JPH03240745A - Production of 4,4'-dihydroxybiphenyl - Google Patents

Production of 4,4'-dihydroxybiphenyl

Info

Publication number
JPH03240745A
JPH03240745A JP3471690A JP3471690A JPH03240745A JP H03240745 A JPH03240745 A JP H03240745A JP 3471690 A JP3471690 A JP 3471690A JP 3471690 A JP3471690 A JP 3471690A JP H03240745 A JPH03240745 A JP H03240745A
Authority
JP
Japan
Prior art keywords
reaction
oxidation
acid
compound
oxidation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3471690A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwane
寛 岩根
Takahiro Sugawara
貴博 菅原
Kimiko Kaneko
公子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP3471690A priority Critical patent/JPH03240745A/en
Publication of JPH03240745A publication Critical patent/JPH03240745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title compound derived from a specific intermediate of enhanced selectivity by oxidation of 4,4'-diisopropylbiphenyl with molecular oxygen in the presence of a compound having primary amino group followed by acid decomposition. CONSTITUTION:When the objective 4,4'-dihydroxybiphenyl useful as a raw material for polymers of liquid crystal nature or heat-resistant resins is to be produced by oxidation of 4,4'-diisopropylbiphenyl followed by acid decomposition of the resulting product, the oxidation reaction is performed in the presence of 0.01-100 (pref. 0.1-70)mol%, based on the raw material, of a compound having in the molecule primary amino group such as n-hexylamine, glycine or ethylenediamine, whereby enhancing the selectivity of DHP (one of the oxidation products given in the table) leading to the objective compound through the acid decomposition and reducing the amount of the hydrogen peroxide to be used in said acid decomposition, thus obtaining the objective compound in high yield and in an industrially advantageous manner.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は、 4.4’−ジヒドロキシビフェニルc以下
、BPLと略記する)の製造方法に関し、特に4.4°
−ジイソプロピルビフェニル(以下、DIPBPと略記
する)を分子状酸素により酸化し、得られた過酸化物を
酸分解する、BPLの製造方法に関するものである。 本発明の目的物であるBPLは、液晶性ポリマーや耐熱
性樹脂等の原料として有用な化合物である。 【従来の技術】 従来BPLの製造方法としては、2.6−ジー第三ブチ
ルフェノールを酸化カップリングし、得られたジフェノ
キノンを還元して脱ブチル化する方法、ビフェニルをス
ルホン化し、アルカリ溶融する方法等が知られているが
、製造工程が複雑であったり、大量の無機塩類が副生ず
る等、工業的製法としては問題があった。 一方、ジアルキルベンゼン類を分子状酸素で酸化して対
応するジヒドロペルオキシドとし、これを酸分解してフ
ェノール類を得る方法がある0例えば、p−ジイソプロ
ピルベンゼンよりp−ジイソプロピルベンゼンジヒドロ
ペルオキシドを経てヒドロキノンを製造する方法(特開
昭48−72144号公報)や、2.6−ジイツブロビ
ルナフタレンより2.6−ジイツブロピルナフタレンジ
ヒドロベルオキシドを経て2.6−シヒドロキシナフタ
レンを製造する方法(特開昭61−93156号公報)
等が知られている。 この方法をDIPBPに適用した例として、特開昭64
−75440号公報には、DIPBPを酸化して4.4
°−ジイソプロピルビフェニルジヒドロペルオキシド(
以下、DHPと略記する)とし、これを酸分解してBP
Lを得る方法が開示されている。 [発明が解決しようとする課題J 上記特開昭64−75440号公報に記載された方法で
は、酸化生成物として口HPの外に次表に示すような物
質が生成する。 表 これらの生成物のうち、4−(2−ヒドロキシイソプロ
ピル)−4°−(2−ヒドロペルオキシイソプロビル)
ビフェニル(上表でHHPと略記)と、4.4’−ビス
(2−ヒドロキシイソプロピル〉ビフェニル(上表で口
CAと略記)は、そのまま酸分解するとBPLは生成せ
ず、脱水生成物である4−(4−インプロペニルフェニ
ル)フェノールや4.4−ジイソプロペニルビフェニル
となるため、2−ヒドロキシイソプロピル基1モルに対
して過酸化水素を1モル以上共存させて酸分解を行うこ
