullite ceramics that make up the dome of the present invention have significantly higher strength, hardness, and heat resistance than conventional dome materials such as low dielectric constant glass, MgF, and ZnS. It has sex. For example, the bending strength is about 17 to 9/2 and the hardness is about 110.
It has a high rating of about 0 to 1,300 or more, and is not easily damaged by collisions with sand or ice particles, and therefore has excellent durability. This durability is further promoted by forming it in the shape of a cone or pyramid. Furthermore, it has excellent heat resistance, with a melting point of 1800 to 2000 C'' or higher, and can sufficiently withstand temperature rises caused by aerodynamic heating at high speeds.

更に、透光性スピネルセラミックスと非透光性ムライト
質セラミックスは、熱膨張係数が4.2〜6、7 X 
10−6/C”程度でアルミナより小さく且つ互いに比
較的近い値をもち、又熱伝導率がガラスより大きいので
耐熱衝撃性に優れ、互いに接着又は接合しても空力加熱
時の熱歪が少なく剥離等の危険が少ない。又、誘電率が
共に7〜8.2と低く、誘電損失も101以下であるた
め、電波透過性に優れ且つ全体として電波特性に歪のな
いドームが得られる。
Furthermore, the translucent spinel ceramics and non-translucent mullite ceramics have thermal expansion coefficients of 4.2 to 6.7
10-6/C", which is smaller than alumina and relatively close to each other, and has higher thermal conductivity than glass, so it has excellent thermal shock resistance, and even when bonded or bonded together, there is little thermal distortion during aerodynamic heating. There is little risk of peeling, etc. Furthermore, since both the dielectric constants are low, ranging from 7 to 8.2, and the dielectric loss is 101 or less, a dome with excellent radio wave transmittance and no distortion in radio wave characteristics as a whole can be obtained.

〔実施例〕〔Example〕

純度99.7%、平均粒径1.0μmのムライト粉末に
、TiO粉末を0.1%添加して混合し、石膏型を用い
たスリップキャスティング法により直径200闘及び厚
さ10間の半球状に成形し、乾燥後大気中で1650C
”で焼結した。得られたムライト質セラミックスは非透
光性の白色で、気孔率3%以下であり、導波管を用いた
定在波法により測定したところ、誘電率は7.0、誘電
損失は3.0X10”−’であった。又、波長3〜5μ
mでの赤外光の透過率は0%であった。
Mullite powder with a purity of 99.7% and an average particle size of 1.0 μm was mixed with 0.1% TiO powder, and a hemispherical shape with a diameter of 20 mm and a thickness of 10 mm was formed by slip casting using a plaster mold. After drying, heat at 1650C in the atmosphere.
The resulting mullite ceramic is non-transparent white, has a porosity of 3% or less, and has a dielectric constant of 7.0 when measured by the standing wave method using a waveguide. , the dielectric loss was 3.0×10''-'. Also, wavelength 3~5μ
The transmittance of infrared light at m was 0%.

一方、純度99.9%、平均粒径】μmの高純度スピネ
ル粉末をカーボン質の型を用いた真空ポットプレス法に
より、温度1450C°及び圧力200kLycm2で
直径200朋及び厚さ20闘の半球状に焼結し、更にA
rガスを用いて1600C’及び2000 kg/cm
 ”の圧力で2時間のHIP処理を行なった。得られた
スピネルセラミックスは無色透明で、気孔10.1%以
下であり、誘電率は8.2、誘電損失は1.1X10−
“であった。又、厚さ5.5朋に鏡面研磨した試験片の
波長3〜5μmの赤外光での透過率は平均81%であっ
た。更に、この試験片の表面に反射防止コーティングを
施したところ、侵大透過率が91%に向上した。
On the other hand, high-purity spinel powder with a purity of 99.9% and an average particle size of μm was processed into a hemispherical shape with a diameter of 200mm and a thickness of 20mm at a temperature of 1450°C and a pressure of 200kLycm2 using a carbon mold. sintered to A
1600C' and 2000 kg/cm using r gas
HIP treatment was carried out for 2 hours at a pressure of
In addition, the average transmittance of the test piece mirror-polished to a thickness of 5.5 μm for infrared light with a wavelength of 3 to 5 μm was 81%. When the coating was applied, the invasive transmittance increased to 91%.

上記の如く製造した透光性スピネルセラミックスと非透
光性ムライト質セラミックスをカーブジェネレータによ
り研削加工し、厚さ約5 +++sの半球状ドームを作
製した。更に透光性スピネルセラミックスは両面を厚さ
約5.5門まで鏡面研磨加工した。その後、これら半球
状の試料を夫々半分に切断し、透光性スピネルセラミッ
クスには反射防止コーティングを施した後、両者をエポ
キシ系接着剤で接着して半球状のドームを二個製造した
The translucent spinel ceramics and non-translucent mullite ceramics produced as described above were ground using a curve generator to produce a hemispherical dome with a thickness of approximately 5 +++ seconds. Furthermore, both sides of the translucent spinel ceramic were mirror-polished to a thickness of about 5.5 mm. Thereafter, each of these hemispherical samples was cut in half, and the translucent spinel ceramics were coated with an antireflection coating, and then both were adhered with an epoxy adhesive to produce two hemispherical domes.

コ(71)トAの透光性スピネルセラミックスの部分は
、赤外光透過率が波長3〜5μmの赤外光で平均約81
%であり、その内側に設置した赤外線センサーは正常に
作動することが確認された。又、非透光性ムライト質セ
ラミックスの部分における電波の透過損失は2.2dB
以下であり、その内側に設置した電波アンテナも正常に
作動した。これらの結果により、このドームは複合誘導
式に充分適用出来ることが判った。
(71) The translucent spinel ceramic part of A has an average infrared transmittance of about 81 for infrared light with a wavelength of 3 to 5 μm.
%, and it was confirmed that the infrared sensor installed inside it was operating normally. In addition, the transmission loss of radio waves in the non-transparent mullite ceramic part is 2.2 dB.
The radio antenna installed inside the antenna also worked properly. These results show that this dome is fully applicable to complex induction systems.

又、このドームは、−40C’から+70C°での熱サ
イクルによる耐熱試験によっても何等異常は認められな
かった。
Further, no abnormality was found in this dome when it was subjected to a heat resistance test by thermal cycling from -40C' to +70C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、硬度や強度、及び耐熱性に優れ、ミサ
イル等の高速条件下においても充分な耐久性を有するう
え、電波誘導式、赤外光誘導式又は複合誘導式のいずれ
にも対応出来る高速飛翔体用ドームを提供することがで
きる。
According to the present invention, it has excellent hardness, strength, and heat resistance, has sufficient durability even under high-speed conditions such as missiles, and is compatible with radio wave guidance, infrared light guidance, or composite guidance. It is possible to provide a dome for high-speed flying objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による高速飛翔体用ドームの一具体例を
示す概略の断面図、第2図はその平面図である。 1・・透光性スピネルセラミックス 2・・非透光性ムライト質セラミックス3・・赤外線セ
ンサー 4・・電波アンテナ
FIG. 1 is a schematic sectional view showing a specific example of a dome for high-speed flying objects according to the present invention, and FIG. 2 is a plan view thereof. 1. Translucent spinel ceramics 2. Non-transparent mullite ceramics 3. Infrared sensor 4. Radio antenna

Claims (1)

【特許請求の範囲】[Claims] (1)高速飛翔体の先端に装着されるドームであつて、
透光性スピネルセラミックスの部分と、非透光性ムライ
ト質セラミックスの部分とからなる高速飛翔体用ドーム
(1) A dome attached to the tip of a high-speed flying object,
A dome for high-speed flying objects consisting of a translucent spinel ceramic part and a non-translucent mullite ceramic part.
JP3459990A 1990-02-15 1990-02-15 Dome for high-speed projectile Pending JPH03241300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3459990A JPH03241300A (en) 1990-02-15 1990-02-15 Dome for high-speed projectile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3459990A JPH03241300A (en) 1990-02-15 1990-02-15 Dome for high-speed projectile

Publications (1)

Publication Number Publication Date
JPH03241300A true JPH03241300A (en) 1991-10-28

Family

ID=12418814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3459990A Pending JPH03241300A (en) 1990-02-15 1990-02-15 Dome for high-speed projectile

Country Status (1)

Country Link
JP (1) JPH03241300A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091375A (en) * 1996-06-25 2000-07-18 Sumitomo Electric Industries, Ltd. Radome
US9624136B2 (en) 2014-07-01 2017-04-18 Corning Incorporated Transparent spinel article and tape cast methods for making

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091375A (en) * 1996-06-25 2000-07-18 Sumitomo Electric Industries, Ltd. Radome
US9624136B2 (en) 2014-07-01 2017-04-18 Corning Incorporated Transparent spinel article and tape cast methods for making

Similar Documents

Publication Publication Date Title
US5457471A (en) Adaptively ablatable radome
US7148480B2 (en) Polycrystalline optical window materials from nanoceramics
US8236200B2 (en) Nano-composite IR window and method for making same
US20110315807A1 (en) One-piece nano/nano class nanocomposite optical ceramic (nnoc) extended dome having seamless non-complementary geometries for electro-optic sensors
Ganesh et al. Slip-cast fused silica radomes for hypervelocity vehicles: advantages, challenges, and fabrication techniques
US3336873A (en) Radome nose for a missile, and method of making same
CN101591191A (en) Zirconia reinforced silicon nitride/quartz-matrix ceramic composite material and preparation method thereof
JPH03241300A (en) Dome for high-speed projectile
CN111018528B (en) Low-emissivity ceramic material under 3-5 mu m wave band and preparation method thereof
Klein Carbon/carbon composites
CN110721881A (en) On-site repairing method for high-temperature radar and infrared compatible stealth coating
US20240159592A1 (en) Infrared Transparent Constructs and Methods of Making Them
JPH02171600A (en) Dome for high speed missile
JPH0384399A (en) Dome for high speed flying object
JPH02187599A (en) Dome for high speed airframe
JPH0621713A (en) Board band radome
JPH02302598A (en) Dome for high-speed flying object
US20210221742A1 (en) Multi-phase infrared transparent ceramic material
Kirsch et al. Tri-mode seeker dome considerations
US6370327B1 (en) Emitter of infrared radiation in band III and composite allowing the emission of such radiation
JPH02302597A (en) Dome for high-speed flying object
CN101591196A (en) Glaze layer material for broadband ceramic matrix composite material and preparation method thereof
EP0447390A4 (en) Transparent polycrystalline body with high ultraviolet transmittance, process for making, and applications thereof
JPH04502748A (en) Transparent polycrystalline material with high ultraviolet transmittance, its manufacturing method and its usage
CN111909657A (en) Profiling multi-spectrum composite camouflage material and preparation method thereof