JPH0323792B2 - - Google Patents

Info

Publication number
JPH0323792B2
JPH0323792B2 JP59109508A JP10950884A JPH0323792B2 JP H0323792 B2 JPH0323792 B2 JP H0323792B2 JP 59109508 A JP59109508 A JP 59109508A JP 10950884 A JP10950884 A JP 10950884A JP H0323792 B2 JPH0323792 B2 JP H0323792B2
Authority
JP
Japan
Prior art keywords
auxiliary
main
thermally responsive
valve body
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59109508A
Other languages
Japanese (ja)
Other versions
JPS60256692A (en
Inventor
Kazuhiro Kaneko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Thomson Co Ltd
Original Assignee
Fuji Thomson Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Thomson Co Ltd filed Critical Fuji Thomson Co Ltd
Priority to JP10950884A priority Critical patent/JPS60256692A/en
Publication of JPS60256692A publication Critical patent/JPS60256692A/en
Publication of JPH0323792B2 publication Critical patent/JPH0323792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1306Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids
    • G05D23/132Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element
    • G05D23/1333Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element measuring the temperature of incoming fluid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1306Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids
    • G05D23/132Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element
    • G05D23/1366Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element using a plurality of sensing elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は自動車エンジンの冷却水循環路等に
用いられる直列複合熱応動弁に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a series composite thermally responsive valve used in a cooling water circulation path of an automobile engine.

〔従来の技術〕[Conventional technology]

従来、自動車エンジンの冷却水循環路等に用い
られる熱応動弁には、冷却水注入時における空気
抜きをするため、空気抜き孔が設けられていた
が、最近、暖機性改善のために振子弁を備えるの
が一般的になつてきた。このためエンジンを始動
したのち、シリンダーヘツド内の冷却水のラジエ
ーター内への流入が阻止され、またウオーターポ
ンプの吐出圧の向上とが重なり合つて、冷却水温
がオーバーシユートする現象が生じてきた。
Conventionally, heat-responsive valves used in the cooling water circulation path of automobile engines have been provided with air vent holes to vent air when cooling water is injected, but recently they have been equipped with pendulum valves to improve warm-up performance. It has become common. For this reason, after the engine is started, the flow of cooling water in the cylinder head into the radiator is blocked, and this combined with the increase in water pump discharge pressure has caused a phenomenon in which the cooling water temperature overshoots. .

このオーバーシユート現象は第10図に示すよ
うに大きな水温ハンチングを誘発し、そのため熱
応力の大きな繰返しが行なわれることにより、シ
リンダーヘツドの熱歪亀裂あるいはガスケツトの
吹抜けが生じることがあつた。
This overshoot phenomenon induces large water temperature hunting as shown in FIG. 10, and as a result, large thermal stress is repeatedly applied, which sometimes causes thermal strain cracks in the cylinder head or blow-through of the gasket.

前述のオーバーシユート現象を解消できる熱応
動弁として、(1)二重バルブ付き熱応動弁、(2)主熱
応動弁と補助熱応動弁とを並列に配置した並列複
合型の熱応動弁が提案されているが、(1)の熱応動
弁の場合は熱応答性が悪いという問題があり、ま
た(2)の熱応動弁の場合は、限られた外径内に納ま
るように設計すると、主熱応動弁の口径が小さく
なるという問題がある。
As thermally responsive valves that can eliminate the above-mentioned overshoot phenomenon, there are (1) thermally responsive valves with double valves, and (2) parallel composite type thermally responsive valves in which a main thermally responsive valve and an auxiliary thermally responsive valve are arranged in parallel. has been proposed, but the thermally responsive valve (1) has the problem of poor thermal response, and the thermally responsive valve (2) is designed to fit within a limited outer diameter. Then, there is a problem that the diameter of the main thermally responsive valve becomes smaller.