とによってHHPやDCAからもBPLを得ている。 しかしながら、この方法では、BPLの収率を高くする
ために、反応時間の延長やアルカリ量の増加等によって
、 DIPBPからDHP+HHP+DCAへの転化率
を高くすると、これらのうちのDHPの割合が減少しH
HPやOCAの割合が増加する。特に4−(2−ヒドロ
ペルオキシイソプロビル)−4°−イソプロピルビフェ
ニル(上表でMl(Pと略記) 、 4−(2−ヒドロ
キシイソプロピル)−4°−イソプロピルビフェニル(
上表でMCAと略記)及び未反応のDIPBPなどのイ
ソプロピル基が未反応で存在する物質の割合が10%以
下になるまで反応を行うと、生成したDHP+HHP+
DCA中のDHPの割合は35%以下となり、酸分解に
際して添加する過酸化水素の量は、2−ヒドロキシイソ
プロピル基が増加した分だけ増加するという問題がある
。 本発明の目的は上記酸化反応におけるDHPの選択率を
高め、酸分解の際の過酸化水素の使用量が少なく、かつ
、BPLの収率の高い工業的に有利なりPLの製造方法
を提供することにある。 [発明を解決するための手段] 本発明は、DIPBPの酸化反応に際して分子内に第一
級アミノ基を有する化合物を添加すことにより、DHP
の選択率を高め、上記の課題を解決したものである。 すなわち、本発明はDIPBPを分子状酸素により酸化
し、得られた生成物を酸分解するBPLの製造方法にお
いて、該酸化反応を分子内に第一級アミノ基を有する化
合物の存在下に行うことを特徴とするBPLの製造方法
である。 酸」3麦応 DIPBPの分子状酸素による酸化反応は、塩基性水溶
媒中で行われるのが一般的である。 用いられる塩基性化合物としては、アルカリ金属化合物
が好ましい、具体的には、例えば水酸化ナトリウム、水
酸化カリウム、水酸化リチウムなどアルカリ金属水酸化
物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属
炭酸塩、炭酸水素ナトリウム、炭酸水素カリウムなどの
アルカリ金属重炭酸塩、リン酸ナトリウム、リン酸カリ
ウム、リン酸水素ナトリウム、リン酸水素カリウム、リ
ン酸二水素ナトリウム、リン酸二水素カリウムなどのア
ルカリ金属リン酸塩、及び四ホウ酸ナトリウムなどのア
ルカリ金属ホウ素化合物などがある。これらは単独でも
二種類以上を任意の割合で混合した物でもどちらで6使
用できる。 これらのアルカリ金属化合物の水溶媒中の濃度は30%
以下が好ましい。 塩基性水溶媒の使用量は反応混合物のpHを8以上に保
つ量であればよく、具体的にはDIPBP  1重置部
に対し、0.1−10重量部、好ましくは0.3〜5重
量部の範囲である。0.1重量部未満では酸化反応が十
分に進行せず、また、10重量部以上使用してもその効
果に変わりはなく、塩基性廃液の量が増えるので好まし
くない。 添加物として用いられる分子内に第一級アミノ基を有す
る化合物としては、例えばメチルアミン、エチルアミン
、0−プロピルアミン、イソプロピルアミン、n−ブチ
ルアミン、第ニブチルアミン、第三ブチルアミン、n−
ヘキシルアミン、n−デシルアミン、エチレンジアミン
、1.2−ジアミノプロパン、1.3−ジアミノプロパ
ン、エタノールアミンなどの脂肪族アミン類、グリシン
、アラニン、セリン、リジン、グルタミン酸などのアミ
ノ酸類、アニリン、o−、rrr−、p−トルイジンな
どの芳香族アミン類、ベンジルアミンなどのアラルキル
アミン類などがある。これらは単独で6二種類以上を任
意に割合で混合した物でもどちらでも使用できる。 分子内に第一級アミノ基を有する化合物の使用量は、原
料のDIPBPに対し0.01−100モル%、好まし
くは0.1〜70モル%、特に好ましくは1〜50モル
%の範囲である。 0.01モル%未満では添加効果が
発現せず、また100モル%以上使用してもその効果に
変わりはない。 本発明の方法では、必要に応じて界面活性剤を添加して
反応を行ってもよい、界面活性剤を添加する場合、界面
活性剤の種類には特に制限はなく、例えば脂肪酸石鹸、
アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩
、アルキルナフタレンスルホン酸塩、アルキルエーテル
スルホン酸塩、アルキルリン酸塩、アルキルエーテルリ
ン酸塩などがある。これらは単独でも二種類以上を任意
の割合で混合して使用してもよい。 界面活性剤を使用する場合、その使用量は原料のDIP
BPに対し0.001〜5重量%好ましくは0.01〜
2重量%の範囲である。 酸化に使用される分子状酸素としては、酸素ガスまたは
空気が好ましい、酸素ガスを使用する場合には窒素、ア
ルゴン、ヘリウムなどの不活性ガスで任意の濃度に希釈
してもよい。 酸化反応の際には、反応の誘導期を短縮するため、好ま
しくはラジカル反応開始剤が使用される。 ラジカル反応開始剤としては、具体的には2.2°−ア
ゾビスイソブチロニトリル、1.1°−アゾビス(シク
ロヘキサン−1−カルボニトリル)、キュメンヒドロペ
ルオキシド、第三ブチルヒドロペルオキシド等が挙げら
れる。また、DIPBPの酸化反応で得られるヒドロペ
ルオキシド基を含む酸化反応生成物をラジカル反応開始
剤として用いることもできる。 ラジカル反応開始剤の使用量は原料のDIPBPに対し
o、 oos〜20重量%の範囲である酸化反応は、上
記塩基性水溶媒にDIPBP 、分子内に第一級アミノ
基を有する化合物、ラジカル反応開始剤及び必要があれ
ば界面活性剤を加え、撹拌しながら分子状酸素を供給す
ることによって行われる。 反応温度は60〜150℃、好ましくは80〜130℃
の範囲である。60℃未満では反応速度が著しく遅くな
り、また150℃より高温ではヒドロペルオキシド基の
分解が著しく促進されるため好ましくない。 反応時の圧力は常圧でも加圧下でもよいが、常圧〜10
kg/cm”Gの圧力下で反応を行うのが好ましい。 反応時間は、反応温度やラジカル反応開始剤の有無等の
条件によって異なるが、通常4〜48時間である。 この酸化反応によって得られる酸化生成物は、DHPを
主成分として、副生分としてHHP 、 OCA、MH
P 、 MCA等を含む混合物である。 漿立展反呈 上記の酸化反応生成物を濾過回収し、次いで有機溶媒中
に溶解し、酸触媒と過酸化水素により酸分解しBPLを
得る。 酸化反応生成物を溶解する有機溶媒としては、アセトン
、メチルイソブチルケトン、メチルエチルケトンなどの
ケトン類、メタノール、エタノ−ルなどの低級アルコー
ル類、ジエチルエーテル、ジイソプロピルエーテル、テ
トラヒドロフランなどのエーテル類、酢酸、プロピオン
酸などのカルボン酸類、アセトニトリルなどのニトリル
類、ベンゼン、トルエン、キシレンなどの芳香族炭化水
素類、ヘキサン、ヘプタン、イソオクタン などの脂環
式炭化水素類、シクロペンタン、シクロヘキサンなどの
脂環式炭化水素類などがある。これらは単独で6二種類
以上を任意の割合で混合したものでも使用できる。 酸触媒としては、硫酸、塩酸、硝酸、リン酸などの無機
酸、トリクロロ酢酸、p−トルエンスルホン酸、p−フ
ェノールスルホン酸、シュウ酸などの有機酸、リンモリ
ブデン酸、リンタングステン酸などのへテロポリ酸、強
酸性イオン交換樹脂、活性白土、シリカアルミナ、ゼオ
ライトなどの固体酸などがある。 酸触媒の使用量は、酸化反応生成物に対し0.01〜2
0重量%の範囲である。 過酸化水素は酸化反応生成物のうちHHP及びOCAを
DHPCご口化し、BPLの収量を増加せしめるために
に用いられる。また、カルビノール類の脱水縮合反応を
著しく抑制する点からも過酸化水素の使用は好ましい。 過酸化水素としては過酸化水素及びその水溶液の外に、
酸分解反応条件下で過酸化水素を生じる物質、例えば過
酸化ナトリウム、過酸化カルシウムなども用いられるが
、過酸化水素水溶液を用いるのが好ましい、過酸化水素
の濃度は5〜70%のものが好ましい。 過酸化水素の使用量はHHP、 DCA 、 MCAな
どが持つ2−ヒドロキシイソプロピル基1モルに対し1
〜2モル、好ましくはl−1,5モルである。 酸分解反応は、酸化反応生成物を溶解した有機溶媒と過
酸化水素を酸触媒存在下で接触させ、加熱することによ
り行われる。 反応温度は10〜120℃、好ましくは20〜100℃
の範囲である。 反応時間は反応温度にもよるが、通常は0.5〜12時
間、好ましくは1〜8時間の範囲である。 反応終了後、反応生成液に塩基を加えて酸触媒を中和し
、水層を分離する。一方の有機層から有機溶媒を回収し
て生成物を得る。 〔実施例1 以下、実施例及び比較例により本発明を更に具体的に説
明する。 文中の収率はすべて原料のDIPBPに対するモル%で
示す、すなわち、 である また、分析及び定量は高速液体クロマトグラフィーで行
った。 なお、以下の実施例及び比較例で酸化反応に用いたラジ
カル反応開始剤は、次の方法で得た2−ヒドロペルオキ
シイソプロビル基を有する酸化反応生成物を用いた。 (ラジカル反応開始剤の調製) 50mj/\ステロイBオートクレーブに、 DIPB
Plo、0g141.9ミリモル)、4.5重量%水酸
化ナトリウム水溶゛液10.og及びラジカル反応開始
剤として1.1’−アソビス(シクロヘキサン−1−カ
ルボニトリル) 0.01gを仕込み酸素をゲージ圧で
2kg/c1になるまで導入した。100℃、 150
0rpmで撹拌しながら、内圧が2kg/c+w”Gに
保たれるように酸素を連続的に供給し、22時間反応を
行った。 反応混合物から水酸化ナトリウム水溶液を除去し、洗浄
液のpHが7となるまで水洗を繰り返し。 得られた固体を乾燥し白色粉末状固体11.2gを得た
。この固体を、以下の実施例等で酸化反応のラジカル反
応開始剤として使用した。 その組成は、DHP 16.8%、HHP 3B、1%
、 DCA20.6%、HHP8.8%、MCA3.7
%、 DIPBP O,9%及びその他6.1%であっ
た。 実施例1 50mjハステロイ8オートクレーブに、 DIPBP
5.0g (21,0ミリモル)、0.5重量%水酸化
ナトリウム水溶液15.0g、 n−ヘキシルアミン0
.10g(1,0ミリモル)、界面活性剤として脂肪族
カルボン酸ナトリウム塩の混合物であるノンサールLN
−1(日本油脂■製品名) 0.025g及びラジカル
反応開始剤として予め製造した前記2−ヒドロペルオキ
シイソプロビル基を含有する酸化反応生成物0.050
gを仕込んだ。 酸素をゲージ圧で2kg/cm2の圧力で導入し1反応
温度100℃で150Orpmで撹拌しながら酸化反応
を行った。酸素は反応系の圧力が2kg/cm”Gに保
たれるように連続的に導入した。 反応開始後8時間目に、n−ヘキシルアミン0.1Oa
11.ロミリモル)を追添加し、更に反応を8時間続け
た。 DIPBPの転化率は99%でDHPの収率は43.3
%であった。HIPの収率は33.4%、OCAの収率
は7.3%であり、DHP+HHP+DCAの中のDH
Pの選択率は51.5%であった。また、MHP 、 
MCAの収率はそれぞれ6.3%、 2.7%であった
。 酸化反応混合物を濾過、水洗、乾燥して得られた酸化反
応生成物6.3gを、アセトン20gに溶解し、30%
過酸化水素水1.5g(13,2ミリモル)を加えて均
一なアセトン溶液Aとした。過酸化水素の使用量は、1
!I化反応の生成物中の2−ヒドロキシイソプロピル基
に対して1.2モル当量とした。 還流冷却器、温度計を取り付けた100mj四ツ目フラ
スコにアセトン3gを仕込み、50℃に加熱した。97
%硫酸0.31gをアセトン5gに溶解した溶液を調製
してアセトン溶液Bとした。アセトン溶液Aとアセトン
溶液Bをそれぞれ別のポンプを用い、連続的にフラスコ
中に供給した。供給はいずれも1.5時間で終了し、そ
の後型に1.5時間反応を続けた。 反応液に5%水酸化ナトリウム水溶液を加えてp)I 
6とし、水層を分離した。有機層からアセトンを回収し
たところ、微黄色の固体4.0gを得た。この中には3
.40gのBPLが含まれていた。DHP 。 )1)IP 、 OCAの転化率はいずれも100%で
、 BPL、の収率は84%であった。 実施例2 n−ヘキシルアミンの代わりにグリシンを最初に0、l
Og(1,33nuaoll、  8時間後に0.10
g添加したこと以外は、実施例1と全く同じ方法で酸化
反応を16時間行った。 DIPBPの転化率は99.6%で、DHPの収率39
.3%、HIP収率37.5%、DCA収率6.2%で
、これらの合計中のDHP選択率は47.3%であり、
HHP7.1%、MCA3.2%が副生じていた。 酸化反応混合物を濾過、水洗、乾燥し、30%過酸化水
素水の使用量を1.5gとした以外は、実施例1と全く
同じ条件で酸分解反応を行った。過酸化水素の使用量は
、酸化反応生成物ち中の2−ヒドロキシイソプロピル基
に対して1.2モル当量とした。 その結果、微黄色の固体4.05gを得た。この中には
3.24gのBPLが含まれていた。 DHP 、 H
HP、DCAの転化率はいずれも100%で、BPLの
収率は83%であった。 実施例3 n−ヘキシルアミンの代わりにエチレンジアミンを用い
、最初に0.1Og(1,ロアミリモル)を加え、追添
加を行わなかった以外は、実施例1と全く同じ方法で酸
化反応を16時間行った。 DIPBPの転化率は99.7%でDHPの収率は28
.3%、HHP収率41.2%、DCA収率15.0%
で、これらの合計中のDHP選択率は33.5%であり
、HHP5.7%、 MCA3.9%が副生じていた。 酸化反応混合物を濾過、水洗、乾燥し、30%過酸化水
素水の使用量を2.1gとした以外は、実施例1と全く
同じ条件で酸分解反応を行った。過酸化水素の使用量は
、aI化反応の生成物中の2−ヒドロキシイソプロピル
基に対して1.2モル当量とした。 その結果、微黄色の固体4.1Ogを得た。この中には
3.24gのBPLが含まれていた。 DHP 、 H
HP、OCAの転化率はいずれも100%で、BPLの
収率は84.5%であった。 比較例1 n−ヘキシルアミンを添加せず、2時間毎に5.0重量
%水酸化ナトリウム水溶液0.2+sjを添加したこと
以外は、実施例1と全く同じ方法で酸化反応を16時間
行った。 DIPBPの転化率は98.6%で、 DHPの収率は
42.5%、HHP収率24.7%、DCA収率3.8
%で、これらの合計のDHP選択率は59.8%であっ
たが1M肝肝心68%、MCA4.4%が副生じていた
。 酸化反応混合物を濾過、水洗、乾燥し、30%過酸化水
素の使用量を1.01;とじた以外は、実施例1と全く
同じ条件で酸分解反応を行った。過酸化水素の使用量は
、酸化反応生成物中の2−ヒドロキシイソプロピル基に
対して1.2モル当量とした。 その結果、微黄色の固体3.97 gを得た。この中に
は2.78gのBPLが含まれていた。 DHP 、 
HHP 。 DCAの添加率はいずれも100%で、BPLの収率は
71%であった。 比較例2 n−ヘキシルアミン及び界面活性剤を添加せず、0.5
重量%水酸化ナトリウム水溶液の代わりに4.5重量%
水酸化ナトリウム水溶液10gを使用した以外は、実施
例1と全く同じ方法で酸化反応を42時間連続して行っ
た。 DIPBPの転化率は99.8%で1DHPの収率は。 9.9%、HHP収率40.8%、DCA収率34,5
%で、これらの合計中のDHP選択率は11.6%であ
り、MnF2.7%、MCA6.0%が副生じていた。 酸化反応混合物を濾過、水洗、乾燥し、30%過酸化水
素の使用量を1.5gから3.3gに増加した以外は、
実施例1と全く同じ条件で酸分解反応を行った。過酸化
水素の使用量は、酸化反応生成物中の2−ヒドロキシイ
ソプロピル基に対して、1.2モル当量とした。 その結果、微黄色の固体4.15gを得た。この中には
3.32gのBPLが含まれていた。 DHP 、 H
HP 。 DCAの添加率はいずれも100%で、 BPLの収率
は85%であった。 〔発明の効果1 本発明の方法によれば、orpepの酸化反応において
、分子内に第一級アミノ基を有する化合物を添加するこ
とにより、DHP選択率を高めることができ、その結果
、次の酸分解反応に用いる過酸化水素の量が少なくて済
むので、工業的方法として好適である。
Detailed Description of the Invention [Industrial Field of Application 1] The present invention relates to a method for producing 4.4'-dihydroxybiphenyl (hereinafter abbreviated as BPL), particularly 4.4°
The present invention relates to a method for producing BPL, in which diisopropylbiphenyl (hereinafter abbreviated as DIPBP) is oxidized with molecular oxygen and the obtained peroxide is decomposed with acid. BPL, which is the object of the present invention, is a compound useful as a raw material for liquid crystalline polymers, heat-resistant resins, and the like. [Prior Art] Conventional methods for producing BPL include a method in which 2,6-di-tert-butylphenol is oxidatively coupled and the resulting diphenoquinone is reduced and debutylated, and a method in which biphenyl is sulfonated and alkali-fused. However, there were problems as an industrial production method, such as the production process being complicated and a large amount of inorganic salts being produced as by-products. On the other hand, there is a method in which dialkylbenzenes are oxidized with molecular oxygen to form the corresponding dihydroperoxides, which are then decomposed with acid to obtain phenols. (Japanese Unexamined Patent Publication No. 48-72144), and a method of producing 2,6-dihydroxynaphthalene from 2,6-diitubrobylnaphthalene via 2,6-diitubropylnaphthalene dihydroberoxide. (Unexamined Japanese Patent Publication No. 61-93156)
etc. are known. As an example of applying this method to DIPBP,
-75440 publication discloses that DIPBP is oxidized to give 4.4
°-Diisopropylbiphenyl dihydroperoxide (
(hereinafter abbreviated as DHP), which is decomposed with acid to produce BP.
A method for obtaining L is disclosed. [Problem to be Solved by the Invention J] In the method described in JP-A-64-75440, substances shown in the following table are produced as oxidation products in addition to HP. Table Among these products, 4-(2-hydroxyisopropyl)-4°-(2-hydroperoxyisopropyl)
Biphenyl (abbreviated as HHP in the table above) and 4,4'-bis(2-hydroxyisopropyl>biphenyl (abbreviated as CA in the table above)) do not produce BPL when they are directly decomposed with acid, but are dehydration products. To produce 4-(4-impropenylphenyl)phenol and 4,4-diisopropenylbiphenyl, HHP can be produced by acid decomposition in the coexistence of at least 1 mole of hydrogen peroxide per mole of 2-hydroxyisopropyl group. However, in order to increase the yield of BPL, this method increases the conversion rate from DIPBP to DHP + HHP + DCA by extending the reaction time, increasing the amount of alkali, etc. The proportion of DHP among them decreases and H
The percentage of HP and OCA increases. In particular, 4-(2-hydroperoxyisopropyl)-4°-isopropylbiphenyl (abbreviated as Ml (P) in the above table), 4-(2-hydroxyisopropyl)-4°-isopropylbiphenyl (
When the reaction is carried out until the proportion of substances containing unreacted isopropyl groups such as MCA (abbreviated as MCA in the table above) and unreacted DIPBP is 10% or less, the generated DHP+HHP+
There is a problem in that the proportion of DHP in DCA is 35% or less, and the amount of hydrogen peroxide added during acid decomposition increases by the amount of 2-hydroxyisopropyl groups. The purpose of the present invention is to provide an industrially advantageous method for producing PL that increases the selectivity of DHP in the above oxidation reaction, uses less hydrogen peroxide during acid decomposition, and has a high yield of BPL. There is a particular thing. [Means for Solving the Invention] The present invention provides DHPBP by adding a compound having a primary amino group in the molecule during the oxidation reaction of DIPBP.
This method solves the above problems by increasing the selectivity of That is, the present invention provides a method for producing BPL in which DIPBP is oxidized with molecular oxygen and the resulting product is decomposed with acid, and the oxidation reaction is carried out in the presence of a compound having a primary amino group in the molecule. This is a method for manufacturing BPL characterized by the following. The oxidation reaction of DIPBP with molecular oxygen is generally carried out in a basic aqueous solvent. The basic compound used is preferably an alkali metal compound, specifically, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; Alkali metal bicarbonates such as sodium bicarbonate and potassium bicarbonate; alkali metal phosphates such as sodium phosphate, potassium phosphate, sodium hydrogen phosphate, potassium hydrogen phosphate, sodium dihydrogen phosphate, and potassium dihydrogen phosphate; salts, and alkali metal boron compounds such as sodium tetraborate. These can be used alone or in a mixture of two or more in any proportion. The concentration of these alkali metal compounds in water solvent is 30%
The following are preferred. The amount of the basic aqueous solvent to be used is sufficient as long as it keeps the pH of the reaction mixture at 8 or more, and specifically, it is 0.1-10 parts by weight, preferably 0.3-5 parts by weight per 1 part of DIPBP. Parts by weight range. If it is less than 0.1 part by weight, the oxidation reaction will not proceed sufficiently, and if it is used in excess of 10 parts by weight, the effect will not change and the amount of basic waste liquid will increase, which is not preferable. Examples of compounds having a primary amino group in the molecule used as additives include methylamine, ethylamine, 0-propylamine, isopropylamine, n-butylamine, nibutylamine, tertiary-butylamine, n-
Aliphatic amines such as hexylamine, n-decylamine, ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, and ethanolamine, amino acids such as glycine, alanine, serine, lysine, and glutamic acid, aniline, o- , rrr-, p-toluidine and other aromatic amines, and benzylamine and other aralkylamines. These can be used alone or in a mixture of 6 or more types in any proportion. The amount of the compound having a primary amino group in the molecule is in the range of 0.01 to 100 mol%, preferably 0.1 to 70 mol%, particularly preferably 1 to 50 mol%, based on the raw material DIPBP. be. If it is less than 0.01 mol%, the effect of addition will not be exhibited, and even if it is used at 100 mol% or more, the effect will not change. In the method of the present invention, a surfactant may be added to carry out the reaction if necessary. When adding a surfactant, there is no particular restriction on the type of surfactant, such as fatty acid soap,
Examples include alkyl sulfonates, alkylbenzene sulfonates, alkylnaphthalene sulfonates, alkyl ether sulfonates, alkyl phosphates, and alkyl ether phosphates. These may be used alone or in combination of two or more in any proportion. If a surfactant is used, the amount used should be determined by the DIP of the raw material.
0.001 to 5% by weight based on BP, preferably 0.01 to 5% by weight
It is in the range of 2% by weight. As the molecular oxygen used for oxidation, oxygen gas or air is preferable. When oxygen gas is used, it may be diluted to an arbitrary concentration with an inert gas such as nitrogen, argon, or helium. During the oxidation reaction, a radical reaction initiator is preferably used in order to shorten the induction period of the reaction. Specific examples of the radical reaction initiator include 2.2°-azobisisobutyronitrile, 1.1°-azobis(cyclohexane-1-carbonitrile), cumene hydroperoxide, and tert-butyl hydroperoxide. It will be done. Further, an oxidation reaction product containing a hydroperoxide group obtained by the oxidation reaction of DIPBP can also be used as a radical reaction initiator. The amount of the radical reaction initiator used is in the range of o, oos to 20% by weight based on the raw material DIPBP.The oxidation reaction is performed by adding DIPBP to the basic aqueous solvent, using a compound having a primary amino group in the molecule, and using a radical reaction initiator. This is done by adding an initiator and, if necessary, a surfactant, and supplying molecular oxygen while stirring. Reaction temperature is 60-150°C, preferably 80-130°C
is within the range of If the temperature is lower than 60°C, the reaction rate will be extremely slow, and if the temperature is higher than 150°C, the decomposition of the hydroperoxide group will be significantly accelerated, which is not preferred. The pressure during the reaction may be normal pressure or elevated pressure, but the pressure may be from normal pressure to 10
It is preferable to carry out the reaction under a pressure of kg/cm"G. The reaction time varies depending on conditions such as the reaction temperature and the presence or absence of a radical reaction initiator, but is usually 4 to 48 hours. The oxidation products include DHP as the main component, and HHP, OCA, and MH as byproducts.
It is a mixture containing P, MCA, etc. Cellulose Reaction The above oxidation reaction product is collected by filtration, then dissolved in an organic solvent, and subjected to acid decomposition using an acid catalyst and hydrogen peroxide to obtain BPL. Examples of organic solvents that dissolve oxidation reaction products include ketones such as acetone, methyl isobutyl ketone, and methyl ethyl ketone, lower alcohols such as methanol and ethanol, ethers such as diethyl ether, diisopropyl ether, and tetrahydrofuran, acetic acid, and propion. Carboxylic acids such as acids, nitriles such as acetonitrile, aromatic hydrocarbons such as benzene, toluene, and xylene, alicyclic hydrocarbons such as hexane, heptane, and isooctane, and alicyclic hydrocarbons such as cyclopentane and cyclohexane. There are various types. These can be used alone or in a mixture of 6 or more types in any ratio. Examples of acid catalysts include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, organic acids such as trichloroacetic acid, p-toluenesulfonic acid, p-phenolsulfonic acid, and oxalic acid, and phosphomolybdic acid and phosphotungstic acid. Examples include solid acids such as telopolyacid, strongly acidic ion exchange resins, activated clay, silica alumina, and zeolite. The amount of acid catalyst used is 0.01 to 2% relative to the oxidation reaction product.
It is in the range of 0% by weight. Hydrogen peroxide is used to convert HHP and OCA among the oxidation reaction products into DHPC and increase the yield of BPL. Further, it is preferable to use hydrogen peroxide because it significantly suppresses the dehydration condensation reaction of carbinols. As hydrogen peroxide, in addition to hydrogen peroxide and its aqueous solution,
Substances that generate hydrogen peroxide under acid decomposition reaction conditions, such as sodium peroxide and calcium peroxide, can also be used, but it is preferable to use an aqueous hydrogen peroxide solution, with a hydrogen peroxide concentration of 5 to 70%. preferable. The amount of hydrogen peroxide used is 1 per mole of 2-hydroxyisopropyl group possessed by HHP, DCA, MCA, etc.
~2 mol, preferably l-1.5 mol. The acid decomposition reaction is carried out by bringing an organic solvent in which the oxidation reaction product is dissolved and hydrogen peroxide into contact in the presence of an acid catalyst and heating the mixture. Reaction temperature is 10-120°C, preferably 20-100°C
is within the range of The reaction time depends on the reaction temperature, but is usually in the range of 0.5 to 12 hours, preferably 1 to 8 hours. After the reaction is completed, a base is added to the reaction product solution to neutralize the acid catalyst, and the aqueous layer is separated. The organic solvent is recovered from one organic layer to obtain the product. [Example 1] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. All yields in the text are expressed in mol % based on the raw material DIPBP, that is, as follows. Analysis and quantification were performed by high performance liquid chromatography. In addition, the radical reaction initiator used in the oxidation reaction in the following Examples and Comparative Examples was an oxidation reaction product having a 2-hydroperoxyisoprobyl group obtained by the following method. (Preparation of radical reaction initiator) DIPB in a 50 mj/steroid B autoclave
Plo, 0 g 141.9 mmol), 4.5% by weight aqueous sodium hydroxide solution 10. og and 0.01 g of 1.1'-asobis(cyclohexane-1-carbonitrile) as a radical reaction initiator, and oxygen was introduced until the gauge pressure reached 2 kg/c1. 100℃, 150
While stirring at 0 rpm, oxygen was continuously supplied so that the internal pressure was maintained at 2 kg/c+w"G, and the reaction was carried out for 22 hours. The sodium hydroxide aqueous solution was removed from the reaction mixture, and the pH of the washing solution was adjusted to 7. The obtained solid was dried to obtain 11.2 g of a white powdery solid. This solid was used as a radical reaction initiator for the oxidation reaction in the following Examples etc. Its composition was as follows. DHP 16.8%, HHP 3B, 1%
, DCA20.6%, HHP8.8%, MCA3.7
%, DIPBP O, 9%, and others 6.1%. Example 1 In a 50 mj Hastelloy 8 autoclave, DIPBP
5.0g (21.0 mmol), 0.5% by weight aqueous sodium hydroxide solution 15.0g, n-hexylamine 0
.. 10 g (1,0 mmol) of Nonsal LN, a mixture of aliphatic carboxylic acid sodium salts as surfactant
-1 (NOF■Product name) 0.025g and 0.050g of the oxidation reaction product containing the 2-hydroperoxyisoprobyl group prepared in advance as a radical reaction initiator
I prepared g. Oxygen was introduced at a gauge pressure of 2 kg/cm2, and an oxidation reaction was carried out at a reaction temperature of 100° C. and stirring at 150 rpm. Oxygen was continuously introduced so that the pressure of the reaction system was maintained at 2 kg/cm"G. Eight hours after the start of the reaction, 0.1 Oa of n-hexylamine was added.
11. Romilimol) was added and the reaction was continued for an additional 8 hours. The conversion rate of DIPBP was 99% and the yield of DHP was 43.3.
%Met. The yield of HIP was 33.4%, the yield of OCA was 7.3%, and the DH in DHP+HHP+DCA was
The selectivity of P was 51.5%. Also, MHP,
The yields of MCA were 6.3% and 2.7%, respectively. 6.3 g of the oxidation reaction product obtained by filtering the oxidation reaction mixture, washing with water, and drying was dissolved in 20 g of acetone to give a solution of 30%
A homogeneous acetone solution A was prepared by adding 1.5 g (13.2 mmol) of hydrogen peroxide. The amount of hydrogen peroxide used is 1
! The molar equivalent was 1.2 with respect to the 2-hydroxyisopropyl group in the product of the I-formation reaction. 3 g of acetone was charged into a 100 mj four-eye flask equipped with a reflux condenser and a thermometer, and heated to 50°C. 97
Acetone solution B was prepared by dissolving 0.31 g of % sulfuric acid in 5 g of acetone. Acetone solution A and acetone solution B were continuously supplied into the flask using separate pumps. All feedings were completed in 1.5 hours, and the molds were then allowed to react for 1.5 hours. Add 5% aqueous sodium hydroxide solution to the reaction solution to prepare p)I.
6 and the aqueous layer was separated. When acetone was recovered from the organic layer, 4.0 g of a slightly yellow solid was obtained. There are 3
.. Contained 40g of BPL. DHP. )1) The conversion rates of IP and OCA were both 100%, and the yield of BPL was 84%. Example 2 In place of n-hexylamine, glycine was initially added to 0,1
Og (1,33nuaoll, 0.10 after 8 hours
The oxidation reaction was carried out for 16 hours in exactly the same manner as in Example 1, except that 1.5 g of the oxidation reaction solution was added. The conversion rate of DIPBP was 99.6%, and the yield of DHP was 39%.
.. 3%, HIP yield 37.5%, DCA yield 6.2%, and the DHP selectivity in these total is 47.3%,
7.1% of HHP and 3.2% of MCA were produced as by-products. The oxidation reaction mixture was filtered, washed with water, and dried, and the acid decomposition reaction was carried out under exactly the same conditions as in Example 1, except that the amount of 30% hydrogen peroxide solution used was 1.5 g. The amount of hydrogen peroxide used was 1.2 molar equivalent relative to the 2-hydroxyisopropyl group in the oxidation reaction product. As a result, 4.05 g of a slightly yellow solid was obtained. This contained 3.24g of BPL. DHP, H
The conversion rates of HP and DCA were both 100%, and the yield of BPL was 83%. Example 3 An oxidation reaction was carried out for 16 hours in exactly the same manner as in Example 1, except that ethylenediamine was used instead of n-hexylamine, and 0.1 Og (1 mmol) was added initially and no additional addition was made. Ta. The conversion rate of DIPBP was 99.7% and the yield of DHP was 28%.
.. 3%, HHP yield 41.2%, DCA yield 15.0%
The DHP selectivity of the total was 33.5%, with 5.7% of HHP and 3.9% of MCA occurring as by-products. An acid decomposition reaction was carried out under exactly the same conditions as in Example 1, except that the oxidation reaction mixture was filtered, washed with water, and dried, and the amount of 30% hydrogen peroxide used was 2.1 g. The amount of hydrogen peroxide used was 1.2 molar equivalent relative to the 2-hydroxyisopropyl group in the product of the aI reaction. As a result, 4.1 Og of a slightly yellow solid was obtained. This contained 3.24g of BPL. DHP, H
The conversion rates of HP and OCA were both 100%, and the yield of BPL was 84.5%. Comparative Example 1 An oxidation reaction was carried out for 16 hours in the same manner as in Example 1, except that n-hexylamine was not added and 5.0% by weight aqueous sodium hydroxide solution 0.2+sj was added every 2 hours. . The conversion rate of DIPBP was 98.6%, the yield of DHP was 42.5%, the yield of HHP was 24.7%, and the yield of DCA was 3.8%.
%, the total DHP selectivity was 59.8%, but 68% of 1M essential and 4.4% of MCA were produced as secondary products. The oxidation reaction mixture was filtered, washed with water, and dried, and the acid decomposition reaction was carried out under exactly the same conditions as in Example 1, except that the amount of 30% hydrogen peroxide used was 1.01%. The amount of hydrogen peroxide used was 1.2 molar equivalent relative to the 2-hydroxyisopropyl group in the oxidation reaction product. As a result, 3.97 g of a slightly yellow solid was obtained. This contained 2.78g of BPL. DHP,
HHP. The addition rate of DCA was 100% in all cases, and the yield of BPL was 71%. Comparative Example 2 Without adding n-hexylamine and surfactant, 0.5
4.5% by weight instead of aqueous sodium hydroxide solution
The oxidation reaction was carried out continuously for 42 hours in the same manner as in Example 1 except that 10 g of aqueous sodium hydroxide solution was used. The conversion rate of DIPBP is 99.8% and the yield of 1DHP is. 9.9%, HHP yield 40.8%, DCA yield 34.5
%, and the DHP selectivity in these totals was 11.6%, with 2.7% MnF and 6.0% MCA occurring as by-products. The oxidation reaction mixture was filtered, washed with water, and dried, except that the amount of 30% hydrogen peroxide used was increased from 1.5 g to 3.3 g.
The acid decomposition reaction was carried out under exactly the same conditions as in Example 1. The amount of hydrogen peroxide used was 1.2 molar equivalent to the 2-hydroxyisopropyl group in the oxidation reaction product. As a result, 4.15 g of a slightly yellow solid was obtained. This contained 3.32g of BPL. DHP, H
HP. The addition rate of DCA was 100% in all cases, and the yield of BPL was 85%. [Effect of the invention 1] According to the method of the present invention, in the oxidation reaction of orpep, by adding a compound having a primary amino group in the molecule, the DHP selectivity can be increased, and as a result, the following Since the amount of hydrogen peroxide used in the acid decomposition reaction is small, it is suitable as an industrial method.

Claims (1)

【特許請求の範囲】[Claims] (1)4,4′−ジイソプロピルビフェニルを分子状酸
素により酸化し、得られた生成物を酸分解する4,4−
ジヒドロキシビフェニルの製造方法において、酸化反応
を分子内に第一級アミノ基を有する化合物の存在下で行
うことを特徴とする4,4′−ジヒドロキシビフェニル
の製造方法。
(1) Oxidizing 4,4'-diisopropylbiphenyl with molecular oxygen and acid decomposing the resulting product 4,4-
A method for producing 4,4'-dihydroxybiphenyl, characterized in that the oxidation reaction is carried out in the presence of a compound having a primary amino group in the molecule.
JP3471690A 1990-02-15 1990-02-15 Production of 4,4'-dihydroxybiphenyl Pending JPH03240745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3471690A JPH03240745A (en) 1990-02-15 1990-02-15 Production of 4,4'-dihydroxybiphenyl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3471690A JPH03240745A (en) 1990-02-15 1990-02-15 Production of 4,4'-dihydroxybiphenyl

Publications (1)

Publication Number Publication Date
JPH03240745A true JPH03240745A (en) 1991-10-28

Family

ID=12422062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3471690A Pending JPH03240745A (en) 1990-02-15 1990-02-15 Production of 4,4'-dihydroxybiphenyl

Country Status (1)

Country Link
JP (1) JPH03240745A (en)

Similar Documents

Publication Publication Date Title
US5468883A (en) Preparation of vitamin E
JPH03240745A (en) Production of 4,4'-dihydroxybiphenyl
JP2016538263A (en) Use of alkanesulfonic acids to prepare phenolic alcohols
JPH03240744A (en) Production of 4,4'-dihydroxybiphenyl
JP2006522015A (en) New method for producing styrene-based olefins
JP2785059B2 (en) Method for producing 4,4'-dihydroxybiphenyl
JP5076313B2 (en) Process for producing purified 2,2-dimethyl-3-formylcyclopropanecarboxylic acid ester and intermediate thereof
JP2006111586A (en) Method for oxidizing substituted aromatic compound
JP2001316358A (en) Method for producing ditert-butyl peroxide
JPS6024099B2 (en) Method for producing dicumyl peroxide
JPH0399032A (en) Production of 4,4'-dihydroxibiphenyl
JPH0499741A (en) Production of 2,6-dihydroxynaphthalene
WO2002022535A1 (en) Process for producing 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane
JPH03236341A (en) Production of 4,4'-dihydroxybiphenyl
JP2002509125A (en) Preparation of 3-buten-1-ol from 3,4-epoxy-1-butene
US6500978B2 (en) Process for producing cyclopropanecarbonitrile
JPH04108751A (en) Production of 2,6-dihydroxy naphthalene
JP2006016378A (en) Method for oxidizing substituted aromatic compound
JPH11255707A (en) Production of trimethylhydroquinones
JPH03190856A (en) Production of purified hydroperoxide
JPH03220136A (en) Production of tertiary olefin
WO2004014823A1 (en) Process
WO1998027030A1 (en) Process for the production of alpha methylstyrenes
JPH05112485A (en) Production of dioxybenzene monoalkyl ether
JP2003064045A (en) Method of production for ethylene cyanhydrin