JPH03237417A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPH03237417A
JPH03237417A JP2033543A JP3354390A JPH03237417A JP H03237417 A JPH03237417 A JP H03237417A JP 2033543 A JP2033543 A JP 2033543A JP 3354390 A JP3354390 A JP 3354390A JP H03237417 A JPH03237417 A JP H03237417A
Authority
JP
Japan
Prior art keywords
optical axis
axis direction
motor
signal
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033543A
Other languages
Japanese (ja)
Inventor
Shuichiro Saito
斉藤 修一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2033543A priority Critical patent/JPH03237417A/en
Publication of JPH03237417A publication Critical patent/JPH03237417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To obtain accurate focusing control by changing an optical axis direction interval from an image pickup mean stepwise and comparing the outputs of a signal forming means at respective interval points to control the image pickup means in a focusing state. CONSTITUTION:The optical axis direction interval from the image pickup means 42 is changed stepwise and the outputs of the signal forming means respective optical axis direction intervals are compared with each other to control the means 42 in the focusing state. After zooming based upon a motor 28, a system control circuit 60 moves the element 42 in one direction of the optical axis direction stepwise by means of a motor driving circuit 49 and a motor 48. Namely, the movable range of the element 42 is divided into plural areas based upon the allowable blur circle of an image pickup face and focal depth calculated from a stop value at the time of photographing and the element 42 is moved to the representative points of respective areas in steps. The outputs of a detector at respective representative points are stored in an internal memory and the element 42 is moved to the representative point having the maximum output of the detector 58.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動合焦装置に関し、より具体的には電子撮像
素子を具備する撮像装置における自動合焦装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an automatic focusing device, and more particularly to an automatic focusing device in an imaging device equipped with an electronic imaging device.

[従来の技術] 第3図は、電子撮像素子を具備する撮像装置における自
動合焦装置の従来例の構成ブロック図を示す。10は凹
のフォーカシング・レンズ(群)、12はズーミング時
の変倍のための凸の変倍レンズ(群)である。なお、フ
ォーカシング・レンズ10は、ズーミング時に、その焦
点移動を補正すべく位W調整されるようになっている。
[Prior Art] FIG. 3 shows a configuration block diagram of a conventional example of an automatic focusing device in an imaging device equipped with an electronic imaging device. 10 is a concave focusing lens (group), and 12 is a convex variable power lens (group) for changing power during zooming. Note that the focusing lens 10 is adapted to be adjusted in position W during zooming in order to correct the movement of the focal point.

14は内面にフォーカシング・レンズ10が固定された
保持枠であり、外周面の一端部にオスへリコイド14a
が形成され、他端部にギヤ14bが形成されている。1
6は内周にメスへリコイド16aが形成され、オスへリ
コイド14aとの噛合により保持枠14とヘリコイド結
合されている円筒状の移動筒である。18は内面に変倍
レンズ12が固定された保持枠である。
Reference numeral 14 denotes a holding frame to which the focusing lens 10 is fixed on the inner surface, and a male helicoid 14a is attached to one end of the outer peripheral surface.
is formed, and a gear 14b is formed at the other end. 1
Reference numeral 6 denotes a cylindrical moving cylinder having a female helicoid 16a formed on its inner periphery and helicoidally coupled to the holding frame 14 by meshing with the male helicoid 14a. Reference numeral 18 denotes a holding frame to which the variable magnification lens 12 is fixed on the inner surface.

20は図示しないカメラ本体に固定された円筒状の固定
筒、22は固定筒20の外周面に内接する内周面を持つ
円筒状のズーム環である。なお、ズーム環22は、光軸
方向に移動することなく固定筒20の外周に沿って光軸
を中心に回動自在に取り付けられている。ズーム環22
の外周面の一端には、ギヤ22 aか形成されている。
20 is a cylindrical fixed barrel fixed to a camera body (not shown), and 22 is a cylindrical zoom ring having an inner circumferential surface inscribed in the outer circumferential surface of the fixed barrel 20. Note that the zoom ring 22 is rotatably attached around the optical axis along the outer periphery of the fixed barrel 20 without moving in the optical axis direction. Zoom ring 22
A gear 22a is formed at one end of the outer peripheral surface of the gear 22a.

移動筒16及び保持枠18の外周面にはそれぞれビン2
4゜26を植立してあり、これらのビン24.26は固
定筒20の直線溝を貫通し、それぞれ、ズーム環22の
カム溝に嵌入している。即ち、ズーム環22か回転する
と、移動筒16及び保持枠18は、固定筒20の直線溝
により光軸方向に規制されなから、ズーム環22の対応
するカム溝による相応距離たけ光軸方向に移動する。こ
の構成自体は、ズーム機構として周知である。移動筒1
6、即ちフォーカシング・レンズ10を変倍レンズ12
に連動させるのは、ズーム時の焦点移動を補正するため
である。
Bins 2 are provided on the outer peripheral surfaces of the movable cylinder 16 and the holding frame 18, respectively.
These pins 24 and 26 pass through straight grooves of the fixed barrel 20 and are fitted into cam grooves of the zoom ring 22, respectively. That is, when the zoom ring 22 rotates, the movable barrel 16 and the holding frame 18 are not restricted in the optical axis direction by the linear grooves of the fixed barrel 20, but are moved a corresponding distance in the optical axis direction by the corresponding cam grooves of the zoom ring 22. Moving. This configuration itself is well known as a zoom mechanism. Moving cylinder 1
6, that is, the focusing lens 10 is replaced with the variable magnification lens 12
The reason for linking is to correct the focus movement during zooming.

28はズーム用のモータであり、そのシャフト28aに
ギヤ30か固定され、当=亥ギヤ30はズーム環22の
ギヤ22aと噛合している。32はフォーカシング用の
モータであり、そのシャフト32aにはギヤ34か固定
され、当該ギヤ34は保持枠14のギヤ14bと噛合し
ている。36はモータ32の回転位置(又は回転量)を
検出する位置センサ、38はモータ32を駆動するモー
タ駆動回路である。40は、例えば三角測量の原理や、
超音波の反射波の検出により、被写体までの距離を測定
する測距回路、42はレンズ群1012を含む撮影光学
系による光学像を電気信号に変換する撮像素子である。
A zoom motor 28 has a gear 30 fixed to its shaft 28a, and the gear 30 meshes with the gear 22a of the zoom ring 22. 32 is a focusing motor, and a gear 34 is fixed to its shaft 32a, and the gear 34 meshes with the gear 14b of the holding frame 14. 36 is a position sensor that detects the rotational position (or amount of rotation) of the motor 32, and 38 is a motor drive circuit that drives the motor 32. 40, for example, the principle of triangulation,
A distance measuring circuit measures the distance to the object by detecting reflected waves of ultrasonic waves, and 42 is an image sensor that converts an optical image produced by a photographing optical system including a lens group 1012 into an electrical signal.

44は、測距回路40からの距離信号及び位置センサ3
6の出力に従いモータ32を制御する他、全体を制御す
るシステム制御回路である。システム制御回路44は具
体的には、ギヤ34と保持枠14のギヤ14bのギヤ比
、及びヘリコイド14a、16aのピッチを勘案して、
測距回路40からの距離信号から、所望の被写体で鴬点
か合うようなモータ32の回転方向及び回転量を演算し
、モータ駆動回路38によりモータ32をその回転方向
及び回転量だけ回転させる。
44 is a distance signal from the distance measuring circuit 40 and the position sensor 3
This is a system control circuit that not only controls the motor 32 according to the output of the motor 6, but also controls the entire system. Specifically, the system control circuit 44 takes into consideration the gear ratio of the gear 34 and the gear 14b of the holding frame 14, and the pitch of the helicoids 14a and 16a.
From the distance signal from the distance measuring circuit 40, the rotational direction and amount of rotation of the motor 32 are calculated so that the dot is aligned with the desired subject, and the motor drive circuit 38 rotates the motor 32 by the rotational direction and amount of rotation.

第3図の動作を簡単に説明する。ズーム・モータ28に
通電することにより、ギヤ30.22aを介してズーム
環22が光軸を中心に回転する。
The operation shown in FIG. 3 will be briefly explained. By energizing zoom motor 28, zoom ring 22 rotates about the optical axis via gear 30.22a.

ズーム環22の回転により、ビン24.26は、固定筒
20の直線溝により光軸方向に移動を規制されつつ、そ
れぞれズーム環22のカム溝に沿って移動する。これに
より、移動筒16及び保持枠18か光軸方向に移動する
。保持枠18の移動により変倍レンズ12が光軸方向に
移動して変倍か行なわれる。移動筒16の移動に連れて
保持枠14及びフォーカシング・レンズ10も光軸方向
に移動するが、これは、変倍に伴う焦点移動を補正する
ためである。
As the zoom ring 22 rotates, the bins 24 and 26 move along the cam grooves of the zoom ring 22, while being restricted from moving in the optical axis direction by the linear grooves of the fixed barrel 20. As a result, the movable tube 16 and the holding frame 18 are moved in the optical axis direction. The movement of the holding frame 18 causes the variable power lens 12 to move in the optical axis direction, thereby performing variable power. As the movable barrel 16 moves, the holding frame 14 and the focusing lens 10 also move in the optical axis direction, and this is to correct the focus movement that accompanies zooming.

自動合焦の動作は次の通りである。システム制御回路4
4は、ギヤ34と保持枠14のギヤ14bのギヤ比、及
びヘリコイド14a、16aのピンチに関する記憶デー
タ、並びに測距回路40の出力から、モータ32の回転
方向及び回転数を決定し、決定した回転方向及び回転量
たけモータ駆動回路38によりモータ32を回転させる
。モタ32の回転量は、位置センサ36の出力から知る
ことができる。フォーカシング・レンズ10か目標位置
に到達するまでに、システム制御回路44はモータ駆動
回路38に加速、減速及びブレーキの制御信号を供給す
る。モータ32か回転すると、ギヤ32a、14bによ
り保持枠14か光軸を中心に回転し、ヘリコイド14a
、16aによりフォーカシング・レンズ10が光軸方向
に移動する。このようにして、フォーカシング・レンズ
10は合焦位置に駆動される。
The automatic focusing operation is as follows. System control circuit 4
4 determines the rotation direction and rotation speed of the motor 32 from the gear ratio of the gear 34 and the gear 14b of the holding frame 14, the stored data regarding the pinch of the helicoids 14a and 16a, and the output of the ranging circuit 40. The motor 32 is rotated by the motor drive circuit 38 in the direction and amount of rotation. The amount of rotation of the motor 32 can be known from the output of the position sensor 36. Until the focusing lens 10 reaches the target position, the system control circuit 44 supplies acceleration, deceleration, and braking control signals to the motor drive circuit 38. When the motor 32 rotates, the holding frame 14 rotates around the optical axis by the gears 32a and 14b, and the helicoid 14a
, 16a, the focusing lens 10 is moved in the optical axis direction. In this way, the focusing lens 10 is driven to the in-focus position.

[発明が解決しようとする課題〕 撮像素子42としては例えば電荷結合素子(COD)を
使用したタイプのものが使用されるが、近年、そのサイ
ズが273インチから、1/2インチ、更には1/3イ
ンチと小型化している。このように小型になると、撮像
面での錯乱円の許容径も小さくなり、従って、ズーミン
グ時及び金魚時の光軸方向位置決め精度も、高い精度が
要求される。
[Problems to be Solved by the Invention] As the image sensor 42, for example, a type using a charge-coupled device (COD) is used, but in recent years, the size has increased from 273 inches to 1/2 inch and even 1 inch. /3 inches. As the size becomes smaller, the permissible diameter of the circle of confusion on the imaging surface also becomes smaller, and therefore, high precision is required for positioning in the optical axis direction during zooming and goldfishing.

また、撮影レンズち小型化し、これにより、各レンズ群
のフォーカス敏感度(即ち、各レンズ群の光軸方向に変
位に対する結像面のピント移動量の比)か大きくなり、
レンズ位置決めにも高い精度か要求される。
In addition, taking lenses have become smaller, which has increased the focus sensitivity of each lens group (i.e., the ratio of the amount of focus movement of the imaging plane to the displacement of each lens group in the optical axis direction).
High precision is also required for lens positioning.

自動合焦装置の従来の構成では、駆動系の・・ノクラノ
ンユ、位置センサ36の分解能不足、レンズ保持枠のガ
タッキ、駆動時のレンズ保持枠の歪み、更には、温度・
湿度変化によるレンズ保持枠の伸縮、レンズそのものの
屈折力の変化なとにより、合焦制御に関し充分に高い精
度を得ることが困難であった。
In the conventional configuration of an automatic focusing device, there are many problems such as failure of the drive system, insufficient resolution of the position sensor 36, wobbling of the lens holding frame, distortion of the lens holding frame during driving, and temperature and temperature fluctuations.
It has been difficult to obtain sufficiently high precision in focusing control due to expansion and contraction of the lens holding frame due to changes in humidity and changes in the refractive power of the lens itself.

そこで本発明は、高精度の自動合焦装置を提示すること
を目的とする。
Therefore, an object of the present invention is to provide a highly accurate automatic focusing device.

[課題を解決するための手段] 本発明に係る自動合焦装置は、被写体像を電気信号に変
換する撮像手段と、当該撮像手段による電気信号から、
合焦判定用の信号を形成する信号形成手段と、餘着撮影
光学系と当該撮像手段との光軸方向間隔を調整する調整
手段と、当該調整手段により当該撮影光学系と当該撮像
手段との光軸方向間隔をステップ的に変更させ、各光軸
方向間隔における当該信号形成手段の出力を比較するこ
とにより合焦状態に制御する制御手段とからなることを
特徴とする。本発明はまた、被写体像を電気信号に変換
する撮像手段と、当該撮像手段による電気信号から、合
焦判定用の信号を形成する信号形成手段と、当該撮像手
段を光軸方向に移動させる駆動手段と、当該駆動手段に
より!撮影光学系と当該撮像手段との光軸方向間隔をス
テップ的に変更させ、各光軸方向間隔における当該信号
形成手段の出力を比較することにより合焦状態に制御す
る制御手段とからなることを特徴とする。
[Means for Solving the Problems] An automatic focusing device according to the present invention includes an imaging device that converts a subject image into an electrical signal, and an electrical signal from the imaging device.
a signal forming means for forming a signal for focus determination; an adjusting means for adjusting the distance in the optical axis direction between the photographing optical system and the imaging means; It is characterized by comprising a control means that changes the interval in the optical axis direction in steps and controls the in-focus state by comparing the output of the signal forming means at each interval in the optical axis direction. The present invention also provides an imaging means for converting a subject image into an electrical signal, a signal forming means for forming a signal for focus determination from the electrical signal by the imaging means, and a drive for moving the imaging means in the optical axis direction. By means and said driving means! A control means for changing the interval in the optical axis direction between the photographing optical system and the imaging means in steps, and controlling the in-focus state by comparing the output of the signal forming means at each interval in the optical axis direction. Features.

[作用コ 上記手段により、映像信号処理により合焦点を判定する
ので、撮影光学系の種々の誤差要因に影響されずに、精
確に合焦状態に制御できる。また、合焦時、撮影光学系
のレンズを移動させないので、振動なとによる撮影レン
ズ各群の光軸方向の微動が発生せす、これもまた、精確
な合焦制御につなかる。
[Operation] Since the above means determines the in-focus point by video signal processing, it is possible to precisely control the in-focus state without being influenced by various error factors of the photographing optical system. Furthermore, since the lens of the photographing optical system is not moved during focusing, slight movement in the optical axis direction of each photographing lens group due to vibration occurs, which also leads to accurate focusing control.

[実施例3 以下、図面を参照して本発明の詳細な説明する。[Example 3 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の概略構成ブロック図をホす
。本実施例では、撮影光学系を構成するレンズを光軸方
向に移動させることにより合焦制御する構成をとらずに
、撮像素子42目体を光軸方向に移動させる構成を採用
する。従って、フォーカシング・レンズを駆動する駆動
系を設けておらす、第3図のフォーカシング・レンズ1
0に対応する第ルンズ(群)62は、移動筒16に対応
する保持枠64に固定されており、ズーム環22のカム
溝に嵌入するビン24が、保持枠64の外周面に植立さ
れている。撮影光学系のその他の要素は、第3図と同じ
であり、同じ符号を付しである。
FIG. 1 shows a schematic block diagram of an embodiment of the present invention. In this embodiment, instead of using a configuration in which focusing is controlled by moving the lens constituting the photographing optical system in the optical axis direction, a configuration in which the image sensor 42 and the eye body are moved in the optical axis direction is adopted. Therefore, the focusing lens 1 shown in FIG. 3 is provided with a drive system for driving the focusing lens.
The first lens (group) 62 corresponding to No. 0 is fixed to a holding frame 64 corresponding to the movable barrel 16, and the bottle 24, which fits into the cam groove of the zoom ring 22, is planted on the outer peripheral surface of the holding frame 64. ing. The other elements of the photographic optical system are the same as in FIG. 3 and are given the same reference numerals.

46は撮像素子42を保持する保持部材であり、光軸方
向に延びるナツト部を内部に形成してあり、そこに送り
ネジ47が螺入している。送りネジ47はステッピング
・モータ48のシャフトに同軸に固定されている。49
はモータ48の駆動回路、50は、保持部材46、即ち
撮像素子42の光軸方向位置を検知する位置センサであ
る。
Reference numeral 46 denotes a holding member that holds the image sensor 42, and has a nut portion extending in the optical axis direction formed therein, into which a feed screw 47 is screwed. A feed screw 47 is coaxially fixed to the shaft of a stepping motor 48. 49
50 is a drive circuit for the motor 48, and 50 is a position sensor that detects the position of the holding member 46, that is, the image sensor 42 in the optical axis direction.

52は撮像素子42の出力信号を映像信号に変換するカ
メラ回路、54はカメラ回路52から出力される映像信
号から、測距に用いる信号、即ち測距エリア内の映像信
号を取り出すゲート回路、56はゲート回路54の出力
から高周波成分を取り出すバイパス・フィルタ(HPF
) 、58はHPF56の出力を検波する検波器である
。検波器58の出力は被写体映像の精細度を表わしてい
る。
52 is a camera circuit that converts the output signal of the image sensor 42 into a video signal; 54 is a gate circuit that extracts a signal used for distance measurement, that is, a video signal within the distance measurement area from the video signal output from the camera circuit 52; 56; is a bypass filter (HPF) that extracts high frequency components from the output of the gate circuit 54.
), 58 is a detector for detecting the output of the HPF 56. The output of the detector 58 represents the definition of the subject image.

60は全体を制御するシステム制御回路である。60 is a system control circuit that controls the entire system.

第1図の動作を説明する。モータ28によるズーミング
後、システム制御回路60は、モータ駆動回路49及び
モータ48により撮像素子42を光軸方向の一方向にス
テップ駆動する。即ち、撮像面の許容錯乱円と撮影時の
絞り値から計算される焦点深度を基に、撮像素子42の
可動範囲を複数の領域に分割し、撮像素子42を各領域
の代表点にステップ移動させる。
The operation shown in FIG. 1 will be explained. After zooming by the motor 28, the system control circuit 60 causes the motor drive circuit 49 and the motor 48 to step drive the image sensor 42 in one direction along the optical axis. That is, the movable range of the image sensor 42 is divided into a plurality of regions based on the depth of focus calculated from the permissible circle of confusion of the imaging surface and the aperture value at the time of photographing, and the image sensor 42 is moved stepwise to the representative point of each region. let

第2図は、撮像素子42の光軸方向位置に対する検波器
58の出力、及び可動範囲の領域分割の様子を示す図で
ある。縦軸は検波器58の出力電圧、横軸は撮像素子4
2の光軸方向位置を示す。
FIG. 2 is a diagram showing the output of the detector 58 with respect to the position of the image sensor 42 in the optical axis direction and how the movable range is divided into regions. The vertical axis is the output voltage of the detector 58, and the horizontal axis is the image sensor 4.
2 shows the position in the optical axis direction.

Aは無限遠位置、Bは至4位置である。鏡筒の温度変化
、レンズの屈折率変化なとにも対応できるように、撮像
素子42の可動範囲は、Aより少し無限遠側から、Bよ
り少し至d側までに設定されている。DI−C4は可動
範囲を分割した場合の各領域Cl−C4の代表点である
。各領域Cl−C4及びその代表点DI−D4は、撮像
素子42がその代表点DI〜D4に位置するとき、被写
界深度に入る距離に対応する領域に各領域C1〜C4か
包含されるように設定されている。曲線66は撮像素子
42を連続的に移動させた場合の、検波器58の出力を
示す。
A is the infinite position and B is the 4th position. In order to cope with changes in the temperature of the lens barrel and changes in the refractive index of the lens, the movable range of the image sensor 42 is set from a little towards infinity than A to a little closer to d than B. DI-C4 is a representative point of each region Cl-C4 when the movable range is divided. Each region Cl-C4 and its representative point DI-D4 is included in the region corresponding to the distance within the depth of field when the image sensor 42 is located at the representative point DI-D4. It is set as follows. A curve 66 shows the output of the detector 58 when the image sensor 42 is continuously moved.

初期状態では、撮像素子42はDIに位置し、システム
制御回路60は、そのときの検波器58の出力を内部メ
モリに記憶する。システム制御回路60はモータ48に
より撮像素子42を次の代表点D2に移動させ、そのと
きの検波器58の出力を内部メモリの別の番地に記憶す
る。このようにして、順次、各代表点DI−D4におけ
る検波器58の出力を内部メモリに記憶し、検波器58
の出力か最大になる代表点(第2図の例では、C2)に
撮像素子42を移動させる。これで金環動作を終了し、
撮影を行なえる状態になる。勿論、撮像素子42を各代
表点にステップ移動させなから、検波器58の出力を比
較し、検波器58の出力が城少に転した時点で、検波器
58の出力がピークになる代表点に撮像素子42を移動
及び停止させるようにしてもよい。
In the initial state, the image sensor 42 is located at DI, and the system control circuit 60 stores the output of the detector 58 at that time in the internal memory. The system control circuit 60 moves the image sensor 42 to the next representative point D2 by the motor 48, and stores the output of the detector 58 at that time in another address in the internal memory. In this way, the output of the detector 58 at each representative point DI-D4 is sequentially stored in the internal memory, and the output of the detector 58 at each representative point DI-D4 is stored in the internal memory.
The image sensor 42 is moved to the representative point (in the example of FIG. 2, C2) where the output of . This completes the ring movement,
You are now ready to take pictures. Of course, the image sensor 42 is not moved step by step to each representative point, but the output of the detector 58 is compared, and when the output of the detector 58 becomes small, the representative point where the output of the detector 58 reaches its peak is determined. The image sensor 42 may be moved and stopped at the same time.

[発明の効果] 以上の説明から容易に理解できるように、本発明によれ
ば、撮影光学系を通過した被写体の映像信号にまり合焦
制御を行なうので、撮影光学系の誤差を考慮した精確な
合焦ホIf!I+を行なえる。また、撮影光学系ではな
く、撮像手段を移動させることにまり合焦動作を行なう
ので、レンズ移動に伴うレンズ群の振動等か発生せず、
精確な合焦制御が可能になり、また、撮影光学系を安価
に製造できるようになる。
[Effects of the Invention] As can be easily understood from the above explanation, according to the present invention, since focusing control is performed based on the image signal of the object that has passed through the photographing optical system, accurate focusing can be performed taking into account errors in the photographing optical system. If the focus is on! Can perform I+. In addition, since the focusing operation is performed by moving the imaging means rather than the photographing optical system, there is no vibration of the lens group due to lens movement.
Accurate focusing control becomes possible, and the photographing optical system can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成ブロック図、第2図は
検波器58の出力電圧特性図、第3図は従来例のllI
戎ブロック図である。 10:フす−カシング・レンズ(群) 12:変倍レン
ズ(群)  14.18.64:保持枠 14a、16
a:ヘリコイド 14b、22a  30.34:ギヤ
 16・移動筒 20:固定筒22:スーム環 24,
26:ピン 28:ズーム・モータ 28a、32a:
シャフト 32フオーカシング・モータ 36:位置セ
ンサ 38:モータ駆動回路 40:測距回路 42:
撮像素子 44,60:システム制御回路 52力メラ
回路 54:ケート回路 56・バイパス・フィルタ 
58:検波器
FIG. 1 is a block diagram of the configuration of an embodiment of the present invention, FIG. 2 is an output voltage characteristic diagram of the detector 58, and FIG. 3 is a diagram of the conventional example.
It is a block diagram. 10: Frame-cushing lens (group) 12: Variable magnification lens (group) 14.18.64: Holding frame 14a, 16
a: Helicoid 14b, 22a 30.34: Gear 16/Movable cylinder 20: Fixed cylinder 22: Sum ring 24,
26: Pin 28: Zoom motor 28a, 32a:
Shaft 32 Focusing motor 36: Position sensor 38: Motor drive circuit 40: Distance measurement circuit 42:
Image sensor 44, 60: System control circuit 52 Power camera circuit 54: Kate circuit 56 bypass filter
58: Detector

Claims (2)

【特許請求の範囲】[Claims] (1)被写体像を電気信号に変換する撮像手段と、当該
撮像手段による電気信号から、合焦判定用の信号を形成
する信号形成手段と、撮影光学系と当該撮像手段との光
軸方向間隔を調整する調整手段と、当該調整手段により
当該撮影光学系と当該撮像手段との光軸方向間隔をステ
ップ的に変更させ、各光軸方向間隔における当該信号形
成手段の出力を比較することにより合焦状態に制御する
制御手段とからなることを特徴とする自動合焦装置。
(1) Distance in the optical axis direction between an imaging device that converts a subject image into an electrical signal, a signal forming device that forms a signal for focus determination from the electrical signal from the imaging device, and a photographic optical system and the imaging device The adjustment means adjusts the distance between the photographing optical system and the imaging means in a stepwise manner, and the output of the signal forming means at each interval in the optical axis direction is compared. 1. An automatic focusing device comprising: control means for controlling to a focused state.
(2)被写体像を電気信号に変換する撮像手段と、当該
撮像手段による電気信号から、合焦判定用の信号を形成
する信号形成手段と、当該撮像手段を光軸方向に移動さ
せる駆動手段と、当該駆動手段により撮影光学系と当該
撮像手段との光軸方向間隔をステップ的に変更させ、各
光軸方向間隔における当該信号形成手段の出力を比較す
ることにより合焦状態に制御する制御手段とからなるこ
とを特徴とする自動合焦装置。
(2) an imaging means for converting a subject image into an electrical signal; a signal forming means for forming a signal for determining focus from the electrical signal from the imaging means; and a driving means for moving the imaging means in the optical axis direction. , a control means for controlling the focusing state by causing the driving means to change the interval in the optical axis direction between the photographing optical system and the imaging means in a stepwise manner, and comparing the output of the signal forming means at each interval in the optical axis direction; An automatic focusing device comprising:
JP2033543A 1990-02-14 1990-02-14 Automatic focusing device Pending JPH03237417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033543A JPH03237417A (en) 1990-02-14 1990-02-14 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033543A JPH03237417A (en) 1990-02-14 1990-02-14 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPH03237417A true JPH03237417A (en) 1991-10-23

Family

ID=12389486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033543A Pending JPH03237417A (en) 1990-02-14 1990-02-14 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPH03237417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030002284A (en) * 2001-06-28 2003-01-08 김영희 Image sensor moving type focusing system for camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030002284A (en) * 2001-06-28 2003-01-08 김영희 Image sensor moving type focusing system for camera

Similar Documents

Publication Publication Date Title
JP3576683B2 (en) Zoom lens
JPH04242208A (en) Optical instrument provided with lens position controller
JP2773310B2 (en) Zoom lens with focus adjustment means
JPH03237417A (en) Automatic focusing device
JP2601839B2 (en) Automatic focus adjustment device for zoom lens
JPS62180338A (en) Focus adjusting device
JPH0789174B2 (en) Automatic focus adjustment device
JP2795439B2 (en) Optical equipment
JPH01232313A (en) Automatic focusing device for camera
JPH04190208A (en) Automatic focusing device
JPH03237416A (en) Automatic focusing device
JPH03237415A (en) Automatic focusing device
JP3038595B2 (en) Focus lens control device
JP2015175863A (en) Position control method and optical apparatus
JPH0119121B2 (en)
JPH04190207A (en) Automatic focusing device
JPH01319717A (en) Lens position controller for optical apparatus
JPH03237414A (en) Automatic focusing device
JP2585804Y2 (en) Shooting lens device
JPH01265214A (en) Automatic focusing device
JPH03231212A (en) Back focus adjusting device
JP2843358B2 (en) Lens drive
JPH05113533A (en) Lens position controller for zoom lens
JP2757413B2 (en) camera
JPH04190206A (en) Automatic focusing apparatus