〔発明の目的、構成〕[Purpose and structure of the invention]

この発明は前述の問題を有利に解決できる直列
複合熱応動弁を提供することを目的とするもので
あつて、この発明の要旨とするところは、ケーシ
ング1の環状フレーム2に設けられた大径の環状
主弁座3に、主熱応動伸縮装置4により開放され
ると共に主戻しばね5により閉塞される主弁体6
が対設され、その主弁体6に、前記環状主弁座3
と直列にかつ同心的に配置された補助弁座7が設
けられ、その補助弁座7に、前記主熱応動伸縮装
置4と直列に配置された補助熱応動伸縮装置8に
より開放されると共に補助戻しばね9により閉塞
される補助弁体10が対設され、前記補助熱応動
伸縮装置8の作動温度は主熱応動伸縮装置4の作
動温度よりも低く設定され、補助弁座7および補
助弁体10からなる補助弁の流量は、主弁座3お
よび主弁体6からなる主弁の流量よりも少なく設
定されていることを特徴とする直列複合熱応動弁
にある。
The object of the present invention is to provide a series composite heat-responsive valve that can advantageously solve the above-mentioned problems. A main valve body 6 is disposed on the annular main valve seat 3 and is opened by the main thermally responsive expansion/contraction device 4 and closed by the main return spring 5.
are arranged opposite to each other, and the annular main valve seat 3 is attached to the main valve body 6.
An auxiliary valve seat 7 is provided concentrically and in series with the main thermally responsive expansion/contraction device 4. An auxiliary valve body 10 that is closed by a return spring 9 is provided oppositely, the operating temperature of the auxiliary thermally responsive expansion and contraction device 8 is set lower than the operating temperature of the main thermally responsive expansion and contraction device 4, and the auxiliary valve seat 7 and the auxiliary valve body are The series composite heat-responsive valve is characterized in that the flow rate of the auxiliary valve consisting of the main valve seat 3 and the main valve body 6 is set to be lower than the flow rate of the main valve consisting of the main valve seat 3 and the main valve body 6.

〔実施例〕〔Example〕

次にこの発明を図示の例によつて詳細に説明す
る。
Next, the present invention will be explained in detail using illustrated examples.

第1図ないし第6図はこの発明の第1実施例を
示すものであつて、大径の環状主弁座3および環
状取付フランジ11を有する環状フレーム2の表
面に、台形の支承枠12の両端部が重合され、そ
の支承枠12に向かつて窪む凹部を中央部に形成
した溝形支持枠13の開口端部は前記環状フレー
ム2の裏面に当接され、その開口端部に連設され
た突起が環状フレーム2および支承枠12の端部
に挿通されてカシメ付けられ、環状フレーム2と
これに固定された支承枠12および支持枠13と
からなるケーシング1が構成されている。
1 to 6 show a first embodiment of the present invention, in which a trapezoidal support frame 12 is installed on the surface of an annular frame 2 having a large-diameter annular main valve seat 3 and an annular mounting flange 11. The open end of the groove-shaped support frame 13, which has both ends overlapped and has a concave portion in the center that is concave toward the support frame 12, is in contact with the back surface of the annular frame 2, and is connected to the open end. The protrusions thus formed are inserted into the ends of the annular frame 2 and the support frame 12 and caulked to form a casing 1 consisting of the annular frame 2 and the support frames 12 and 13 fixed thereto.

中央部に小径の補助弁座7を有する主弁体6と
支持枠13との間に主弁体6を主弁座3に向かつ
て押圧するように働く主戻しばね5が介在され、
前記補助弁座7と主弁座3とは直列にかつ同心的
に配置され、主熱応動伸縮装置4のケース14中
央部に嵌挿係止した溝形取付枠15の開口端部は
主弁体6に当接され、その開口端部に連通された
突起が主弁体6に挿通されてカシメ付けられるこ
とにより、取付枠15が主弁体6に固定され、主
熱応動伸縮装置4の主プランジヤー16の先端部
は支持枠13の中央部に係合されている。
A main return spring 5 is interposed between the main valve body 6 having a small-diameter auxiliary valve seat 7 in the center and the support frame 13, and acts to press the main valve body 6 toward the main valve seat 3.
The auxiliary valve seat 7 and the main valve seat 3 are arranged in series and concentrically, and the opening end of the groove-shaped mounting frame 15, which is fitted and locked in the center of the case 14 of the main thermally responsive expansion/contraction device 4, is connected to the main valve. The mounting frame 15 is fixed to the main valve body 6 by inserting the protrusion that is in contact with the body 6 and communicating with the open end thereof into the main valve body 6 and caulking it, and the attachment frame 15 is fixed to the main valve body 6. The tip of the main plunger 16 is engaged with the center of the support frame 13.

