JPS60256692A - Series composite heat responding valve - Google Patents

Series composite heat responding valve

Info

Publication number
JPS60256692A
JPS60256692A JP10950884A JP10950884A JPS60256692A JP S60256692 A JPS60256692 A JP S60256692A JP 10950884 A JP10950884 A JP 10950884A JP 10950884 A JP10950884 A JP 10950884A JP S60256692 A JPS60256692 A JP S60256692A
Authority
JP
Japan
Prior art keywords
auxiliary
main
valve
cooling water
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10950884A
Other languages
Japanese (ja)
Other versions
JPH0323792B2 (en
Inventor
Kazuhiro Kaneko
和弘 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Thomson Co Ltd
Original Assignee
Fuji Thomson Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Thomson Co Ltd filed Critical Fuji Thomson Co Ltd
Priority to JP10950884A priority Critical patent/JPS60256692A/en
Publication of JPS60256692A publication Critical patent/JPS60256692A/en
Publication of JPH0323792B2 publication Critical patent/JPH0323792B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1306Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids
    • G05D23/132Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element
    • G05D23/1333Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element measuring the temperature of incoming fluid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/13Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures
    • G05D23/1306Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids
    • G05D23/132Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element
    • G05D23/1366Control of temperature without auxiliary power by varying the mixing ratio of two fluids having different temperatures for liquids with temperature sensing element using a plurality of sensing elements

Abstract

PURPOSE:To provide a stable water temperature without damaging heating-up efficiency, by a method wherein a heat responding valve is provided with an auxiliary valve which is opened at temperature lower than the opening temperature of a main valve. CONSTITUTION:Slightly before a water temperature is increased to a desirable cooling water temperature, an auxiliary heat responding expansion device 8 starts expansion motion, and an auxiliary valve body 10 is moved in an opening direction against the force of an auxiliary return spring 9. A small amount of cooling water flows in a radiator, and this causes cooling water to be slowly increased in temperature. When a cooling water temperature is further increased to a value slightly higher than a desired cooling water temperature, a main heat responding expansion device 4 starts expansion motion to move a main valve body 6 in an opening direction against the force of a return spring 5, and most of the cooling water flows through the main valve into a radiator.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は自動車エンジンの冷却水循環路等に用いられ
る直列腹合熱応動弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a series integrated heat-responsive valve used in a cooling water circulation path of an automobile engine.

〔従来技術〕[Prior art]

従来、自動車エンジンの冷却水循環路等に用いられる熱
応動弁には、冷却水注入時におiる空気抜きをするため
、空気抜き孔が設けられていたが、゛最近、暖機性改善
のため゛に振子弁を備えるのが一般的になってきた。こ
のためエンジンを始動したのち、シリンダーヘッド内の
冷却水のラジェーター内への流入が阻止され、またウォ
ーターポンプの吐出圧の向上とが重なり合って、冷却水
温がオーパーンニートする現象が生じてきた。
Conventionally, heat-responsive valves used in the cooling water circulation path of automobile engines have been provided with air vent holes to vent air when cooling water is injected. It has become common to have a pendulum valve. For this reason, after the engine is started, the flow of cooling water in the cylinder head into the radiator is blocked, and combined with the increase in water pump discharge pressure, a phenomenon has occurred where the cooling water temperature becomes open neat.

このオーパーンニート現象は第10図に示すように大き
な水温ハンチングを誘発し、そのため熱応力の大きな繰
返しが行なわれることにより、/リンターヘットの熱歪
亀裂あるいはガスケットの吹抜けが生じることがあった
This open neat phenomenon induces large water temperature hunting as shown in FIG. 10, and as a result, large thermal stress is applied repeatedly, which may cause thermal strain cracks in the linter head or blow-through of the gasket.

前述のオーバーシュート現象を解消できる熱応動弁とし
て、(1)二重バルブ付き熱応動弁、(2)主熱応動弁
と補助熱応動弁とを並列に配置した並列複合型の熱応動
弁が提案されているが、(1)の熱応動弁の場合は熱応
答性が悪いという問題があり、また(2)の熱応動弁の
場合は、限られた外径内に納まるように設計すると、主
熱応動弁の口径が小さくなるという問題がある。
As thermally responsive valves that can eliminate the above-mentioned overshoot phenomenon, there are (1) a thermally responsive valve with a double valve, and (2) a parallel composite type thermally responsive valve in which a main thermally responsive valve and an auxiliary thermally responsive valve are arranged in parallel. However, in the case of the thermally responsive valve (1), there is a problem of poor thermal response, and in the case of the thermally responsive valve (2), it is difficult to design it to fit within a limited outer diameter. , there is a problem that the diameter of the main thermally responsive valve becomes smaller.

