JPH03238387A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPH03238387A
JPH03238387A JP3365390A JP3365390A JPH03238387A JP H03238387 A JPH03238387 A JP H03238387A JP 3365390 A JP3365390 A JP 3365390A JP 3365390 A JP3365390 A JP 3365390A JP H03238387 A JPH03238387 A JP H03238387A
Authority
JP
Japan
Prior art keywords
crystal
scintillation light
photomultiplier tube
radiation detector
bgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3365390A
Other languages
Japanese (ja)
Inventor
Takeo Kawanaka
岳穂 川中
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3365390A priority Critical patent/JPH03238387A/en
Publication of JPH03238387A publication Critical patent/JPH03238387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect radiation high in the efficiency of transmission to a photomultiplier tube by finishing the surface opposed to the emitting surface of scintillation light among the surfaces of a Bi4Ge3O12 crystal into a rough surface and subjecting the emitting surface and residual surfaces to specular finish. CONSTITUTION:The surface 2a opposed to the emitting surface of scintillation light among the surfaces of a Bi4Ge3O12(BGO) crystal 2 is finished into a rough surface and the emitting surface and the residual surfaces are subjected to specular finish. The surface roughness Ra of the rough surface 2a of the BGO crystal 2 is desirably at least 0.8 mum. When the surface roughness Ra is below 0.8 mum, the quantity of emitted light as a scintillator becomes little. A reflecting layer 3 is desirably provided to the surfaces other than the emitting surfaces of scintillation light of the BGO crystal. Because of this constitution, even when scintillation light is incident to the surface 2a vertically, the light is reflected toward a photomultiplier tube 1 without being transmitted through the surface 2a. The scintillation light incident to side surfaces is totally reflected to reach the photomultiplier tube 1.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えばX線断層撮影装置(XMCTI。 陽電子放出核種断層撮影装置(ポジトロンCT)のよう
な放射線医療診断装置や高エネルギ物理学に用いられる
放射線検出器に関するものである。
TECHNICAL FIELD The present invention relates to a radiation detector used in radiation medical diagnostic equipment and high-energy physics, such as an X-ray tomography device (XMCTI) or positron emission tomography device (positron CT).

【従来の技術】[Conventional technology]

放射線検出器のひとつに光電子増倍管1とシンチレータ
2とを接合したものがある。これらの放射線検出器は、
第3図や第4図に断面を示すように、光電子増倍管1に
方形状のBi4GesO+m結晶(以下rBGo結晶」
という)を光学的に接合したものである。BGO結晶2
の露出面にはBaSO4粉末などの反射材からなる反射
層3が設けられている。 BGO結晶2に入射したγ線4は光子に変換され、その
シンチレーション光は反射層3で乱反射されて光電子増
倍管lへ導かれる。BGO結晶2には入射したγ線4を
できるだけ多くの光子に変換し、そのシンチレーション
光を光電子増倍管1へ最大限に伝達する能力、即ち発光
量が大きいことが求められる。発光量は、BGO結晶2
の表面状態によって変化するが、現段階でそれらの関係
は解明されていない。BGO結晶2の表面状態は、第3
図のようにシンチレーション光の出射面を鏡面に仕上げ
てその他の面を粗面としたものや、第4図のように全て
の表面を鏡面としたもののみが知られている。
One type of radiation detector is one in which a photomultiplier tube 1 and a scintillator 2 are joined together. These radiation detectors are
As shown in the cross section in FIGS. 3 and 4, the photomultiplier tube 1 has a rectangular Bi4GesO+m crystal (hereinafter referred to as rBGo crystal).
) are optically joined together. BGO crystal 2
A reflective layer 3 made of a reflective material such as BaSO4 powder is provided on the exposed surface. The gamma rays 4 incident on the BGO crystal 2 are converted into photons, and the scintillation light is diffusely reflected by the reflective layer 3 and guided to the photomultiplier tube l. The BGO crystal 2 is required to have the ability to convert the incident γ-rays 4 into as many photons as possible and to transmit the scintillation light to the photomultiplier tube 1 to the maximum extent, that is, to have a large amount of light emission. The amount of luminescence is BGO crystal 2
It changes depending on the surface condition of the surface, but the relationship between them has not been elucidated at this stage. The surface state of BGO crystal 2 is the third
As shown in the figure, only the one in which the scintillation light output surface is mirror-finished and the other surfaces are roughened, and the one in which all the surfaces are mirror-finished as in FIG. 4 are known.

【発明が解決しようとする課題】[Problem to be solved by the invention]

例えばBGO結晶2に551keVのエネルギを持つ陽
電子消滅γ線を入射した場合、γ線はBGO結晶の比較
的浅い部分で光子に変換される。しかし、第3図の検出
器のようにBGO結晶2の側面が粗面である場合は、粗
面で乱反射されたシンチレーション光が反射層3を通し
て漏れる。第4図の検出器のようにBGO結晶2のシン
チレーション光の出射面に対向する面、即ち放射線の主
たる入射面2aが鏡面の場合、シンチレーション光は入
射面2aの反射層3にほぼ垂直に入射する確率が高く、
反射されずに反射層3を透過して逃げてしまう。 本発明は上記の問題を解決するためなされたもので、シ
ンチレーション光の発光量が多く、光電子増倍管への伝
達効率の高い放射線検出器を提供することを目的とする
For example, when positron annihilation gamma rays having an energy of 551 keV are incident on the BGO crystal 2, the gamma rays are converted into photons at a relatively shallow portion of the BGO crystal. However, when the side surface of the BGO crystal 2 is rough as in the detector shown in FIG. 3, scintillation light diffusely reflected by the rough surface leaks through the reflective layer 3. When the surface of the BGO crystal 2 facing the scintillation light output surface, that is, the main radiation incidence surface 2a, is a mirror surface as in the detector shown in FIG. There is a high probability that
The light passes through the reflective layer 3 and escapes without being reflected. The present invention has been made to solve the above problems, and an object of the present invention is to provide a radiation detector that emits a large amount of scintillation light and has high transmission efficiency to a photomultiplier tube.

【課題を解決するための手段】[Means to solve the problem]

上記の課題を解決するために本発明者らは、ポジトロン
CT用のBGO結晶を用い、結晶の表面状態と発光量と
の関係について研究を進めた。その結果、シンチレーシ
ョン光の出射面と対向する面を粗面とし、それ以外の面
を鏡面に仕上げたBGO結晶の発光量が最も多くなるこ
とを見出し、本発明を完成した。 即ち本発明の放射線検出器は、実施例に対応する第1図
に示すように光電子増倍管lの入射窓にBGO結晶2が
接合された放射線検出器である。 BGO結晶2の表面のうちシンチレーション光の出射面
と対向する面2aが粗面で、出射面および残余の表面が
鏡面仕上げされている。 BGO結晶2の粗面2aの表面粗さRaは少なくとも 
0.8I1mであることが望ましい。表面粗さRaが0
.8um未満の場合はシンチレータとしての発光量が小
さくなる。 BGO結晶2のシンチレーション光の出射面以外の面に
は反射層3を設けることが望ましい。
In order to solve the above problems, the present inventors used a BGO crystal for positron CT and conducted research on the relationship between the surface state of the crystal and the amount of light emitted. As a result, they discovered that a BGO crystal whose surface facing the scintillation light emission surface is rough and whose other surfaces are mirror-finished has the highest amount of light emission, and has completed the present invention. That is, the radiation detector of the present invention is a radiation detector in which a BGO crystal 2 is bonded to the entrance window of a photomultiplier tube 1, as shown in FIG. 1 corresponding to the embodiment. Among the surfaces of the BGO crystal 2, the surface 2a facing the scintillation light emission surface is a rough surface, and the emission surface and the remaining surfaces are mirror-finished. The surface roughness Ra of the rough surface 2a of the BGO crystal 2 is at least
Desirably, it is 0.8I1m. Surface roughness Ra is 0
.. If it is less than 8 um, the amount of light emitted as a scintillator will be small. It is desirable to provide a reflective layer 3 on a surface of the BGO crystal 2 other than the scintillation light output surface.

【作用】[Effect]

本発明の放射線検出器ではBGO結晶2のシンチレーシ
ョン光の出射面に対向する面2aが粗面、それ以外の面
が鏡面になっているため、シンチレーション光が面2a
に垂直に入射した場合でも透過することなく光電子増倍
管1側に反射される。また、側面に入射したシンチレー
ション光は全反射されて光電子増倍管1に至る。
In the radiation detector of the present invention, the surface 2a of the BGO crystal 2 facing the scintillation light output surface is a rough surface, and the other surfaces are mirror surfaces, so that the scintillation light is transmitted to the surface 2a.
Even when the light is incident perpendicularly to the photomultiplier tube 1, the light is reflected toward the photomultiplier tube 1 without being transmitted. Further, the scintillation light incident on the side surface is totally reflected and reaches the photomultiplier tube 1.

【実施例】【Example】

以下、本発明の実施例を詳細に説明する。 第1図は本発明を適用する放射線検出器の実施例を示す
斜視図である。同図において、lは光電子増倍管、2は
光電子増倍管1の入射窓に光学的に接合された直方体の
BGO結晶である。BGO結晶2のシンチレーション光
の出射面を除く五つの面には、テフロンテープを反射材
とする反射層3が設けられている。BGO結晶2のシン
チレーション光の出射面に対向する面2aは粗面になっ
ており、その他の面は鏡面に仕上げられている。 本発明の実験例は以下の通りである。 BGO結晶から内周切断器を用いて4 X 12X 3
0mmの大きさのブロックを27個切り出す。切り出し
たBGO結晶の全ての面をGC#600の砥粒で研磨し
、表面粗さRa=0.8μ閣の粗面に加工する。 粗面加工を施したBGO結晶を9個ずつ3つの群に分け
、各群の結晶に異なるシンチレータに加工する。 第1群のBGO結晶は本発明の実施例として加工する。 4 X 12++mの面の一面2aを除く頁面を鏡面に
仕上げ、鏡面に仕上げた4 X 12m−の面を除く各
面にテフロンテープを巻き、厚さ400u■の反射層3
を設け、シンチレータ2を作成した。作成したシンチレ
ータ2の反射層3のない面を光電子増倍管1に接合する
と、第1図に示す放射線検出器が得られる。 第2群のBGO結晶は4 X 12mmの一面のみを鏡
面に仕上げ、それ以外の面に上記と同様にして反射層3
を設ける。その鏡面を光電子増倍管1に接合すると第3
図に示す放射線検出器(比較例1)が得られる。 第3群のBGO結晶は全ての面を鏡面に仕上げる。4 
X 12+amの一面を除いて反射層3を設け、4 x
 12m5+の面を光電子増倍管lに接合すると第4図
に示す放射線検出器(比較例2)が得られる。 上記で作成した放射線検出器のγ綿スペクトルを第2図
に示す測定系を用いて測定し、それより発光量を求めた
。この測定系は、BGO結晶2にγ!I4を4.1して
発生した光を光電子増倍管1で受けて前置増幅器5と増
幅器6で増幅した後、計数器7で発生した光子数を計数
するものである。 なお図中の符号8は電源である。 第1表に実施例および比較例の測定結果を示す。 (以下余白) 第1表 これらの測定結果によれば、本発明の放射線検出器の発
光量が最も多いことがわかる。 また、外形が3 X 12X 30+am、5 X 1
2X 30mmのシンチレータを作成して測定を行なっ
たところ、前記と同様な結果が得られた。 なお上記した実施例では、反射層3の反射材としてテフ
ロンテープを使用したが、例えばBa5O<、Ti0i
、Al*Ox、MgOのような公知のものも使用できる
。 また、実施例では光電子増倍管に単一のBGO結晶を接
合した例を記載したが、上記のようなりGO結晶を反射
層を介して複数個連結したシンチレータも用いても良い
Examples of the present invention will be described in detail below. FIG. 1 is a perspective view showing an embodiment of a radiation detector to which the present invention is applied. In the figure, l is a photomultiplier tube, and 2 is a rectangular parallelepiped BGO crystal optically joined to the entrance window of the photomultiplier tube 1. A reflective layer 3 made of Teflon tape as a reflective material is provided on five surfaces of the BGO crystal 2 excluding the scintillation light output surface. The surface 2a of the BGO crystal 2 facing the scintillation light output surface is a rough surface, and the other surfaces are mirror-finished. Experimental examples of the present invention are as follows. 4 x 12 x 3 from BGO crystal using inner circumferential cutter
Cut out 27 blocks of 0mm size. All surfaces of the cut BGO crystal are polished with GC #600 abrasive grains to obtain a rough surface with a surface roughness Ra = 0.8μ. The roughened BGO crystals are divided into three groups of nine each, and each group of crystals is processed into a different scintillator. A first group of BGO crystals is processed as an example of the present invention. Finish the page surface except for one side 2a of the 4 x 12++m side to a mirror surface, wrap Teflon tape on each side except for the 4 x 12m- surface that has been mirror finished, and apply a reflective layer 3 with a thickness of 400u.
was provided, and scintillator 2 was created. When the surface of the produced scintillator 2 without the reflective layer 3 is joined to the photomultiplier tube 1, the radiation detector shown in FIG. 1 is obtained. The second group of BGO crystals has a mirror finish on only one side of 4 x 12 mm, and a reflective layer 3 is applied to the other surfaces in the same manner as above.
will be established. When the mirror surface is connected to the photomultiplier tube 1, the third
The radiation detector shown in the figure (Comparative Example 1) is obtained. The third group of BGO crystals has all surfaces mirror-finished. 4
A reflective layer 3 is provided except for one side of 4 x
When the 12m5+ surface is joined to the photomultiplier tube l, a radiation detector (comparative example 2) shown in FIG. 4 is obtained. The gamma spectrum of the radiation detector prepared above was measured using the measurement system shown in FIG. 2, and the amount of luminescence was determined from it. This measurement system uses γ! The light generated by increasing I4 to 4.1 is received by a photomultiplier tube 1, amplified by a preamplifier 5 and an amplifier 6, and then a counter 7 counts the number of photons generated. Note that the reference numeral 8 in the figure is a power source. Table 1 shows the measurement results of Examples and Comparative Examples. (The following is a blank space) Table 1 According to these measurement results, it can be seen that the radiation detector of the present invention has the highest amount of light emission. Also, the external dimensions are 3 x 12 x 30+am, 5 x 1
When a 2×30 mm scintillator was made and measured, the same results as above were obtained. In the above embodiment, Teflon tape was used as the reflective material of the reflective layer 3, but for example, Ba5O<, Ti0i
, Al*Ox, and MgO can also be used. Further, in the embodiment, an example in which a single BGO crystal is bonded to a photomultiplier tube is described, but a scintillator in which a plurality of GO crystals are connected via a reflective layer as described above may also be used.

【発明の効果】【Effect of the invention】

以上詳細に説明したように、本発明の放射線検出器はB
GO結晶内のシンチレーション光の伝達効率が高く発光
量が多い。そのため高感度で精度良く放射線を検出する
ことができる。
As explained in detail above, the radiation detector of the present invention has B
The transmission efficiency of scintillation light within the GO crystal is high and the amount of light emitted is large. Therefore, radiation can be detected with high sensitivity and accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の放射線検出器の実施例を示す断面図、
第2図は測定系を示すブロック図、第3図および第4図
は従来の放射線検出器を示す断面図である。 l・・・光電子増倍管  2・・・BGO結晶2a・・
−入射面    3・・・反射層4・・・γ縞
FIG. 1 is a sectional view showing an embodiment of the radiation detector of the present invention,
FIG. 2 is a block diagram showing a measurement system, and FIGS. 3 and 4 are sectional views showing a conventional radiation detector. l...Photomultiplier tube 2...BGO crystal 2a...
-Incidence surface 3...Reflection layer 4...γ fringe

Claims (3)

【特許請求の範囲】[Claims] 1.光電子増倍管の入射窓にBi_4Ge_3O_1_
2結晶が接合された放射線検出器において、Bi_4G
e_3O_1_2結晶の表面のうちシンチレーション光
の出射面に対向する面が粗面で、該出射面および残余の
表面が鏡面仕上げされていることを特徴とする放射線検
出器.
1. Bi_4Ge_3O_1_ in the entrance window of the photomultiplier tube
In a radiation detector in which two crystals are bonded, Bi_4G
A radiation detector characterized in that the surface of the e_3O_1_2 crystal that faces the emission surface of scintillation light is a rough surface, and the emission surface and the remaining surfaces are mirror-finished.
2.前記Bi_4Ge_2O_1_2結晶の粗面の表面
粗さRaが少なくとも 0.8nmであることを特徴と
する特許請求の範囲第1項記載の放射線検出器。
2. The radiation detector according to claim 1, wherein the rough surface of the Bi_4Ge_2O_1_2 crystal has a surface roughness Ra of at least 0.8 nm.
3.前記Bi_4Ge_2O_1_2結晶のシンチレー
ション光の出射面以外の面に反射層が設けられているこ
とを特徴とする特許請求の範囲第1項記載の放射線検出
器。
3. 2. The radiation detector according to claim 1, wherein a reflective layer is provided on a surface of the Bi_4Ge_2O_1_2 crystal other than the scintillation light output surface.
JP3365390A 1990-02-16 1990-02-16 Radiation detector Pending JPH03238387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3365390A JPH03238387A (en) 1990-02-16 1990-02-16 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3365390A JPH03238387A (en) 1990-02-16 1990-02-16 Radiation detector

Publications (1)

Publication Number Publication Date
JPH03238387A true JPH03238387A (en) 1991-10-24

Family

ID=12392409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3365390A Pending JPH03238387A (en) 1990-02-16 1990-02-16 Radiation detector

Country Status (1)

Country Link
JP (1) JPH03238387A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029841A1 (en) * 2001-09-27 2003-04-10 Nihon Medi-Physics Co., Ltd. Radiation detector
CN101975737A (en) * 2010-09-27 2011-02-16 丹东东方测控技术有限公司 Instrument for movably detecting potassium concentration in brine and detection method
CN106646581A (en) * 2015-11-04 2017-05-10 克利斯托光子学公司 Apparatus including scintillation crystal array with different reflector layers and associated methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029841A1 (en) * 2001-09-27 2003-04-10 Nihon Medi-Physics Co., Ltd. Radiation detector
US7180069B2 (en) 2001-09-27 2007-02-20 Nihon Medi-Physics Co., Ltd. Radiation detector
AU2002332330B2 (en) * 2001-09-27 2007-04-26 Nihon Medi-Physics Co., Ltd. Radiation detector
CN101975737A (en) * 2010-09-27 2011-02-16 丹东东方测控技术有限公司 Instrument for movably detecting potassium concentration in brine and detection method
CN106646581A (en) * 2015-11-04 2017-05-10 克利斯托光子学公司 Apparatus including scintillation crystal array with different reflector layers and associated methods
JP2017090451A (en) * 2015-11-04 2017-05-25 クリスタル フォトニクス,インコーポレイテッド Apparatus including scintillation crystal array with different reflector layers and associated methods
CN106646581B (en) * 2015-11-04 2019-05-10 克利斯托光子学公司 Equipment and correlation technique including the scintillation crystal array with different reflector layers

Similar Documents

Publication Publication Date Title
US5227634A (en) Radiation detector for computer tomography
US5831269A (en) Radiation detector element
JP4305241B2 (en) Radiation detector
JP4332613B2 (en) Pulse wave height alignment radiation position detector
US6407392B1 (en) Radiation detector
US5227633A (en) Joined scintillator block body for radiation detector
US20100155610A1 (en) Scintillation Separator
US4317037A (en) Radiation detection apparatus
WO1993023769A1 (en) Positron emission tomography camera with quadrant-sharing photomultipliers and cross-coupled scintillating crystals
JP2001311779A (en) X-ray detector
JPH0627847B2 (en) Radiation detector
JP2009053104A (en) Radiation position detector
KR101879509B1 (en) Apparatus including scintillation crystal array with different reflector layers and associated methods
JPH01229995A (en) Radiation position detector
Bird et al. The optimisation of small CsI (Tl) gamma-ray detectors
WO2018223917A1 (en) Detector and emission imaging device having same
JPH05281362A (en) Radiation detector
JP2007078567A (en) Radiation detector and its manufacturing method
US6534771B1 (en) Gamma camera plate assembly for PET and SPECT imaging
JPS60188869A (en) Scintillation detector
JPH03238387A (en) Radiation detector
JP3220239B2 (en) Radiation detector
JP2003240857A (en) Radiation detector
Krus et al. Precision linear and two-dimensional scintillation crystal arrays for X-ray and gamma-ray imaging applications
JP2840941B2 (en) Multi-element radiation detector and manufacturing method thereof