前記補助弁座7に対向する補助弁体10と支承
枠12の中央部との間に、補助弁体10を補助弁
座7に向かつて押圧するように働く補助戻しばね
9が介在され、かつ補助弁体10と前記支持枠1
3の中央部との間には補助熱応動伸縮装置8が介
在され、その補助熱応動伸縮装置8の補助プラン
ジヤー17の先端部は補助弁体10の中央部に設
けられた凹部18に嵌合され、さらに補助熱応動
伸縮装置8のケース19は支持部材13の中央部
に設けられた嵌合保持部に対し圧入により固定さ
れ、また主熱応動伸縮装置4と補助熱応動伸縮装
置8とは直列に配置されている。
An auxiliary return spring 9 is interposed between the auxiliary valve body 10 facing the auxiliary valve seat 7 and the center of the support frame 12, and acts to press the auxiliary valve body 10 toward the auxiliary valve seat 7. Auxiliary valve body 10 and the support frame 1
An auxiliary thermally responsive expansion/contraction device 8 is interposed between the central portion of the auxiliary valve body 10 and the auxiliary plunger 17 of the auxiliary thermally responsive expansion/contraction device 8 is fitted into a recess 18 provided in the central portion of the auxiliary valve body 10. Furthermore, the case 19 of the auxiliary thermally responsive expansion/contraction device 8 is fixed by press fitting into a fitting holding portion provided at the center of the support member 13, and the main thermally responsive expansion/contraction device 4 and the auxiliary thermally responsive expansion/contraction device 8 are arranged in series.

前記補助戻しばね9の戻し力は主戻しばね5の
戻し力よりも小さく設定され、かつ補助弁座7と
補助熱応動伸縮装置8により開放される補助弁体
10とからなる補助弁の流量は、主弁座3と主熱
応動伸縮装置4により開放される主弁体6とから
なる主弁の流量よりも小さく設定され、また補助
熱応動伸縮装置8の作動温度(伸長開始温度)は
主熱応動伸縮装置4の作動温度よりも低く設定さ
れ、例えば補助熱応動伸縮装置8の作動温度は約
85℃、主熱応動伸縮装置4の作動温度は約91℃に
設定される。
The return force of the auxiliary return spring 9 is set smaller than the return force of the main return spring 5, and the flow rate of the auxiliary valve consisting of the auxiliary valve seat 7 and the auxiliary valve body 10 opened by the auxiliary thermally responsive expansion and contraction device 8 is , the flow rate of the main valve consisting of the main valve seat 3 and the main valve body 6 opened by the main thermally responsive expansion device 4 is set lower than the flow rate of the main valve, and the operating temperature (expansion start temperature) of the auxiliary thermally responsive expansion device 8 is set to be lower than that of the main valve seat 3 and the main valve body 6 opened by the main thermally responsive expansion device 4. The operating temperature of the thermally responsive expansion device 4 is set lower than that of the auxiliary thermally responsive expansion device 8, for example, the operating temperature of the auxiliary thermally responsive expansion device 8 is approximately
The operating temperature of the main thermally responsive expansion and contraction device 4 is set at 85°C and about 91°C.

前記第1実施例の直列複合熱応動弁は例えば自
動車エンジンの冷却水循環路内に配置されると共
に、各熱応動伸縮装置4,8は各弁体6,10に
対しそれぞれラジエーターとは反対側に配置さ
れ、かつケーシングの環状取付フランジ11は冷
却水循環路の管体に固定され、直列複合熱応動弁
の周囲の冷却水の温度が一定以下であるときは、
第1図および第2図に示すように、主弁座3と主
弁体6とからなる主弁および補助弁座7と補助弁
体10とからなる補助弁が閉じられている。
The series composite heat-responsive valve of the first embodiment is disposed, for example, in a cooling water circulation path of an automobile engine, and each of the heat-responsive expansion and contraction devices 4, 8 is located on the opposite side of the radiator to each valve body 6, 10. and the annular mounting flange 11 of the casing is fixed to the pipe body of the cooling water circulation path, and when the temperature of the cooling water around the series composite heat-responsive valve is below a certain level,
As shown in FIGS. 1 and 2, the main valve consisting of the main valve seat 3 and the main valve body 6 and the auxiliary valve consisting of the auxiliary valve seat 7 and the auxiliary valve body 10 are closed.