〔発明の目的、構成〕[Purpose and structure of the invention]

この発明は前述の問題を有利に解決できる直列複合熱応
動弁を提供することを目的とするものであって、この発
明の要旨とするところは、ケーシング1の環状フレーム
2に設けられた環状主弁座6に、主熱応動伸縮装置4に
より開放されると共に主戻しばね5により閉塞される主
弁体6が対設され、その主弁体6に設けられた補助弁座
7には、補助熱応動伸縮装置8により開放されると共に
補助戻しばね9により閉塞される補助弁体10が対設さ
れ、前記補助熱応動伸縮装置8の作動温度は主熱応動伸
縮装置4の作動温度よりも低く設定され、補助弁座7お
よび補助弁体10からなる補助弁の流量は、主弁座3お
よび主弁体6からなる主、 弁の流量よりも少なく設定
されていることを特徴とする直列複合熱応動弁にある。
An object of the present invention is to provide a series composite heat-responsive valve that can advantageously solve the above-mentioned problems. A main valve body 6 that is opened by the main thermally responsive expansion and contraction device 4 and closed by the main return spring 5 is provided opposite to the valve seat 6, and an auxiliary valve seat 7 provided on the main valve body 6 has an auxiliary An auxiliary valve body 10 that is opened by the thermally responsive expansion device 8 and closed by the auxiliary return spring 9 is provided, and the operating temperature of the auxiliary thermally responsive expansion device 8 is lower than the operating temperature of the main thermally responsive expansion device 4. The flow rate of the auxiliary valve consisting of the auxiliary valve seat 7 and the auxiliary valve body 10 is set to be lower than the flow rate of the main valve consisting of the main valve seat 3 and the main valve body 6. It's in the thermally-responsive valve.

〔実施例〕〔Example〕

次にこの発明を図示の例によって詳細に説明する。 Next, the present invention will be explained in detail using illustrated examples.

第1図ないし第6図はこの発明の第1実施例を示すもの
であって、°環状主弁座3および環状取付フランジ11
を有する環状フレーム20表面に、台形の支承枠12の
両端部が重合され、その支承枠12に向かって窪む凹部
を中央部に形成した溝形支持枠13の開口端部は前記環
状フレーム2の裏面に当接され、その開口端部に連設さ
れた突起が環状フレーム2および支承枠12の端部に挿
通されてカンメ付けられ、環状フレーム2とこれに固定
された支承枠12および支持枠13とからなるケーシン
グ−が構成されている。
1 to 6 show a first embodiment of the present invention, in which an annular main valve seat 3 and an annular mounting flange 11 are shown.
Both ends of a trapezoidal support frame 12 are superimposed on the surface of an annular frame 20 having A protrusion that is in contact with the back surface of the annular frame 2 and is connected to the open end thereof is inserted into the ends of the annular frame 2 and the support frame 12 and attached to the annular frame 2, the support frame 12 fixed thereto, and the support frame 12. The frame 13 constitutes a casing.

中央部に補助弁座7を有する主弁体6と支持枠13との
間に主弁体6を主弁座ろに向かって押圧するように働く
主戻しばね5が介在され、かつ主熱応動伸縮装置4のケ
ース14中央部に嵌挿係止した溝形取付枠15の開口端
部は主弁体6に当接 ’ 、(t・ され、その開口端部に連通された突起が主弁体6に挿通
されて力/メ付けられることにより、取付枠15が主弁
体6に固定され、主熱応動伸縮装置4の主プランジヤ−
16の先端部は支持枠13の中央部に係合されている。
A main return spring 5 is interposed between the main valve body 6 having the auxiliary valve seat 7 in the center and the support frame 13, and acts to press the main valve body 6 toward the main valve seat. The open end of the groove-shaped mounting frame 15, which is fitted and locked in the center of the case 14 of the telescopic device 4, comes into contact with the main valve body 6, and the protrusion communicating with the open end contacts the main valve body 6. The mounting frame 15 is fixed to the main valve body 6 by being inserted through the body 6 and applied with force/metal, and the main plunger of the main thermally responsive expansion/contraction device 4 is fixed to the main valve body 6.
The tip portion of the support frame 16 is engaged with the center portion of the support frame 13 .

前記補助弁座7に対向する補助弁体10と支承枠12の
中央部との間に、補助弁体10を補助弁座7に向かって
押圧するように働く補助戻しばね9が介在され、かつ補
助弁体10と前記支持枠16の中央部との間には補助熱
応動伸縮装置8が介在され、その補助熱応動伸縮装置8
の補助プランジャー17の先端部は補助弁体10の中央
部に設けられた凹部18に嵌合され、さらに補助熱応動
伸縮装置8のケース19は支持部材13の中央部に設け
られた嵌合保持部に対し圧入により固定されている。
An auxiliary return spring 9 is interposed between the auxiliary valve body 10 facing the auxiliary valve seat 7 and the center portion of the support frame 12, and acts to press the auxiliary valve body 10 toward the auxiliary valve seat 7. An auxiliary thermally responsive expansion/contraction device 8 is interposed between the auxiliary valve body 10 and the center portion of the support frame 16, and the auxiliary thermally responsive expansion/contraction device 8
The tip of the auxiliary plunger 17 is fitted into a recess 18 provided in the center of the auxiliary valve body 10 , and the case 19 of the auxiliary heat-responsive expansion/contraction device 8 is fitted into a recess 18 provided in the center of the support member 13 . It is fixed to the holding part by press fitting.

前記補助戻しばね9の戻し力は主戻しばね5の戻し力よ
りも小さく設定され、かつ補助弁座7と補助熱応動伸縮
装置8により開放される補助弁体10とからなる補助弁
の流量は、主弁座乙と主熱応動伸縮装置4により開放さ
れる主弁体6とからなる主弁の流量よりも小さく設定さ
れ、また補助熱応動伸縮装置8の作動温度(伸長開始温
度)は主熱応動伸縮装置4の作動温度よりも4低く設定
され、例えば補助熱応動伸縮装#8の作動温度は約85
℃、主熱応動伸縮装置4の作動温度は約911℃に設定
される。
The return force of the auxiliary return spring 9 is set smaller than the return force of the main return spring 5, and the flow rate of the auxiliary valve consisting of the auxiliary valve seat 7 and the auxiliary valve body 10 opened by the auxiliary thermally responsive expansion and contraction device 8 is , is set lower than the flow rate of the main valve consisting of the main valve seat O and the main valve body 6 opened by the main thermally responsive expansion/contraction device 4, and the operating temperature (expansion start temperature) of the auxiliary thermally responsive expansion/contraction device 8 is set to be lower than that of the main valve seat O and the main valve body 6 opened by the main thermally responsive expansion/contraction device 4. The operating temperature of the auxiliary thermal expansion device #8 is set to 4 degrees lower than the operating temperature of the thermal expansion device 4, for example, the operating temperature of the auxiliary thermal expansion device #8 is about 85.
℃, the operating temperature of the main thermally responsive expansion and contraction device 4 is set at about 911℃.

前記第1実施例の直列複合熱応動弁は例えば自動車エン
ジンの冷却水循環路内に配置されると共に、各熱応動伸
縮装置A、 、 8 +d各弁体6,10に対しそれぞ
れラジェーターとけ反対側に配置され、かつケーシング
の゛環状取付フランジ11は冷却水循環路の管体に固定
され、直列複合熱応動弁の周囲の冷却水の温度が一定以
下であるときは、第1図および第2図に示すように、主
弁座ろと主弁体6とからなる主弁および補助弁座7と補
助弁体10とからなる補助弁が閉じられている。
The series composite heat-responsive valve of the first embodiment is disposed, for example, in a cooling water circulation path of an automobile engine, and is placed on the opposite side of the radiator to each of the heat-responsive expansion and contraction devices A, , 8 +d, and each valve body 6, 10, respectively. The annular mounting flange 11 of the casing is fixed to the pipe body of the cooling water circulation path, and when the temperature of the cooling water around the series composite heat-responsive valve is below a certain level, as shown in FIGS. 1 and 2. As shown, the main valve consisting of the main valve seat and the main valve body 6 and the auxiliary valve consisting of the auxiliary valve seat 7 and the auxiliary valve body 10 are closed.

水温が徐々に上昇して望ましい冷却水温に達する少し前
に、補助熱応動伸縮装置8が伸長動作を開始して、補助
弁体10が補助戻しばね9の力に抗して開放方向に移動
され、第5図に示すように補助弁のみが開放されるので
、少量の冷却水がうジエーターに流入し、そのため冷却
水の温度上昇は緩やかになる。
Shortly before the water temperature gradually rises and reaches the desired cooling water temperature, the auxiliary thermal response expansion/contraction device 8 starts to extend, and the auxiliary valve body 10 is moved in the opening direction against the force of the auxiliary return spring 9. As shown in FIG. 5, only the auxiliary valve is opened, so a small amount of cooling water flows into the radiator, so that the temperature rise of the cooling water becomes gradual.

冷却水温がさらに上昇して、望ましい冷却水温よりも若
干高くなると、主熱応動伸縮装置4が伸長動作を開始し
て、主弁体6が主戻しばね5の力に抗して開放方向に移
動され、第6図に示すように、主弁も開放され、殆んど
の冷却水は主弁を通ってラジエー)−内に流入し、次い
でラジェーターから冷却水がエンジンのウォータージャ
ケット内に循環流入する。
When the cooling water temperature rises further and becomes slightly higher than the desired cooling water temperature, the main thermal response expansion/contraction device 4 starts to extend, and the main valve body 6 moves in the opening direction against the force of the main return spring 5. Then, as shown in Figure 6, the main valve is also opened, and most of the cooling water flows into the radiator through the main valve, and then the cooling water from the radiator circulates into the engine water jacket. .

この時、ウォータージャケットの出口における冷却水温
およびウォータージャケットの入口における冷却水温は
、補助弁の開放により既に温度上昇し始めているので急
激に変化することなく徐々に温度上昇し、そのため従来
の熱応動弁において発生したオーバーシュート現象をな
くすることができる(第11図参照)。
At this time, the temperature of the cooling water at the outlet of the water jacket and the temperature of the cooling water at the inlet of the water jacket have already begun to rise due to the opening of the auxiliary valve, so the temperature increases gradually without sudden changes, and therefore It is possible to eliminate the overshoot phenomenon that occurs in (see FIG. 11).

1) 第7図および第8図はこの発明の第2実施例を示
すものであって、主弁体乙の裏側に保持枠20が固定さ
れ、その保持枠20と補助弁体10との間に補助戻しば
ね9が介在され、かつ補助弁体10の中央部には補助熱
応動伸縮装置8のケース19が嵌挿係止され、その補助
熱応動伸縮装置8のプランジャー17の先端部は、補助
弁体10に一体に設けられた支承枠21の中央部の凹部
22に嵌合されているが、その他の構成は第1実施例の
場合と同様である。
1) FIGS. 7 and 8 show a second embodiment of the present invention, in which a holding frame 20 is fixed to the back side of the main valve body B, and the space between the holding frame 20 and the auxiliary valve body 10 is An auxiliary return spring 9 is interposed in the auxiliary return spring 9, and a case 19 of an auxiliary thermally responsive expansion/contraction device 8 is fitted and locked in the center of the auxiliary valve body 10. , is fitted into a recess 22 in the center of a support frame 21 integrally provided with the auxiliary valve body 10, but the other configurations are the same as in the first embodiment.

第9図はこの発明の第6実施例を示すものであって、補
助熱応動伸縮装置8のプランジャー17の先端部に雄ね
じが設けられ、かつその雄ねじに螺合された一対のナツ
ト26によりプランジャー17の先端部が支承枠21に
固定されているが、その他の構成は第2実施例と同様で
ある。
FIG. 9 shows a sixth embodiment of the present invention, in which a male thread is provided at the tip of the plunger 17 of the auxiliary heat-responsive expansion and contraction device 8, and a pair of nuts 26 are screwed onto the male thread. Although the tip of the plunger 17 is fixed to the support frame 21, the other configurations are the same as in the second embodiment.

この発明を実施する場合、主熱応動伸縮装置4および補
助熱応動伸縮装置8としては、公知のワックス式熱応動
伸縮装置が用いられる。
When carrying out this invention, a known wax-type thermal response expansion and contraction device is used as the main thermal response expansion and contraction device 4 and the auxiliary thermal response expansion and contraction device 8.

〔発明の効果〕〔Effect of the invention〕

こ0発明に1れば・熱応動弁が主弁0開放温度 1.1
よりも低い温度で開放する補助弁を備えているの 6で
、暖機性を損なうことなく安定した水温が得られ、冷却
水温のオーバーシュートをなくすることができるので、
エンジンのシリンダーヘッド等の熱歪亀裂の発生および
ガスケットの吹抜けを防止することができ、また従来の
熱応動弁の場合は、オーパーンニートして冷却水温が急
激に上昇すると、運転者席の計器盤に設けられた冷却水
温指示用ヒートゲージが上昇し、運転者に困惑を与えて
いたが、この発明の場合はオーバーシュートしないので
、この問題をも解消することができ、さらに主熱応動伸
縮装置4により開放される主弁と補助熱応動伸縮装置8
により開放される補助弁とが直列に配置されているので
、限られた外径で主弁の口径を従来の熱応動弁と同等に
設定して必要流量を確保することができると共に、従来
のエンジン冷却水循環路に対し交換性をもって容易に装
着することができ、しかも補助弁が開いたとき冷却水の
流れが熱応動弁の中心に向かって生じるので、主熱応動
伸縮装置4の周囲の温度分布が均一になると共に、補助
熱応動伸縮装置8を小型にできるので熱応答性のよいも
のを作ることができ、また熱応動伸縮装置を主弁座に対
し同心的に配置することができるので、ボトムバイパス
型にすることも可能であり、さらにまたこの発明の直列
複合熱応動弁の場合は、主弁が故障して開かないときで
も、補助弁が開くので、エンジンに対する安全性を向上
させることができる等の効果が得られる。
If there is one thing in this invention, the thermally-responsive valve has a main valve opening temperature of 0.1.1
Equipped with an auxiliary valve that opens at a lower temperature than the 6, stable water temperature can be obtained without impairing warm-up performance, and overshoot of cooling water temperature can be eliminated.
It can prevent thermal distortion cracks in the engine cylinder head, etc., and gasket blow-out.In addition, in the case of conventional heat-responsive valves, when the cooling water temperature rises rapidly due to open neatness, the driver's instrument panel The heat gauge installed on the panel to indicate the cooling water temperature rose, causing confusion for the driver, but this invention does not overshoot, so this problem can be solved, and furthermore, the main thermal response expansion and contraction The main valve opened by the device 4 and the auxiliary thermal response expansion and contraction device 8
Since the auxiliary valve, which is opened by the It can be easily installed in the engine cooling water circulation path with interchangeability, and when the auxiliary valve opens, the flow of cooling water is generated toward the center of the thermally responsive valve, so the temperature around the main thermally responsive expansion and contraction device 4 increases. In addition to uniform distribution, the auxiliary heat-responsive expansion device 8 can be made small, so it can be made with good thermal response, and the heat-response expansion device can be placed concentrically with respect to the main valve seat. It is also possible to use a bottom bypass type valve, and furthermore, in the case of the series composite heat-responsive valve of the present invention, even if the main valve fails and does not open, the auxiliary valve opens, improving engine safety. Effects such as being able to do this can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図はこの発明の第1実施例を示すもの
であって、第1図は主熱応動弁および補助熱応動弁の双
方が閉じているときの直列複合熱応動弁の縦断側面図、
第2図は第1図のA−A線断面図、第6図は直列複合熱
応動弁の平面図、第4図はその底面図、第5図は補助熱
応動弁のみが開いているときの直列複合熱応動弁の縦断
側面図、第6図は主熱応動弁および補助熱応動弁の双方
が開いているときの直列複合熱応動弁の縦断側面図であ
る。 第7図はこの発明の第2実施例に係る直列複合熱応動弁
の縦断側面図、第8図は第7図のB−B線断面図、第9
図はこの発明の第3実施例に係る直列複合熱応動弁の縦
断側面図、第10図は従来の熱応動弁を使用した場合の
冷却水の温度変化を示すグラフ、第11図はこの発明の
直列複合熱応動弁を使用した場合の冷却水の温度変化を
示すグラフである。 図において、1はケーシング、2は環状フレーム、6は
環状主弁座、4は主熱応動伸縮装置、5は主戻しばね、
6は主弁体、7は補助弁座、8は補助熱応動伸縮装置、
9は補助戻しばね、10は補助弁体、12は支承枠、1
6は支持枠、15は取付枠、16は主プランジヤ−,1
7は補助プランジャーである。 派 ♀ 「 第10図 第11図
1 to 5 show a first embodiment of the present invention, and FIG. 1 is a longitudinal cross-section of a series composite thermally-responsive valve when both the main thermally-responsive valve and the auxiliary thermally-responsive valve are closed. Side view,
Figure 2 is a cross-sectional view taken along the line A-A in Figure 1, Figure 6 is a plan view of the series composite heat-responsive valve, Figure 4 is its bottom view, and Figure 5 is when only the auxiliary heat-responsive valve is open. FIG. 6 is a longitudinal side view of the series composite thermally responsive valve when both the main thermally responsive valve and the auxiliary thermally responsive valve are open. 7 is a longitudinal sectional side view of a series composite heat-responsive valve according to a second embodiment of the present invention, FIG. 8 is a sectional view taken along line B-B in FIG. 7, and FIG.
The figure is a longitudinal cross-sectional side view of a series composite thermally-responsive valve according to the third embodiment of the present invention, FIG. 10 is a graph showing the temperature change of cooling water when a conventional thermally-responsive valve is used, and FIG. 11 is a graph of the present invention. 3 is a graph showing the temperature change of cooling water when using a series composite thermally responsive valve. In the figure, 1 is a casing, 2 is an annular frame, 6 is an annular main valve seat, 4 is a main thermally responsive expansion device, 5 is a main return spring,
6 is a main valve body, 7 is an auxiliary valve seat, 8 is an auxiliary thermal response expansion and contraction device,
9 is an auxiliary return spring, 10 is an auxiliary valve body, 12 is a support frame, 1
6 is a support frame, 15 is a mounting frame, 16 is a main plunger, 1
7 is an auxiliary plunger. School ♀ "Figure 10 Figure 11

Claims (1)

【特許請求の範囲】[Claims] ケーシング1の環状フレーム2に設けられた環状主弁座
ろに、主熱応動伸縮装置4により開放されると共に主戻
しばね5により閉塞される主弁体6が対設され、その主
弁体6に設けられた補助弁座7には、補助熱応動伸縮装
置8により開放されると共に補助戻しばね9により閉塞
される補助弁体10が対設され、前記補助熱応動伸縮装
置8の作動温度は主熱応動伸縮装置4の作動温度よりも
低く設定され、補助弁座7および補助弁体10からなる
補助弁の流量は、主弁座6および主弁体6からなる主弁
の流量よりも少なく設定されていることを特徴とする直
列複合熱応動弁。
A main valve body 6 that is opened by the main thermally responsive expansion device 4 and closed by the main return spring 5 is provided opposite to the annular main valve seat provided in the annular frame 2 of the casing 1. An auxiliary valve body 10 that is opened by an auxiliary heat-responsive expansion device 8 and closed by an auxiliary return spring 9 is provided opposite to the auxiliary valve seat 7 provided in the auxiliary valve seat 7. The flow rate of the auxiliary valve made up of the auxiliary valve seat 7 and the auxiliary valve body 10 is set lower than the operating temperature of the main thermally responsive expansion and contraction device 4, and is lower than the flow rate of the main valve made of the main valve seat 6 and the main valve body 6. A series composite heat-responsive valve characterized by:
JP10950884A 1984-05-31 1984-05-31 Series composite heat responding valve Granted JPS60256692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10950884A JPS60256692A (en) 1984-05-31 1984-05-31 Series composite heat responding valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10950884A JPS60256692A (en) 1984-05-31 1984-05-31 Series composite heat responding valve

Publications (2)

Publication Number Publication Date
JPS60256692A true JPS60256692A (en) 1985-12-18
JPH0323792B2 JPH0323792B2 (en) 1991-03-29

Family

ID=14512039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10950884A Granted JPS60256692A (en) 1984-05-31 1984-05-31 Series composite heat responding valve

Country Status (1)

Country Link
JP (1) JPS60256692A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025671U (en) * 1988-06-27 1990-01-16
FR2679977A1 (en) * 1991-08-02 1993-02-05 Behr Thomson Dehnstoffregler THERMOSTATIC VALVE EQUIPPED WITH A PILOT VALVE.
FR2739468A1 (en) * 1995-10-02 1997-04-04 Inst Francais Du Petrole METHOD AND DEVICE FOR REGULATING THE TEMPERATURE OF A FLUID
WO2012085436A1 (en) * 2010-12-23 2012-06-28 Mecaplast Device for controlling the flow rate of a coolant
WO2016020916A1 (en) * 2014-08-04 2016-02-11 Israel Aerospace Industries Ltd. Two-stage valve
CN110651105A (en) * 2017-04-14 2020-01-03 科派特汽车配件工贸联合股份公司 Thermostat assembly with pressure balanced sleeve valve structure that enables dual flow

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121830A (en) * 1974-03-12 1975-09-25
JPS539424A (en) * 1976-07-14 1978-01-27 Nec Corp Double feed detecting circuit
JPS54126234U (en) * 1978-02-23 1979-09-03
JPS58101067U (en) * 1981-12-29 1983-07-09 日産ディーゼル工業株式会社 Thermostat device for engine cooling water passage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121830A (en) * 1974-03-12 1975-09-25
JPS539424A (en) * 1976-07-14 1978-01-27 Nec Corp Double feed detecting circuit
JPS54126234U (en) * 1978-02-23 1979-09-03
JPS58101067U (en) * 1981-12-29 1983-07-09 日産ディーゼル工業株式会社 Thermostat device for engine cooling water passage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH025671U (en) * 1988-06-27 1990-01-16
FR2679977A1 (en) * 1991-08-02 1993-02-05 Behr Thomson Dehnstoffregler THERMOSTATIC VALVE EQUIPPED WITH A PILOT VALVE.
FR2739468A1 (en) * 1995-10-02 1997-04-04 Inst Francais Du Petrole METHOD AND DEVICE FOR REGULATING THE TEMPERATURE OF A FLUID
EP0768591A1 (en) * 1995-10-02 1997-04-16 Institut Francais Du Petrole Method and device for fluid temperature control.
US5844463A (en) * 1995-10-02 1998-12-01 Institute Francais Du Petrole Process and device for regulating the temperature of a fluid
WO2012085436A1 (en) * 2010-12-23 2012-06-28 Mecaplast Device for controlling the flow rate of a coolant
FR2969734A1 (en) * 2010-12-23 2012-06-29 Mecaplast Sa DEVICE FOR CONTROLLING THE FLOW OF A COOLING FLUID
WO2016020916A1 (en) * 2014-08-04 2016-02-11 Israel Aerospace Industries Ltd. Two-stage valve
CN110651105A (en) * 2017-04-14 2020-01-03 科派特汽车配件工贸联合股份公司 Thermostat assembly with pressure balanced sleeve valve structure that enables dual flow
EP3610143A4 (en) * 2017-04-14 2020-10-14 Kirpart Otomotiv Parçalari Sanayi Ve Ticaret A.S. A thermostat assembly with double flow enabled pressure balanced sleeve valve structure

Also Published As

Publication number Publication date
JPH0323792B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
US5033865A (en) Thermo-actuator
US4456167A (en) Thermostatically controlled valve in the circulation of liquid cooled internal combustion engines
US20080223316A1 (en) Engine thermostat having bypass pressure-dampening fluid passage
TW397896B (en) The flowing control method of cooling media and its device
US5018664A (en) Thermostat having soft mounting structure
US2829835A (en) Thermostats
JPH074239A (en) Temperature and pressure respounding safety valve assembly
JPS60256692A (en) Series composite heat responding valve
US20170175613A1 (en) Thermostat stability enhancement via wavy valve plate
JPH048292Y2 (en)
US5549244A (en) Thermally controlled valve for internal combustion engines
EP0552948A1 (en) A protecting member for a gasket
GB2086536A (en) Thermostat assembly
US2816711A (en) Temperature control of coolant circulation
US4653688A (en) Thermostat with bypass valve
JPS6120697B2 (en)
US3189276A (en) Thermostatic valve for liquid cooled engine
JPS6040825Y2 (en) Installation structure of thermostat for internal combustion engine
JP4258980B2 (en) Engine seal structure
WO2022163068A1 (en) Thermostat device
JP2559230Y2 (en) Engine cooling device
JPS6224743Y2 (en)
JPS6330482B2 (en)
KR100410679B1 (en) T/stat frame structure
US2458547A (en) Valve for oil temperature control units

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees