JPH02187599A - Dome for high speed airframe - Google Patents

Dome for high speed airframe

Info

Publication number
JPH02187599A
JPH02187599A JP733089A JP733089A JPH02187599A JP H02187599 A JPH02187599 A JP H02187599A JP 733089 A JP733089 A JP 733089A JP 733089 A JP733089 A JP 733089A JP H02187599 A JPH02187599 A JP H02187599A
Authority
JP
Japan
Prior art keywords
dome
transmitting
light
alon
airframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP733089A
Other languages
Japanese (ja)
Inventor
Kenichiro Shibata
柴田 憲一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP733089A priority Critical patent/JPH02187599A/en
Publication of JPH02187599A publication Critical patent/JPH02187599A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/32Range-reducing or range-increasing arrangements; Fall-retarding means
    • F42B10/38Range-increasing arrangements
    • F42B10/42Streamlined projectiles
    • F42B10/46Streamlined nose cones; Windshields; Radomes

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Aerials (AREA)

Abstract

PURPOSE:To make a dome excellent in hardness, strength, and heat resistance and applicable to high speed airframe and to a compound piloting system by setting up a dome for a high speed airframe by combining a light-transmitting type and a non-light-transmitting type oxide-nitride o aluminum ceramics. CONSTITUTION:An oxide-nitride of aluminum ceramics, referred to also as Alon, has specially high strength, hardness, and heat resistance. The dome is void and hemispherical in structure as a whole, about a half of the hemisphere being built of light-transmitting Alon 1 and the remaining half being built of non-light-transmitting Alon 2. An infrared ray sensor 3 and a radio antenna 4 are installed inside the dome; these installations make composite guiding possible with respect to infrared rays and radio waves. Light-transmitting Alon and non-light-transmitting Alon are fastened to each other firmly by heat- resistant adhesion or by a joining means 5. Since non-light-transmitting Alon transmits radio waves and light-transmitting Alon is excellent in transmitting infrared rays, suitable combination of these materials makes it possible to set up a large scale-dome for a composite guiding system easily and economically.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ミサイル等の高速飛翔体の先端部に装着され
、内部の電波アンテナや赤外線センサー等の装置を保護
するドーム(dome )に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dome that is attached to the tip of a high-speed flying object such as a missile and protects internal devices such as a radio antenna and an infrared sensor.

〔従来の技術〕[Conventional technology]

ミサイルには地対空、空対空、空対地などの種類がある
が、その誘導方式には電波誘導式と赤外光誘導式とに大
別される。
There are several types of missiles, including surface-to-air, air-to-air, and air-to-ground, and their guidance methods are broadly divided into radio wave guidance and infrared light guidance.

電波誘導式は目標物体の発する電波又は目標物体からの
反射波を電波アンテナで受信して、目標物体の位置を確
認し、誘導するものである。従って、電波誘導式ミサイ
ルのドームは電波を透過しやすいガラス材料等で作成さ
れる。しかし、ガラスからなるドームでは、より高速化
した場合先端部が空力加熱により高温に加熱されるので
、耐熱性が不充分である。
The radio wave guidance type uses a radio antenna to receive radio waves emitted by a target object or reflected waves from the target object, confirm the position of the target object, and guide the target object. Therefore, the dome of a radio-guided missile is made of a material such as glass that easily transmits radio waves. However, a dome made of glass has insufficient heat resistance because its tip is heated to a high temperature by aerodynamic heating when the speed is increased.

一万、赤外光誘導式では目標物体の発する赤外光を赤外
線センサーで受光して、目標物体の位置を確認し、誘導
する。従って、赤外光誘導に用いるドームは赤外光透過
性の良い弗化マグネシウム(MgF )や硫化亜鉛(Z
nS )等が用いられる。しかし、MgF  やZnS
等は硬度が600以下程度と低いま ため、大気中に浮遊する砂粒や氷粒等との街突により表
面が傷つき、透光性が低下しやすい欠点があった。又、
耐熱性の点でも、融点又は昇華点が1300〜900 
Cであり、超高速条件下では十分とは云えなかった。
In the infrared light guidance type, the infrared light emitted by the target object is received by an infrared sensor to confirm the position of the target object and guide it. Therefore, the dome used for infrared light guidance is made of magnesium fluoride (MgF) or zinc sulfide (Z), which have good infrared light transmittance.
nS ) etc. are used. However, MgF and ZnS
etc. have a low hardness of about 600 or less, and have the disadvantage that the surface is easily damaged by collision with sand particles, ice particles, etc. floating in the atmosphere, and the translucency is easily reduced. or,
In terms of heat resistance, the melting point or sublimation point is 1300 to 900.
C, which could not be said to be sufficient under ultra-high speed conditions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した如く、従来の高速飛翔体用ドームは材質的に硬
度や耐熱性に問題があった。
As mentioned above, conventional domes for high-speed flying objects have problems in terms of material hardness and heat resistance.

しかも、最近米国ではミサイル誘導の妨害に対抗するた
めに、赤外光誘導と電波誘導を組合せた複合誘導式が研
究されつつあるが、従来のドーム材料であるガラス又は
MgF  やZnS等では、赤外光及び電波の両方を透
過し、しかも高速下で耐久性のあるドームを得ることが
蕪しかった。
Moreover, in the United States, research has recently begun on a composite guidance system that combines infrared light guidance and radio wave guidance in order to counter missile guidance jamming, but conventional dome materials such as glass, MgF, and ZnS cannot It has been difficult to obtain a dome that transmits both external light and radio waves and is durable under high speed conditions.

そこで、本発明はかかる従来の事情に鑑み、硬度や強度
、及び耐熱性に優れ、高速の飛翔体に適用できるドーム
を提供すること、更には複合誘導式にも対応でさる高速
飛翔体用ドームを提供することを目的とするものである
Therefore, in view of the conventional circumstances, the present invention provides a dome for high-speed flying objects that has excellent hardness, strength, and heat resistance and can be applied to high-speed flying objects, and is also compatible with complex guidance types. The purpose is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明における高速飛翔体用
ドームは透光性及び非透光性の酸窒化アルミニウムセラ
ミックスの組合せにより構成されることを特徴とする。
In order to achieve the above object, the dome for a high-speed flying object according to the present invention is characterized by being composed of a combination of translucent and non-translucent aluminum oxynitride ceramics.

1’lt”X化アルミニウム(A10N)セラミックス
232ア 6 はニーロンとも称され、粉末を原料とした焼結法に従っ
て製造される。製造条件によって透光性又は非透光性の
ものが製造でさることが知られている。
1'lt'' Aluminum It is known.

−12に透光性のものはホットプレス法等の加圧焼結法
により製造し、非透光性のものは常圧焼結法により製造
できる。
-12 Translucent materials can be manufactured by a pressure sintering method such as a hot press method, and non-transparent materials can be manufactured by an atmospheric pressure sintering method.

ニーロンは、曲げ強度が30 kg/ss 、硬度が1
970程度と、機械的強度が高く、又融点が2140 
Cと高く、耐熱性にも優れている。更に、誘電率が8.
5誘電損失が5X10”−’程度であり、電波(マイク
ロ波)の透過率にも優れている。
Nylon has a bending strength of 30 kg/ss and a hardness of 1
It has a high mechanical strength of about 970 and a melting point of 2140.
It has a high C and has excellent heat resistance. Furthermore, the dielectric constant is 8.
5. The dielectric loss is approximately 5×10''-', and the transmittance of radio waves (microwaves) is also excellent.

非透光性ニーロンは赤外光を透過せず電波を透過し、透
光性ニーロンは赤外光と電波の両方を透過する。従って
、非透光性ニーロンのみで構成したドームは電波誘導式
用となり、透光性ニーロンのみで構成したドームは赤外
光誘導式、電波誘導式、及び複合誘導式のいずれにも適
用できる。
Non-transparent Neylon does not transmit infrared light but transmits radio waves, and translucent Neylon transmits both infrared light and radio waves. Therefore, a dome made only of non-transparent nylon can be used for radio wave induction type, and a dome made only of translucent nylon can be applied to any of the infrared light induction type, radio wave induction type, and composite induction type.

しかし、複合誘導式の場合、ドーム内に赤外線センサー
及び電波アンテナの両方を収容する必要があるため、ド
ームサイズは大きくなり全体を透光性ニーロンで製造す
ることは、製造技術上困難であるうえコスト高になる問
題がある。
However, in the case of a composite induction type, it is necessary to house both an infrared sensor and a radio antenna within the dome, so the dome size is large, and it is difficult due to manufacturing technology to manufacture the entire dome from transparent nylon. There is a problem of high cost.

本発明のドーム構造はこのような問題点に鑑み考案され
たものであり透光性及び非透光性のニーロンの組合せに
よりドームが構成されるため、複合誘導式に対しても製
造が比較的容易で、低コストで製造でさる特徴がある。
The dome structure of the present invention was devised in view of these problems, and since the dome is constructed by a combination of translucent and non-transparent kneelons, manufacturing is relatively easy even for complex induction types. It has the characteristics of being easy and low cost to manufacture.

本発明ドームは、かかる透光性及び非透光性ニーロンの
各部分を耐熱性接着剤で接着するか又は接合することに
より比較的容易に且つ低コストで製造でさる。
The dome of the present invention can be manufactured relatively easily and at low cost by gluing or joining each part of the light-transmitting and non-light-transmitting kneelon with a heat-resistant adhesive.

本発明の高速飛翔体用ドームの−・具体例を第1図及び
第2図しこ示した。
A specific example of the dome for high-speed flying objects of the present invention is shown in FIGS. 1 and 2.

このドームは全体が中空の半球吠であり、半球の約半分
は透光性ニーロン部1よりなり、残りの約半分は非透光
性ニーロン部2で構成される。
This dome is a hollow hemisphere as a whole, and approximately half of the hemisphere is composed of a translucent kneelon part 1, and the remaining half is composed of a non-transparent kneelon part 2.

ドーム内には赤外線センサー3及び電波アンテナ4が配
置され、赤外光と電波の複合誘導が可能となっている。
An infrared sensor 3 and a radio antenna 4 are arranged inside the dome, making it possible to conduct combined guidance of infrared light and radio waves.

夫々の透光性ニーロン及び非透光性ニーロンは相互に耐
熱性接着又は接合部5により強固Gこ固定される。
The light-transmitting kneelon and the non-light-transmitting kneelon are firmly fixed to each other by heat-resistant adhesive or joint portion 5.

尚、透光性ニーロン部lと非透光性ニーロン部2の大き
さは、誘導方式等に応じて任意に組合せることが可能で
ある。又、非透光性ニーロンの代りに、アルミナ系、ス
ピネル系、窒化珪紫系、窒化アルミニウム系等の非透光
性耐熱セラミックスを用いても良い。
Note that the sizes of the translucent kneelon part 1 and the non-transparent kneelon part 2 can be arbitrarily combined depending on the guidance method and the like. Further, instead of the non-transparent Neylon, non-transparent heat-resistant ceramics such as alumina-based, spinel-based, silicon nitride-based, aluminum nitride-based, etc. may be used.

〔作用〕[Effect]

本発明の高速飛翔体用ドームを構成する透光性及び非透
光性の酸窒化アルミニウムセラミックス(ニーロン)は
、従来のドーム用材料である低誘電率ガラス及びMgF
  やZnS等と比較して格段に高い強度、硬度、及び
耐熱性を具えている。
Translucent and non-transparent aluminum oxynitride ceramics (Nylon) constituting the dome for high-speed flying objects of the present invention are made of low dielectric constant glass and MgF, which are conventional dome materials.
It has significantly higher strength, hardness, and heat resistance than other materials such as ZnS and ZnS.

例えば、硬度はtsoo程度もあるので、砂粒や氷粒の
衝突に対しても傷つきに<<、従って耐久性に優れてい
る。又、融点が2140tZ”と耐熱性にも優れている
ため、高速での空力加熱による昇温にも充分耐えること
が出来る。
For example, since the hardness is on the order of 300 yen, it is resistant to damage even when hit by sand grains or ice grains, and therefore has excellent durability. In addition, it has excellent heat resistance with a melting point of 2140 tZ'', so it can sufficiently withstand temperature increases caused by aerodynamic heating at high speeds.

非透光性ニーロンは電波を透過し赤外光を透過しないが
、非加圧での焼結で製造できるので、比較的大型の材料
を経済的に製造でさる利点がある。
Non-transparent Neelon transmits radio waves but does not transmit infrared light, but it can be manufactured by sintering without pressure, so it has the advantage of economically manufacturing relatively large materials.

一方、透光性ニーロンは赤外光、可視光、紫外光に80
%程度の良好な透過率を有し、特に波長3〜4μmの赤
外光透過性に優れ、表面に反射時〔トコーティングを施
せば更に透光性を向上させることができる。又、透光性
ニーロンは電波透過性にも優れているので、赤外光誘導
用のほか、電波誘導用、又は両方の複合誘導用ドームと
しても使用できる。
On the other hand, translucent Nealon is 80% resistant to infrared, visible, and ultraviolet light.
%, and has excellent infrared light transmittance, particularly at a wavelength of 3 to 4 μm, and the light transmittance can be further improved by applying a reflective coating to the surface. In addition, since translucent Nylon has excellent radio wave transmittance, it can be used as a dome for infrared light guidance, radio wave guidance, or a combination of both.

これらの同組成で透光性のみ異なる材料を前述の通り適
当に組合せることにより、技術的に容易に且つ経済的に
複合誘導式の大型ドームを構成することが可能になる。
By appropriately combining these materials with the same composition but different only in transmissivity as described above, it becomes possible to construct a large dome of the composite induction type technically easily and economically.

ドーム全体の形状は、前述の半球状の他に空気抵抗の少
ない流線形成いはコーン状、角錐状等も可能である。
The shape of the entire dome may be, in addition to the hemispherical shape described above, a streamlined shape with less air resistance, a cone shape, a pyramid shape, or the like.

尚、透光性ニーロンと非透光性ニーロンは、熱膨張係数
が5.2X10  /l:で殆ど同じであるため、相互
に接着又は接合しても空力加熱時の熱歪を最少にでき、
剥離等の危険がない。又、誘電率及び誘電損失も殆ど同
じため、全体として電波特性に歪のないドームが得られ
る。
Furthermore, since the translucent kneelon and the non-transparent kneelon have almost the same coefficient of thermal expansion of 5.2 x 10 /l, thermal distortion during aerodynamic heating can be minimized even if they are bonded or bonded together.
There is no risk of peeling etc. Furthermore, since the dielectric constant and dielectric loss are almost the same, a dome with no distortion in radio wave characteristics can be obtained as a whole.

〔実施例〕〔Example〕

純度99.3%、平均粒径2.5μmのニーロン粉末を
OIP法により直径200mm、厚さ10鶴の半球状に
成形し、乾燥の後大気中で19000で焼結した。
Neelon powder with a purity of 99.3% and an average particle size of 2.5 μm was molded into a hemispherical shape with a diameter of 200 mm and a thickness of 10 mm by the OIP method, and after drying, it was sintered in the air at a temperature of 19,000 mm.

焼結体は非透光性の白色で気孔率3%以下であり、導波
管を用いた定在波法により測定した結果、誘電率は8.
58、誘電損失は5X10−’であった。又、波長3〜
4μmでの赤外光の透過率は0%であった0 純度99.8%、平均粒径1.5μmの高純度スピネル
粉末をカーボン質の型を用いた真空ホットプレス法によ
り、1950 C,、300臀憔で直径200朋、厚さ
20uの半球状に焼結した。焼結体は無色透明で気孔率
0.15以下であり、上記と同じ方法で測定し、誘電率
8.6、誘電損失は5.2X10”−’であった。又、
厚さ4朋に鏡面研磨加工した試片の、波長3〜4μmの
赤外光透過率は約78%であった。
The sintered body is non-transparent white, has a porosity of 3% or less, and has a dielectric constant of 8.0 as measured by the standing wave method using a waveguide.
58, and the dielectric loss was 5×10−′. Also, wavelength 3~
The transmittance of infrared light at 4 μm was 0%. High purity spinel powder with a purity of 99.8% and an average particle size of 1.5 μm was heated at 1950 C by a vacuum hot press method using a carbon mold. It was sintered into a hemispherical shape with a diameter of 200mm and a thickness of 20u using a 300mm diameter. The sintered body was colorless and transparent, had a porosity of 0.15 or less, and was measured using the same method as above, and had a dielectric constant of 8.6 and a dielectric loss of 5.2X10''-'.
The infrared light transmittance of the specimen mirror-polished to a thickness of 4 mm at a wavelength of 3 to 4 μm was approximately 78%.

更にこの材料の表面に反射防止コーティングを施したと
ころ最大透過率は88%に向上した。
Furthermore, when an antireflection coating was applied to the surface of this material, the maximum transmittance increased to 88%.

上記非透光性のニーロンをカーブジェネレータにより研
削加工し、厚さ約4賭の半球状ドームを作成した。又、
上記透光性のスピネルを同様に半球状ドームとし、更に
両面を鏡面研磨加工し、厚さ約4 mmの半球状ドーム
を作成した。
The above-mentioned non-transparent nailon was ground using a curve generator to create a hemispherical dome with a thickness of approximately 4 mm. or,
The above-mentioned translucent spinel was similarly made into a hemispherical dome, and both sides were mirror-polished to create a hemispherical dome with a thickness of about 4 mm.

こねらのドームを各々、約172に切断し、透光性ニー
ロンには反射防止コーティングを施した後、透光性部と
非透光性部を耐熱性セラミックス系接着剤で接着し、半
球状ドームを2ヶ作成した。
Each dome was cut into approximately 172 pieces, and the translucent kneelon was coated with anti-reflection coating, and the translucent and non-transparent parts were glued together with a heat-resistant ceramic adhesive to form a hemispherical shape. Two domes were created.

このドームの赤外光透過率は80%以上であり、赤外線
センサーは正常に作動することが確認された。又、電波
の透過損失は2 tiE以下でありアンテナも正常に作
動した。これらの結果により、複合誘導式ドームとして
有用であることが判った。
The infrared light transmittance of this dome was 80% or more, and it was confirmed that the infrared sensor was operating normally. Furthermore, the transmission loss of radio waves was less than 2 tiE, and the antenna operated normally. Based on these results, it was found that the dome is useful as a composite induction dome.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、硬度や強度、及び耐熱性に優れた酸窒
化アルミニウム(ニーロン)セラミックス材料からなり
、優れた耐久性を具えると共に高速飛翔体に適用でさ、
しかも電波誘導式、赤外光誘導式又は複合誘導式のいず
れにも対応できる高速飛翔体用ドームを提供することが
出来る。
According to the present invention, it is made of aluminum oxynitride (Nylon) ceramic material with excellent hardness, strength, and heat resistance, and has excellent durability and is applicable to high-speed flying objects.
Furthermore, it is possible to provide a dome for high-speed flying objects that is compatible with any of the radio wave guidance type, infrared light guidance type, or composite guidance type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高速飛翔体用ドームの一具体例の断面
図、第2図はその平面図である。 l・・透光性ニーロン部 2・・非透光性ニーロン部 3・・赤外線センサ 4・・電波アンテナ 5・・接合部
FIG. 1 is a sectional view of a specific example of the dome for high-speed flying objects of the present invention, and FIG. 2 is a plan view thereof. l... Translucent kneelon part 2... Non-transparent kneelon part 3... Infrared sensor 4... Radio antenna 5... Joint part

Claims (1)

【特許請求の範囲】[Claims] (1)高速飛翔体の先端に装着されるドームであつて、
透光性及び非透光性の酸窒化アルミニウムセラミックス
の組合せにより構成されることを特徴とする高速飛翔体
用ドーム。
(1) A dome attached to the tip of a high-speed flying object,
A dome for high-speed flying objects characterized by being constructed from a combination of translucent and non-transparent aluminum oxynitride ceramics.
JP733089A 1989-01-13 1989-01-13 Dome for high speed airframe Pending JPH02187599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP733089A JPH02187599A (en) 1989-01-13 1989-01-13 Dome for high speed airframe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP733089A JPH02187599A (en) 1989-01-13 1989-01-13 Dome for high speed airframe

Publications (1)

Publication Number Publication Date
JPH02187599A true JPH02187599A (en) 1990-07-23

Family

ID=11662949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP733089A Pending JPH02187599A (en) 1989-01-13 1989-01-13 Dome for high speed airframe

Country Status (1)

Country Link
JP (1) JPH02187599A (en)

Similar Documents

Publication Publication Date Title
Nag et al. High temperature ceramic radomes (HTCR)–A review
US8130167B2 (en) Radomes, aircraft and spacecraft including such radomes, and methods of forming radomes
US4677443A (en) Broadband high temperature radome apparatus
US20110315807A1 (en) One-piece nano/nano class nanocomposite optical ceramic (nnoc) extended dome having seamless non-complementary geometries for electro-optic sensors
US9012823B2 (en) Vehicle having a nanocomposite optical ceramic dome
US5457471A (en) Adaptively ablatable radome
US20140231727A1 (en) Solid solution-based nanocomposite optical ceramic materials
US10792891B2 (en) Polymer matrix-ceramic matrix hybrid composites for high thermal applications
CN101815763A (en) A cooling material
CN109664574A (en) Passive type radiation-cooled structure and cooling means based on composite material
US3336873A (en) Radome nose for a missile, and method of making same
US20220350054A1 (en) Method of strengthening an optical element
Ganesh et al. Slip-cast fused silica radomes for hypervelocity vehicles: advantages, challenges, and fabrication techniques
EP0919069A1 (en) Environmentally resistant, infrared-transparent window structure
JPH02187599A (en) Dome for high speed airframe
US20240159592A1 (en) Infrared Transparent Constructs and Methods of Making Them
CN102225869A (en) High-temperature wide-frequency wave-transparent composite material and preparation method thereof
JPH02171600A (en) Dome for high speed missile
JPH03241300A (en) Dome for high-speed projectile
JPH02302598A (en) Dome for high-speed flying object
Kirsch et al. Tri-mode seeker dome considerations
JPH0384399A (en) Dome for high speed flying object
JPH02302597A (en) Dome for high-speed flying object
US6370327B1 (en) Emitter of infrared radiation in band III and composite allowing the emission of such radiation
JPH0621713A (en) Board band radome