水温が徐々に上昇して望ましい冷却水温に達す
る少し前に、補助熱応動伸縮装置8が伸長動作を
開始して、補助弁体10が補助戻しばね9の力に
抗して開放方向に移動され、第5図に示すように
補助弁のみが開放されるので、少量の冷却水がラ
ジエーターに流入し、そのため冷却水の温度上昇
は緩やかになる。
Shortly before the water temperature gradually rises and reaches the desired cooling water temperature, the auxiliary thermal response expansion/contraction device 8 starts to extend, and the auxiliary valve body 10 is moved in the opening direction against the force of the auxiliary return spring 9. As shown in FIG. 5, only the auxiliary valve is opened, so a small amount of cooling water flows into the radiator, so that the temperature rise of the cooling water becomes gradual.

冷却水温がさらに上昇して、望ましい冷却水温
よりも若干高くなると、主熱応動伸縮装置4が伸
長動作を開始して、主弁体6が主戻しばね5の力
に抗して開放方向に移動され、第6図に示すよう
に、主弁も開放され、殆んどの冷却水は主弁を通
つてラジエーター内に流入し、次いでラジエータ
ーから冷却水がエンジンのウオータージヤケツト
内に循環流入する。
When the cooling water temperature rises further and becomes slightly higher than the desired cooling water temperature, the main thermal response expansion/contraction device 4 starts to extend, and the main valve body 6 moves in the opening direction against the force of the main return spring 5. Then, as shown in FIG. 6, the main valve is also opened, and most of the cooling water flows through the main valve into the radiator, and then from the radiator the cooling water circulates into the engine water jacket.

この時、ウオータージヤケツトの出口における
冷却水温およびウオータージヤケツトの入口にお
ける冷却水温は、補助弁の開放により既に温度上
昇し始めているので急激に変化することなく徐々
に温度上昇し、そのため従来の熱応動弁において
発生したオーバーシユート現象をなくすることが
できる(第11図参照)。
At this time, the temperature of the cooling water at the outlet of the water jacket and the temperature of the cooling water at the inlet of the water jacket have already begun to rise due to the opening of the auxiliary valve, so the temperature increases gradually without sudden changes, and therefore The overshoot phenomenon that occurs in the response valve can be eliminated (see FIG. 11).

第7図および第8図はこの発明の第2実施例を
示すものであつて、主弁体6の裏側に保持枠20
が固定され、その保持枠20と補助弁体10との
間に補助戻しばね9が介在され、かつ補助弁体1
0の中央部には補助熱応動伸縮装置8のケース1
9が嵌挿係止され、その補助熱応動伸縮装置8の
プランジヤー17の先端部は、補助弁体10に一
体に設けられた支承枠21の中央部の凹部22に
嵌合されているが、その他の構成は第1実施例の
場合と同様である。
7 and 8 show a second embodiment of the present invention, in which a holding frame 20 is provided on the back side of the main valve body 6.
is fixed, an auxiliary return spring 9 is interposed between the holding frame 20 and the auxiliary valve body 10, and the auxiliary valve body 1
Case 1 of the auxiliary heat-responsive expansion/contraction device 8 is in the center of the
9 is fitted and locked, and the tip of the plunger 17 of the auxiliary thermally responsive expansion/contraction device 8 is fitted into a recess 22 in the center of a support frame 21 integrally provided with the auxiliary valve body 10. The other configurations are the same as in the first embodiment.

第9図はこの発明の第3実施例を示すものであ
つて、補助熱応動伸縮装置8のプランジヤー17
の先端部に雄ねじが設けられ、かつその雄ねじに
螺合された一対のナツト23によりプランジヤー
17の先端部が支承枠21に固定されているが、
その他の構成は第2実施例と同様である。
FIG. 9 shows a third embodiment of the present invention, in which the plunger 17 of the auxiliary thermally responsive expansion and contraction device 8 is shown.
A male thread is provided at the tip of the plunger 17, and the tip of the plunger 17 is fixed to the support frame 21 by a pair of nuts 23 screwed to the male thread.
The other configurations are the same as the second embodiment.

この発明を実施する場合、主熱応動伸縮装置4
および補助熱応動伸縮装置8としては、公知のワ
ツクス式熱応動伸縮装置が用いられる。
When carrying out this invention, the main thermally responsive expansion and contraction device 4
As the auxiliary thermally responsive expansion/contraction device 8, a known wax type thermally responsive expansion/contraction device is used.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、直列複合熱応動弁が、主弁
の開放温度よりも低い温度で開放すると共に前記
主弁の流量よりも少ない流量の補助弁を備えてい
るので、暖機性を損なうことなく安定した水温が
得られると共に、冷却水温のオーバーシユートを
なくすることができるので、エンジンのシリンダ
ーヘツド等の熱歪亀裂の発生およびガスケツトの
吹抜けを防止することができ、また従来の熱応動
弁の場合は、オーバーシユートして冷却水温が急
激に上昇すると、運転者席の計器盤に設けられた
冷却水温指示用ヒートゲージが上昇し、運転者に
困惑を与えていたが、この発明の場合はオーバー
シユートしないので、この問題をも解消すること
ができ、さらに主熱応動伸縮装置4により平行移
動されて開放される主弁体6と補助熱応動伸縮装
置8により平行移動されて開放される補助弁体1
0とが直列にかつ同心的に配置されているので、
限られた外径で主弁の口径を従来の熱応動弁と同
等に設定して必要流量を確保することができると
共に、従来のエンジン冷却水循環路に対し交換性
をもつて容易に装着することができ、しかも補助
弁が開いたとき水温が主熱応動伸縮装置4の周囲
を均一に流れるので、主熱応動伸縮装置4の周囲
の温度分布が均一になり、そのため主熱応動伸縮
装置4の感温性を良くして、直列複合熱応動弁の
熱応答性を向上させることができ、また各熱応動
伸縮装置4,8を主弁座3に対し同心的に配置す
ることができるので、ボトムバイパス型にするこ
とも可能であり、さらにまたこの発明の直列複合
熱応動弁の場合は、主弁が故障して開かないとき
でも、補助弁が開くので、エンジンに対する安全
性を向上させることができる等の効果が得られ
る。
According to this invention, since the series composite heat-responsive valve is equipped with an auxiliary valve that opens at a temperature lower than the opening temperature of the main valve and has a flow rate lower than that of the main valve, warm-up performance is not impaired. It is possible to obtain a stable coolant temperature and eliminate overshoot of the cooling water temperature, which prevents thermal strain cracks in engine cylinder heads and blow-through of gaskets. In the case of valves, when the coolant temperature suddenly rises due to overshoot, the heat gauge for indicating the coolant temperature installed on the instrument panel of the driver's seat rises, causing confusion for the driver. In the case of , there is no overshoot, so this problem can also be solved.Furthermore, the main valve body 6 is moved in parallel by the main thermally responsive expansion device 4 and opened, and the auxiliary thermally responsive expansion device 8 is moved in parallel. Auxiliary valve body 1 to be opened
0 are arranged in series and concentrically, so
It is possible to secure the required flow rate by setting the diameter of the main valve to be the same as a conventional heat-responsive valve with a limited outer diameter, and it can be easily installed in a conventional engine cooling water circulation path with replaceability. Moreover, when the auxiliary valve opens, the water temperature flows uniformly around the main thermally responsive expansion device 4, so the temperature distribution around the main thermally responsive expansion device 4 becomes uniform, and therefore, the temperature distribution of the main thermally responsive expansion device 4 becomes uniform. Since the temperature sensitivity can be improved and the thermal response of the series composite thermally responsive valve can be improved, and each of the thermally responsive expansion and contraction devices 4 and 8 can be arranged concentrically with respect to the main valve seat 3, It is also possible to use a bottom bypass type, and furthermore, in the case of the series composite heat-responsive valve of the present invention, even if the main valve fails and does not open, the auxiliary valve opens, improving engine safety. Effects such as being able to do this can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図はこの発明の第1実施例を
示すものであつて、第1図は主熱応動弁および補
助熱応動弁の双方が閉じているときの直列複合熱
応動弁の縦断側面図、第2図は第1図のA−A線
断面図、第3図は直列複合熱応動弁の平面図、第
4図はその底面図、第5図は補助熱応動弁のみが
開いているときの直列複合熱応動弁の縦断側面
図、第6図は主熱応動弁および補助熱応動弁の双
方が開いているときの直列複合熱応動弁の縦断側
面図である。第7図はこの発明の第2実施例に係
る直列複合熱応動弁の縦断側面図、第8図は第7
図のB−B線断面図、第9図はこの発明の第3実
施例に係る直列複合熱応動弁の縦断側面図、第1
0図は従来の熱応動弁を使用した場合の冷却水の
温度変化を示すグラフ、第11図はこの発明の直
列複合熱応動弁を使用した場合の冷却水の温度変
化を示すグラフである。 図において、1はケーシング、2は環状フレー
ム、3は環状主弁座、4は主熱応動伸縮装置、5
は主戻しばね、6は主弁体、7は補助弁座、8は
補助熱応動伸縮装置、9は補助戻しばね、10は
補助弁体、12は支承枠、13は支持枠、15は
取付枠、16は主プランジヤー、17は補助プラ
ンジヤーである。
1 to 5 show a first embodiment of the present invention, and FIG. 1 is a longitudinal cross-section of a series composite thermally-responsive valve when both the main thermally-responsive valve and the auxiliary thermally-responsive valve are closed. A side view, Figure 2 is a cross-sectional view taken along the line A-A in Figure 1, Figure 3 is a plan view of the series composite heat-responsive valve, Figure 4 is its bottom view, and Figure 5 shows that only the auxiliary heat-responsive valve is open. FIG. 6 is a vertical side view of the series composite thermally-responsive valve when both the main thermally-responsive valve and the auxiliary thermally-responsive valve are open. FIG. 7 is a longitudinal cross-sectional side view of a series composite heat-responsive valve according to a second embodiment of the present invention, and FIG.
9 is a vertical sectional side view of a series composite thermally operated valve according to a third embodiment of the present invention, and FIG.
FIG. 0 is a graph showing the temperature change of the cooling water when a conventional thermally responsive valve is used, and FIG. 11 is a graph showing the temperature change of the cooling water when the series composite thermally responsive valve of the present invention is used. In the figure, 1 is a casing, 2 is an annular frame, 3 is an annular main valve seat, 4 is a main thermally responsive expansion device, and 5 is an annular frame.
is the main return spring, 6 is the main valve body, 7 is the auxiliary valve seat, 8 is the auxiliary thermal response expansion and contraction device, 9 is the auxiliary return spring, 10 is the auxiliary valve body, 12 is the support frame, 13 is the support frame, 15 is the mounting 16 is a main plunger, and 17 is an auxiliary plunger.

Claims (1)

【特許請求の範囲】[Claims] 1 ケーシング1の環状フレーム2に設けられた
大径の環状主弁座3に、主熱応動伸縮装置4によ
り開放されると共に主戻しばね5により閉塞され
る主弁体6が対設され、その主弁体6に、前記環
状主弁座3と直列にかつ同心的に配置された補助
弁座7が設けられ、その補助弁座7に、前記主熱
応動伸縮装置4と直列に配置された補助熱応動伸
縮装置8により開放されると共に補助戻しばね9
により閉塞される補助弁体10が対設され、前記
補助熱応動伸縮装置8の作動温度は主熱応動伸縮
装置4の作動温度よりも低く設定され、補助弁座
7および補助弁体10からなる補助弁の流量は、
主弁座3および主弁体6からなる主弁の流量より
も少なく設定されていることを特徴とする直列複
合熱応動弁。
1. A main valve body 6 that is opened by a main thermally responsive expansion/contraction device 4 and closed by a main return spring 5 is disposed opposite to a large-diameter annular main valve seat 3 provided on an annular frame 2 of a casing 1. The main valve body 6 is provided with an auxiliary valve seat 7 arranged in series and concentrically with the annular main valve seat 3, and the auxiliary valve seat 7 is arranged in series with the main thermally responsive expansion/contraction device 4. The auxiliary return spring 9 is opened by the auxiliary heat-responsive expansion and contraction device 8.
An auxiliary valve body 10 is provided opposite to the valve body 10 to be closed, and the operating temperature of the auxiliary thermally responsive expansion/contraction device 8 is set lower than the operating temperature of the main thermally responsive expansion/contraction device 4. The flow rate of the auxiliary valve is
A series composite heat-responsive valve characterized in that the flow rate is set lower than the flow rate of a main valve consisting of a main valve seat 3 and a main valve body 6.
JP10950884A 1984-05-31 1984-05-31 Series composite heat responding valve Granted JPS60256692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10950884A JPS60256692A (en) 1984-05-31 1984-05-31 Series composite heat responding valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10950884A JPS60256692A (en) 1984-05-31 1984-05-31 Series composite heat responding valve

Publications (2)

Publication Number Publication Date
JPS60256692A JPS60256692A (en) 1985-12-18
JPH0323792B2 true JPH0323792B2 (en) 1991-03-29

Family

ID=14512039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10950884A Granted JPS60256692A (en) 1984-05-31 1984-05-31 Series composite heat responding valve

Country Status (1)

Country Link
JP (1) JPS60256692A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025671U (en) * 1988-06-27 1990-01-16
DE9109600U1 (en) * 1991-08-02 1992-11-26 Behr-Thomson Dehnstoffregler GmbH & Co, 7014 Kornwestheim Thermostatic valve with a pilot valve
FR2739468B1 (en) * 1995-10-02 2003-03-07 Inst Francais Du Petrole METHOD AND DEVICE FOR REGULATING THE TEMPERATURE OF A FLUID
FR2969734B1 (en) * 2010-12-23 2014-01-17 Mecaplast Sa DEVICE FOR CONTROLLING THE FLOW OF A COOLING FLUID
IL233943B (en) * 2014-08-04 2020-06-30 Israel Aerospace Ind Ltd Two-stage valve
EP3610143A4 (en) * 2017-04-14 2020-10-14 Kirpart Otomotiv Parçalari Sanayi Ve Ticaret A.S. A thermostat assembly with double flow enabled pressure balanced sleeve valve structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121830A (en) * 1974-03-12 1975-09-25
JPS539424A (en) * 1976-07-14 1978-01-27 Nec Corp Double feed detecting circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126234U (en) * 1978-02-23 1979-09-03
JPS58101067U (en) * 1981-12-29 1983-07-09 日産ディーゼル工業株式会社 Thermostat device for engine cooling water passage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121830A (en) * 1974-03-12 1975-09-25
JPS539424A (en) * 1976-07-14 1978-01-27 Nec Corp Double feed detecting circuit

Also Published As

Publication number Publication date
JPS60256692A (en) 1985-12-18

Similar Documents

Publication Publication Date Title
TW397896B (en) The flowing control method of cooling media and its device
US4456167A (en) Thermostatically controlled valve in the circulation of liquid cooled internal combustion engines
USRE35040E (en) Pressure and temperature relief valve and diaphragm valve
EP1234111A1 (en) Air eliminating return fuel recirculation valve
US7055467B2 (en) Cooling system for an engine
JPH0323792B2 (en)
US2469930A (en) Auxiliary control device for thermostatic valves
GB2086536A (en) Thermostat assembly
JPH0212799B2 (en)
US2816711A (en) Temperature control of coolant circulation
US3075703A (en) Thermostatic valve
JP3146350B2 (en) Water temperature control device in water-cooled engine cooling system
JPS6120697B2 (en)
KR100448737B1 (en) Radiator cap apparatus
JPS61175534U (en)
JPS6040825Y2 (en) Installation structure of thermostat for internal combustion engine
WO2001038718A1 (en) Air eliminating return fuel recirculation valve
JPS60153417A (en) Cooling device of internal combustion engine
JPS5916150B2 (en) Engine thermostat
JPS6224743Y2 (en)
JPH0117635Y2 (en)
JPS624784Y2 (en)
JPH0612707U (en) Oil cooler oil temperature control valve
JPS5930282Y2 (en) Thermostat for internal combustion engine
JPS6035825Y2 (en) temperature sensitive valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees