JPH03241212A - Catalyst combustion device - Google Patents

Catalyst combustion device

Info

Publication number
JPH03241212A
JPH03241212A JP3632090A JP3632090A JPH03241212A JP H03241212 A JPH03241212 A JP H03241212A JP 3632090 A JP3632090 A JP 3632090A JP 3632090 A JP3632090 A JP 3632090A JP H03241212 A JPH03241212 A JP H03241212A
Authority
JP
Japan
Prior art keywords
gas
combustion
catalyst
gas outlet
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3632090A
Other languages
Japanese (ja)
Inventor
Tomoki Eguchi
江口 知己
Osao Okamura
岡村 長生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN FUEL TECHNOL CORP
Toshiba Corp
Original Assignee
JAPAN FUEL TECHNOL CORP
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN FUEL TECHNOL CORP, Toshiba Corp filed Critical JAPAN FUEL TECHNOL CORP
Priority to JP3632090A priority Critical patent/JPH03241212A/en
Publication of JPH03241212A publication Critical patent/JPH03241212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Spray-Type Burners (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To reduce a discharging of unburnt combustible gas and prevent an efficiency of combustion from being reduced by a method wherein a cross sectional area of a gas inlet part of a catalyst container is made smaller than a cross sectional area of a gas outlet port and formed to expand toward the gas outlet port. CONSTITUTION:A catalyst container 2 is comprised of a tapered pipe 11, and porous heat-resistant supporting members 12 and 13 closing both end openings capable of making a free passage of gas to constitute a gas inlet port and a gas outlet port, respectively. The tapered pipe 11 is formed such that a cross sectional area A of the gas inlet port, i.e. the supporting member 12 is smaller than a cross sectional area B of the gas outlet port, i.e. the supporting member 13 and the tapered pipe is formed to expand toward the supporting member 13 at the gas outlet port. In this way, the catalyst container 20 is formed as an expanding cylinder, thereby a tablet type combustion catalyst can be used as it is even in an application requiring a reduced pressure loss, resulting in that a discharging of the not-yet-ignited combustible gas is reduced and a combustion efficiency is prevented from being decreased.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、燃料と酸化剤を混合した可燃性ガスを、燃焼
触媒を使用して燃焼させる触媒燃焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a catalytic combustion device that uses a combustion catalyst to combust a combustible gas containing a fuel and an oxidizer.

(従来の技術) 通常、可燃性ガスはバーナを使用して燃焼するのが一般
的であり、その目的、可燃性ガスの条件、利用する燃焼
ガスの用途により種々のタイプのバーナが用いられてい
る。
(Prior art) Combustible gas is generally combusted using a burner, and various types of burners are used depending on the purpose, the conditions of the combustible gas, and the use of the combustion gas. There is.

しかしながら、このバーナによる燃焼方式は、近年環境
規制上の問題から燃焼排ガス中の窒素酸化物を低減する
ことが義務づけされているため、通常のバーナであって
も種々の工夫がなされ、又燃焼条件を制御するなどして
、窒素酸化物を規制値以下に下げる努力がなされている
However, in recent years, it has become mandatory for this burner combustion method to reduce nitrogen oxides in the combustion exhaust gas due to environmental regulations, so even with ordinary burners, various improvements have been made and combustion conditions have changed. Efforts are being made to reduce nitrogen oxides to below regulatory limits by controlling

前記窒素酸化物のうち、サーマル(Thermal )
窒素酸化物と呼ばれるものは、燃焼温度に関係し、高温
になるほどその生成量が増大する。
Among the nitrogen oxides, thermal
Nitrogen oxides are related to combustion temperature, and the higher the temperature, the more they are produced.

このサーマル窒素酸化物を低減させる有力な手段として
、第6図に示す触媒燃焼装置が注目されている。これは
、通常の拡散燃焼では炎の温度が非常に高くなるため、
この温度にさらされる空気中の窒素が酸化反応により窒
素酸化物を発生するのに対し、前述の触媒燃焼装置では
、可燃性ガスと空気が予混合され、この状態のもとで、
燃焼触媒の表面で酸化反応が起るため、比較的低温で燃
料が燃焼するからである。
A catalytic combustion device shown in FIG. 6 is attracting attention as an effective means for reducing thermal nitrogen oxides. This is because the flame temperature becomes very high in normal diffusion combustion.
Nitrogen in the air exposed to this temperature generates nitrogen oxides through an oxidation reaction, whereas in the catalytic combustion device described above, flammable gas and air are premixed, and under this condition,
This is because the oxidation reaction occurs on the surface of the combustion catalyst, so the fuel burns at a relatively low temperature.

すなわち、触媒容器フ○内に、燃焼触媒4を収納した状
態で、燃料と酸化剤を混合した可燃性ガス5を供給して
前記燃料を燃焼させるようにしたものである。前記触媒
容器1oは、円筒体1と、その両端部に可燃性ガス5か
自由にil!!過てきる耐熱性の支持体2.3からなっ
ている。
That is, a combustion catalyst 4 is housed in a catalyst container F, and a combustible gas 5 containing a mixture of fuel and an oxidizing agent is supplied to combust the fuel. The catalyst container 1o has a cylindrical body 1 and a flammable gas 5 or il! at both ends thereof. ! It consists of a heat-resistant support 2.3.

このような構成の触媒容器1oに、流速がUl m/s
eeて触媒燃焼かてきる温度まて予熱された可燃性ガス
5を含む空気を流す。すると、燃焼触媒4層に可燃性ガ
ス5が通過し、可燃性ガス5の部か触媒燃焼を始めるの
で、温度が上り初め燃焼触媒4の内部では熱膨脹のため
、空塔速度はU1m/seeより大きいU  2m  
/seqの速度となる。
In the catalyst container 1o having such a configuration, the flow rate is Ul m/s.
ee, air containing combustible gas 5 that has been preheated to a temperature at which catalytic combustion occurs is caused to flow. Then, the combustible gas 5 passes through the 4 layers of the combustion catalyst, and catalytic combustion begins in the combustible gas 5, so the temperature begins to rise and due to thermal expansion inside the combustion catalyst 4, the superficial velocity becomes lower than U1m/see. Big U 2m
/seq speed.

この場合、可燃性ガス5がガス出口部つまり支持体3を
通過するときは、可燃性ガス5か完全燃焼して温度は更
に上り、Ul0 /secの空塔速度となる。この際の
支持体2,3のガス入口部およびガス出口部のガス通過
による圧力損失はΔP1である。
In this case, when the combustible gas 5 passes through the gas outlet, that is, the support 3, the combustible gas 5 is completely combusted, the temperature further increases, and the superficial velocity becomes U10/sec. At this time, the pressure loss due to gas passing through the gas inlet and gas outlet of the supports 2 and 3 is ΔP1.

(発明か解決しようとする課題) しかしなから、前述の従来の触媒燃焼装置であっても、
圧力損失ΔP1をできる限り小さくする必要のある用途
には、前述の例のままで使用できす、燃焼触媒4をタブ
レット型からハニカム型に変更しなければならないとい
う問題点かある。
(Problem to be solved by the invention) However, even with the conventional catalytic combustion device described above,
For applications where the pressure loss ΔP1 needs to be as small as possible, the above example can be used as is, but there is a problem in that the combustion catalyst 4 must be changed from a tablet type to a honeycomb type.

又、燃焼触媒4としてハニカム型に変更した場合こは、
圧力損失を低減できるというメリットを有する反面、可
燃性ガスの吹き抜けによる未燃焼可燃性ガスか排出され
て燃焼効率か低下するという問題点かある。
Also, if the combustion catalyst 4 is changed to a honeycomb type,
Although it has the advantage of reducing pressure loss, it also has the problem that unburned combustible gas is discharged due to the flammable gas blowing through, reducing combustion efficiency.

そこで、本発明は圧ノj損失を低くする必要のある用途
でもタブレット型の燃焼触媒のままで使用でき、未燃焼
可燃性ガスの排出が少なく燃焼効率か低下しない触媒燃
焼装置を提供することを目的とする。
Therefore, the present invention aims to provide a catalytic combustion device that can be used as a tablet-type combustion catalyst even in applications where it is necessary to reduce pressure nozzle loss, which emits less unburned combustible gas and does not reduce combustion efficiency. purpose.

[発明の構成コ (課題を解決するための手段〉 本発明は、前記目的を達成するため、燃焼触媒を収納し
た触媒容器において形成されているガス入口部からガス
出口部に向けて、燃料と酸化剤を混合した可燃性ガスを
供給して前記燃料を燃焼させるものにおいて、前記触媒
容器を、前記ガス入口部の断面積は前記ガス出口部の断
面積より小さくし、かつガス出口部に向って末広かりと
なるように形成したものである。
[Configuration of the Invention (Means for Solving the Problems)] In order to achieve the above-mentioned object, the present invention provides a method for discharging fuel and gas from a gas inlet portion formed in a catalyst container housing a combustion catalyst toward a gas outlet portion. In the device for combusting the fuel by supplying a combustible gas mixed with an oxidizing agent, the catalyst container has a cross-sectional area of the gas inlet portion smaller than the cross-sectional area of the gas outlet portion, and a cross-sectional area of the catalyst container facing the gas outlet portion. It is shaped so that it is wide at the end.

(作用) 本発明によれば、触媒容器を、前記ガス入口部の断面積
は前記ガス出口部の断面積より小さくし、かつガス出口
部に向って末広がりとなるように形成したので、燃焼の
進行とともにガス量、ガス温度か増大することによる流
速の増大に伴う圧力損失の増大は、断面積か末広がりに
なることにより流速の増大を防ぎ圧力損失の増大を抑え
ることか可能となる。そのため、圧力損失損を低くする
必要のある用途でもタブレット型の燃焼触媒のままで使
用でき、未燃焼可燃性ガスの排出か少なく燃焼効率が低
下しない。
(Function) According to the present invention, the catalyst container is formed so that the cross-sectional area of the gas inlet portion is smaller than the cross-sectional area of the gas outlet portion and widens toward the gas outlet portion. The increase in pressure loss due to the increase in flow rate due to the increase in gas amount and gas temperature as the process progresses can be prevented by widening the cross-sectional area and thereby suppressing the increase in pressure loss. Therefore, even in applications that require low pressure loss, the tablet-type combustion catalyst can be used as it is, and the combustion efficiency does not decrease due to the small amount of unburned combustible gas being emitted.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第1図は本発明の第1の実施例の触媒容器20の構成
を示すもので、第6図の従来例とは以下の点か異なる。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of a catalyst container 20 according to a first embodiment of the present invention, which differs from the conventional example shown in FIG. 6 in the following points.

すなわち、触媒容器20は、テーバ管1]と、この両端
開口部を閉塞するとともに、ガスが自由に通過できてガ
ス入口部とガス出口部を構成する多孔性であって耐熱性
の支持体12.13からなっている。この場合、テバ管
1ユは、ガス入口部つまり支持体]2の断面積Aはガス
出口部つまり支持体13の断面積Bより小さくし、かつ
ガス出口部の支持体13に向って末広かりとなるように
形成したちのである。
That is, the catalyst container 20 consists of the Taber tube 1 and a porous, heat-resistant support 12 that closes the openings at both ends of the tube and forms a gas inlet and a gas outlet through which gas can freely pass. It consists of .13. In this case, in the Teva tube 1, the cross-sectional area A of the gas inlet portion, that is, the support body 2, is smaller than the cross-sectional area B of the gas outlet portion, that is, the support body 13, and the Teva tube 1 is made wider toward the support body 13 at the gas outlet portion. It was formed so that it would become so.

このように触媒容器20を末広がり筒体としたことによ
り、圧力損失を低くする必要のある用途でもタブレット
型の燃焼触媒のままで使用でき、未燃焼可燃性ガスの排
出が少なく燃焼効率が低下しない。すなわち、ガス入口
部(支持体12)の断面積がAと第6図の従来例と同し
であるので、この部分における可燃性ガス5の流速は、
U1m/seeと同じである。ところが、触媒容器20
のガス出口部(支持体13)に向かうにしたがって末広
がりとなっているため、前述の従来例に比べて可燃性ガ
ス5の流速はU311/seeと遅くなる。この場合、
可燃性ガス5の通過による圧力損失は、流速の2乗に比
例するため、圧力損失ΔP2は従来例の圧力損失ΔP1
に比べてかなり小さくなる。
By forming the catalyst container 20 into a cylindrical body that widens at the end, it can be used as a tablet-shaped combustion catalyst even in applications that require low pressure loss, resulting in less unburned combustible gas being emitted and combustion efficiency not decreasing. . That is, since the cross-sectional area of the gas inlet part (support body 12) is the same as A and the conventional example shown in FIG. 6, the flow rate of the combustible gas 5 in this part is:
It is the same as U1m/see. However, the catalyst container 20
The flow rate of the combustible gas 5 becomes slower at U311/see than in the above-mentioned conventional example because it widens toward the gas outlet (support 13). in this case,
Since the pressure loss due to the passage of the combustible gas 5 is proportional to the square of the flow velocity, the pressure loss ΔP2 is equal to the pressure loss ΔP1 of the conventional example.
It is considerably smaller than .

テーパ管11の傾斜角か例えば60°の場合には、ΔP
2はΔPIの約1/3〜1/4となる。
If the inclination angle of the tapered tube 11 is, for example, 60°, ΔP
2 is approximately 1/3 to 1/4 of ΔPI.

第2図〜第4図はこのことについて実験した結果を示す
燃焼ガス流量とガス入口部とガス出口部との差圧つまり
圧力損失を示すものである。第2図の曲線りは、それぞ
れ従来例と同一で触媒容器]0が円筒体(直径か3B、
高さが2230I11で容積が839cm3)であって
、燃焼触媒は円形タブレット型(直径が4.6■て厚さ
が4.6■)を用いた場合である。曲線Mは本実施例の
場合で末広がり筒体の触媒容器20(小円形の支持体1
2の直径が3B、大円形13の支持体13の直径が5B
、高さが142ca+で容積か839cm3)であって
、燃焼触媒はタブレット型(直径が4.6■て厚さか4
.6+nm)を用いた場合である。曲線Nは触媒容器が
円筒体(直径が3B、高さが223cmで容積か839
cm’)で燃焼触媒はハニカム型(100メソンユ)の
場合である。
FIGS. 2 to 4 show the results of experiments on this matter, showing the combustion gas flow rate and the differential pressure between the gas inlet and the gas outlet, that is, the pressure loss. The curves in Figure 2 are the same as those of the conventional example.
The height is 2230I11 and the volume is 839cm3), and the combustion catalyst is a circular tablet type (4.6cm in diameter and 4.6cm in thickness). In the case of this embodiment, the curve M represents the catalyst container 20 (small circular support 1
2 has a diameter of 3B, and the diameter of the large circular support 13 is 5B.
, the height is 142ca+ and the volume is 839cm3), and the combustion catalyst is tablet-shaped (diameter 4.6cm and thickness
.. 6+nm). Curve N indicates that the catalyst container is cylindrical (diameter is 3B, height is 223cm, and the volume is 839cm).
cm') and the combustion catalyst is a honeycomb type (100 meson units).

第2図から明らかなように、曲線Nは最も圧力損失が小
さく、曲線Mは曲線Nより圧力損失が大きいが、曲線り
の1/4の圧力損失となっている。
As is clear from FIG. 2, curve N has the smallest pressure loss, and curve M has a larger pressure loss than curve N, but the pressure loss is 1/4 of that of the curve.

第3図は燃焼ガス流量とガス入口部とガス出口部との差
圧つまり圧力損失を示すものである。
FIG. 3 shows the combustion gas flow rate and the differential pressure between the gas inlet and the gas outlet, that is, the pressure loss.

曲線りは、燃焼触媒が円形リング状のタブレット型(外
径が8.8■mで、内径が267■で、厚さが8.6m
m)であって、触媒容器10が円筒体(第2図と同一寸
法)を用いた場合である。曲線Mは、燃焼触媒は円形リ
ング状のタブレット型(外径が8.8+amで、内径が
2,7■て、厚さが8゜6 ■)であって、触媒容器2
0は末広がり筒体(第2図と同一寸法)を用いた場合で
ある。この場合も、曲線Mの方が曲線りより圧力損失が
小さい。
The curve shows that the combustion catalyst is a circular ring-shaped tablet type (outer diameter is 8.8 m, inner diameter is 267 m, and thickness is 8.6 m).
m), in which the catalyst container 10 is a cylindrical body (same dimensions as in FIG. 2). Curve M indicates that the combustion catalyst is a circular ring-shaped tablet (outer diameter is 8.8+am, inner diameter is 2.7mm, thickness is 8°6mm), and the catalyst container 2
0 is the case where a cylinder body (same dimensions as in FIG. 2) that widens toward the end is used. In this case as well, the pressure loss of the curve M is smaller than that of the curved line.

第4図は燃焼ガス流量とガス入口部とガス出口部との差
圧つまり圧力損失を示すものである。
FIG. 4 shows the combustion gas flow rate and the differential pressure between the gas inlet and the gas outlet, that is, the pressure loss.

曲線りは、燃焼触媒が球形タブレット型(直径か6 m
m)であって、触媒容器10が円節体(第2図と同一寸
法)を用いた場合である。曲線Mは、燃焼触媒か球形(
直径か6ffiI11)であって、触媒容器20か末広
がり筒体(第2図と同一寸法)を用いた場合である。こ
の場合も、曲g Mの方が曲線りより圧力損失が小さい
The curve has a combustion catalyst in the form of a spherical tablet (about 6 m in diameter).
m), in which the catalyst container 10 uses a segmented body (same dimensions as in FIG. 2). Curve M is a combustion catalyst or spherical (
This is a case where the catalyst container 20 is a cylindrical body (same size as in FIG. 2) that widens at the end. In this case as well, the pressure loss is smaller in the curve gM than in the curve.

なお、第1の実施例において、問題と思われる逆火につ
いては、ガス入口部の流速が燃焼速度より大きい場合に
あっては起こることがないので、この点では従来の例と
同一であり、したがって比較的高い空間速度でも低い圧
力損失で触媒燃焼を維持でき何等問題がない。
In the first embodiment, flashback, which seems to be a problem, does not occur if the flow velocity at the gas inlet is greater than the combustion velocity, so in this respect it is the same as the conventional example. Therefore, catalytic combustion can be maintained with low pressure loss even at relatively high space velocities without any problems.

第5図は本発明の第2の実施例を示すもので、前述した
実施例は触媒容器20が1個で、可燃性ガス導入ヘッダ
ー6が1個の基本的な構成であるが、この実施例は複数
の分割触媒容器20a、20b、20c、、20dと、
これらに可燃性ガスを供給する可燃性ガス導入ヘッダー
6を1個とじた場合である。
FIG. 5 shows a second embodiment of the present invention, in which the basic configuration of the previously described embodiment includes one catalyst container 20 and one combustible gas introduction header 6; An example is a plurality of divided catalyst containers 20a, 20b, 20c, 20d,
This is a case where one combustible gas introduction header 6 is installed to supply flammable gas to these.

この実施例の場合、前述の実施例に比べ同一の空間速度
で、圧力損失は触媒容器20a〜20dの分割した個数
(この場合4個)の2/3乗分の1に減少することが実
験結果から明らかである。
In the case of this embodiment, it has been experimentally determined that the pressure loss is reduced to 1/2/3 of the divided number of catalyst containers 20a to 20d (four in this case) at the same space velocity compared to the previous embodiment. It is clear from the results.

この場合、一定の可燃性ガス通路用の断面積が与えられ
たとき前述の単一燃焼触媒層で実施する場合に比べて、
各燃焼触媒層の断面積を少なくでき、圧力損失をさらに
小さくできる。さらに、この実施例では各触媒容器20
a〜2Od内で燃焼触媒4が中央部で盛り上がるように
なっているので、可燃性ガスが燃焼触媒を通る際の抵抗
が均一となり、可燃性ガスが燃焼触媒4内に均一に流れ
、これにより可燃性ガスの燃焼効率が向上する。なお、
逆火の問題については、前述の実施例と全く同様である
In this case, given a constant cross-sectional area for the combustible gas passages, compared to the case described above with a single combustion catalyst layer,
The cross-sectional area of each combustion catalyst layer can be reduced, and pressure loss can be further reduced. Furthermore, in this embodiment, each catalyst container 20
Since the combustion catalyst 4 rises in the center within a~2Od, the resistance when the flammable gas passes through the combustion catalyst becomes uniform, and the combustible gas flows uniformly into the combustion catalyst 4. The combustion efficiency of flammable gas is improved. In addition,
The problem of flashback is exactly the same as in the previous embodiment.

[発明の効果] 以上述べた本発明によれば、圧力損失を低くする必要の
ある用途でもタブレット型の燃焼触媒のままで使用でき
、未燃焼可燃性ガスの排出が少なく燃焼効率が低下しな
い触媒燃焼装置を提供することができる。
[Effects of the Invention] According to the present invention described above, the catalyst can be used as a tablet-type combustion catalyst even in applications that require low pressure loss, and the catalyst emits less unburned combustible gas and does not reduce combustion efficiency. A combustion device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の触媒燃焼装置の第1の実施例を説明す
るための図、第2図〜第4図は第1図の実施例の効果を
説明するための燃焼ガスti量と差圧(圧力損失)の関
係を示す図、第5図は本発明の触媒燃焼装置の第2の実
施例を説明するための図、第6図は従来の触媒燃焼装置
の一例を説明するための図である。 4・・燃焼触媒、5・・・可燃性ガス、6・・・可燃性
ガス導入ヘッダー 11・・・テーパ管、12.13・
・支持体、20,20a、20b、20c、20d・・
−触媒容器。
FIG. 1 is a diagram for explaining the first embodiment of the catalytic combustion apparatus of the present invention, and FIGS. 2 to 4 are diagrams for explaining the effects of the embodiment of FIG. A diagram showing the relationship between pressure (pressure loss), FIG. 5 is a diagram for explaining the second embodiment of the catalytic combustion device of the present invention, and FIG. 6 is a diagram for explaining an example of the conventional catalytic combustion device. It is a diagram. 4... Combustion catalyst, 5... Flammable gas, 6... Flammable gas introduction header 11... Tapered pipe, 12.13.
・Support, 20, 20a, 20b, 20c, 20d...
-Catalyst vessel.

Claims (1)

【特許請求の範囲】[Claims] 燃焼触媒を収納する触媒容器において形成されているガ
ス入口部からガス出口部に向けて、燃料と酸化剤を混合
した可燃性ガスを供給して前記燃料を燃焼させるものに
おいて、前記触媒容器を、前記ガス入口部の断面積は前
記ガス出口部の断面積より小さくし、かつガス出口部に
向って末広がりとなるように形成したことを特徴とする
触媒燃焼装置。
A combustible gas containing a mixture of fuel and an oxidizer is supplied from a gas inlet portion formed in a catalyst container housing a combustion catalyst toward a gas outlet portion to combust the fuel, the catalyst container comprising: A catalytic combustion device, characterized in that the cross-sectional area of the gas inlet portion is smaller than the cross-sectional area of the gas outlet portion, and is formed to widen toward the gas outlet portion.
JP3632090A 1990-02-19 1990-02-19 Catalyst combustion device Pending JPH03241212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3632090A JPH03241212A (en) 1990-02-19 1990-02-19 Catalyst combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3632090A JPH03241212A (en) 1990-02-19 1990-02-19 Catalyst combustion device

Publications (1)

Publication Number Publication Date
JPH03241212A true JPH03241212A (en) 1991-10-28

Family

ID=12466547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3632090A Pending JPH03241212A (en) 1990-02-19 1990-02-19 Catalyst combustion device

Country Status (1)

Country Link
JP (1) JPH03241212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947770A2 (en) * 1998-03-28 1999-10-06 Robert Bosch Gmbh Gas burner
KR100717614B1 (en) * 2003-06-27 2007-05-15 프로뒤 베르제 Catalytic combustion burner made from a porous material and flask equipped with such a burner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0947770A2 (en) * 1998-03-28 1999-10-06 Robert Bosch Gmbh Gas burner
EP0947770A3 (en) * 1998-03-28 2000-03-01 Robert Bosch Gmbh Gas burner
KR100717614B1 (en) * 2003-06-27 2007-05-15 프로뒤 베르제 Catalytic combustion burner made from a porous material and flask equipped with such a burner
US7241136B2 (en) 2003-06-27 2007-07-10 Produits Berger Catalytic combustion burner made from a porous material and flask equipped with such a burner

Similar Documents

Publication Publication Date Title
US5460513A (en) Low NOx burner
US10989406B2 (en) Compact inward-firing premix fuel combustion system, and fluid heating system and packaged burner system including the same
JPH10501056A (en) Ultra low NOx burner
US20080280238A1 (en) Low swirl injector and method for low-nox combustor
EP0781962B1 (en) Low NOx burner
CA2459986C (en) Main burner, method and apparatus
KR20090118036A (en) Porous hydrogen burner without premixing
US7444820B2 (en) Method and system for rich-lean catalytic combustion
JP2001505990A (en) Gas igniter with radially displaced fuel outlet having high momentum and method therefor
JP3197103B2 (en) Premixed air combustion method
US20220154926A1 (en) Compact inward-firing premix fuel combustion system, and fluid heating system and packaged burner system including the same
JP2892027B2 (en) Manufacturing method of catalytic combustion device
JP2022548420A (en) Combustion equipment that maximizes combustor operating efficiency and emissions performance
JPH03241212A (en) Catalyst combustion device
EP1141631B1 (en) Fluid mixing device
JP3873119B2 (en) In-cylinder swirl combustor
JPS6053711A (en) Catalytic combustion apparatus
US20210239317A1 (en) Low emission modular flare stack
JP2573197Y2 (en) Surface burner
JP2002228106A (en) Circular combustor
JP2000146183A (en) Gas turbine combustor
JPS59173621A (en) Burner device
JPH04155111A (en) Thin film flame type burner using combustion plate
JPH0674449A (en) Gas turbine combustor
JP3065765B2 (en) Liquid fuel combustion equipment