JPH032369A - Aluminum target for sputtering - Google Patents

Aluminum target for sputtering

Info

Publication number
JPH032369A
JPH032369A JP13401689A JP13401689A JPH032369A JP H032369 A JPH032369 A JP H032369A JP 13401689 A JP13401689 A JP 13401689A JP 13401689 A JP13401689 A JP 13401689A JP H032369 A JPH032369 A JP H032369A
Authority
JP
Japan
Prior art keywords
target
sputtering
crystal orientation
aluminum
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13401689A
Other languages
Japanese (ja)
Other versions
JP2712561B2 (en
Inventor
Akihiko Takahashi
明彦 高橋
Hitoshi Yasuda
均 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP13401689A priority Critical patent/JP2712561B2/en
Publication of JPH032369A publication Critical patent/JPH032369A/en
Application granted granted Critical
Publication of JP2712561B2 publication Critical patent/JP2712561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain an Al target for sputtering capable of reducing inferior quality of IC chips, etc., on a wafer due to deficiency in film thickness by constituting the target so that crystal orientation (100) increases with the approach to the inner part from the target surface. CONSTITUTION:A small board-type sputtering target composed of high-purity Al of >=99.955% purity or high-purity Al in which metallic elements, such as Si, Cu, and Ti, are incorporated by <=10wt.% is constituted so that a crystal orientation intensity ratio [the ratio of (100) to (110)] by X-ray is high at the surface and is decreased with the approach to the inner part. This target can be produced by laying Al (alloy) sheets dissimilar to each other in crystal orientation on top of the other and applying rolling or forging to the above. Besides the above effect, uniform film thickness can be obtained even in the case of large-sized wafer by using this target.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、IC’PLSI等の配線材として用いられる
マグネトロンスパッタリング用アルミニウムターゲット
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aluminum target for magnetron sputtering used as a wiring material for IC'PLSI and the like.

〔従来の技術〕[Conventional technology]

電子産業の発展に伴い、ICやLSI等の需要が著しく
増加している。これらの素子の内部に用いられる配線は
、高純度アルミニウムまたはその合金をターゲットとし
てスパッタリングにより薄膜化して用いられるのが主で
ある。
With the development of the electronics industry, demand for ICs, LSIs, etc. is increasing significantly. The wiring used inside these elements is mainly made into a thin film by sputtering using high-purity aluminum or an alloy thereof as a target.

溶融金属の蒸発による蒸着法とは異なり、スパッタ法で
はターゲットの表面および内部の結晶構造がターゲット
からの原子の放出特性に大きな影響を与えることが知ら
れている。
Unlike vapor deposition methods that involve evaporation of molten metal, it is known that in sputtering methods, the surface and internal crystal structure of the target greatly influences the characteristics of emitting atoms from the target.

たとえば、銀、銅の単結晶を用いたウエナー(Webn
et)の実験(フィジカルレビュー (Phys、Re
v)102.699(1956) )によれば、結晶構
造の最密方向である<110)方向にターゲットからの
原子の放出密度が高く、ウェハー上にスポット状の分布
が得られることが記載されている。
For example, Weber, which uses single crystals of silver and copper,
et) experiments (Physical Review (Phys, Re)
v) 102.699 (1956)), it is stated that the density of atoms emitted from the target is high in the <110) direction, which is the closest packed direction of the crystal structure, and a spot-like distribution is obtained on the wafer. ing.

したがって、高純度アルミニウムまたはその合金のター
ゲットは、結晶方位の影響を避け、ウェハー上に均一な
薄膜を得るためになるべ(微細な結晶でしかも結晶方位
がランダムになるように製造されてきた。(軽金属学会
第25回シンポジウム予稿集33(1984)) 〔発明が解決しようとする課題〕 しかしながら、均一な薄膜が得られるように結晶が調節
されたこのようなターゲットを用いても、スパッタリン
グによりターゲットが消耗するにつれて、マグネットの
回転に沿ってリング状の溝が表面に形成されると共に原
子の放出方向が変化し、膜厚分布が悪くなるのは避は難
い状況にある。
Therefore, targets of high-purity aluminum or its alloys have been manufactured with fine crystals and random crystal orientation in order to avoid the influence of crystal orientation and obtain a uniform thin film on the wafer. (Proceedings of the 25th Symposium of the Japan Society of Light Metals 33 (1984)) [Problems to be solved by the invention] However, even if such a target whose crystal is adjusted so as to obtain a uniform thin film is used, the target cannot be easily removed by sputtering. As the magnet wears out, ring-shaped grooves are formed on the surface along the rotation of the magnet, and the direction of emission of atoms changes, making it unavoidable that the film thickness distribution deteriorates.

このため、ウェハーの直径に対して著しく大きい直径の
ターゲットを用いたり、ウェハーとターゲットとの間の
距離を生産性を落としても広くするなどの工夫や、膜質
をおとしてスパッターガス圧を高くしたり、マグネット
を2重にするなどの工夫をこらしても充分な解決には至
っておらず、また、生産性向上のためにウェハーの直径
を大きくする傾向に対し、膜厚分布を均一にすることは
困難な問題の一つともなっている。
For this reason, measures such as using a target with a significantly larger diameter than the wafer diameter, increasing the distance between the wafer and the target even if it reduces productivity, and increasing the sputtering gas pressure to reduce the film quality are necessary. Even with efforts such as double layering of magnets, etc., no satisfactory solution has been achieved.Also, in contrast to the trend of increasing wafer diameter to improve productivity, it is necessary to make the film thickness distribution uniform. has become one of the most difficult problems.

〔課題を解決するための手段〕[Means to solve the problem]

かかる事情に鑑み、本発明者等は高純度アルミニウムお
よびその合金の結晶方位のスパッタリングによる原子放
出への影響について鋭意検討を重ねた結果、ターゲット
表面に平行な面における[100)面と(1101面の
X線回折法による強度比がターゲット表面から内部に入
るにつれて小さくなるようにターゲットの結晶方位を調
整することにより、ターゲットの消耗にもかかわらずウ
ェハー上の膜厚の均一性が得られることを見出し、本発
明を完成させるに至った。
In view of these circumstances, the present inventors have conducted intensive studies on the influence of the crystal orientation of high-purity aluminum and its alloys on atomic emission during sputtering, and have found that the [100] plane and the (1101 plane By adjusting the crystal orientation of the target so that the intensity ratio determined by the X-ray diffraction method decreases from the target surface to the inside, uniformity of the film thickness on the wafer can be obtained despite target wear. This discovery led to the completion of the present invention.

すなわち、本発明は高純度アルミニウムまたはその合金
からなる平板状のスパッタリング用ターゲットにおいて
、ターゲット表面に平行な面のX線による結晶方位強度
比〔{1001/ (1101の比〕がターゲット表面
から内部に入るにつれて小さくなっていくことを特徴と
するスパッタリング用アルミニウムターゲット、および
結晶方位の異なる板を重ね合せ、圧延または鍛造により
ターゲット用アルミニウムクラッド板を製造することを
特徴とする製造方法であり、均一な膜厚が得られるスパ
ッタリング用アルミニウムターゲットを提供するもので
ある。
That is, the present invention provides a planar sputtering target made of high-purity aluminum or its alloy, in which the crystal orientation intensity ratio [{1001/(ratio of 1101)] due to X-rays on a plane parallel to the target surface is increased from the target surface to the inside. This is a manufacturing method characterized by manufacturing an aluminum target for sputtering, which is characterized by becoming smaller as it goes in, and an aluminum clad plate for the target by stacking plates with different crystal orientations and rolling or forging. The present invention provides an aluminum target for sputtering that allows a thick film to be obtained.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

ターゲット素材として用いる高純度アルミニウムとはJ
IS H2111に定める99.955%以上のもので
、その合金とはスパッタリング用ターゲットに通常添加
されるS i、 Cu、 T i、 Cr、 W、 M
o、 Mg等の金属元素を高純度アルミニウムに一種ま
たは二種以上を10重量%以下含有するものである。
What is high-purity aluminum used as target material?J
99.955% or more as specified in IS H2111, and the alloy includes Si, Cu, Ti, Cr, W, and M, which are usually added to sputtering targets.
10% by weight or less of one or more metal elements such as Mg and Mg in high purity aluminum.

本発明において、ターゲット表面のX線による結晶方位
強度比〔{1001/ [1101の比]が大きく裏面
の結晶強度比が小さいターゲットは、それぞれの結晶方
位を多く持つ平板を圧延法や鍛造法により複数枚を圧着
(クラッド)させることにより容易に得ることができる
In the present invention, a target having a large X-ray crystal orientation intensity ratio [{1001/[1101 ratio]] on the target surface and a small crystal intensity ratio on the back surface is obtained by rolling or forging a flat plate having many of each crystal orientation. It can be easily obtained by crimping (cladding) a plurality of sheets.

また、[1001の結晶方位を有する板は再結晶優先方
位を利用すればよいし、結晶方位[1101のものは熱
間圧延や冷間圧延の集合組織を利用すれば得ることがで
きる。単結晶を用いればさらに簡単であり、または、タ
ーゲットの表面と裏面の加工量を変えることでも可能で
あるし、熱処理と組合せることによりさらに容易に得る
ことができる。
Further, a plate having a crystal orientation of [1001 can be obtained by using the preferred recrystallization orientation, and a plate having a crystal orientation of [1101] can be obtained by using the texture of hot rolling or cold rolling. It is simpler if a single crystal is used, or it is possible to change the amount of processing on the front and back surfaces of the target, or it can be obtained even more easily by combining it with heat treatment.

通常の平板状ターゲットを用いるマグネトロンスパッタ
ー装置では、磁力によりターゲットの最も消耗する部分
の周辺の直上あたりにシリコンウェハーの外周部がくる
ように設計するのが普通である。
A magnetron sputtering apparatus using a normal flat target is usually designed so that the outer periphery of the silicon wafer is located directly above the area of the target that is most consumed by magnetic force.

前述のウエナーの実験でも明らかにされている如く、ス
パッターリングによる原子の放出方向は<110>方向
が最も分布密度が高い。したがって、ターゲットの表面
部分に結晶方位+1101が多くなるとウェハーとター
ゲットの位置関係からウェハー外周部の膜厚が厚くなり
すぎるので、結晶方位強度比〔{1001/ +110
1の比〕は大きいほうが放出原子が分散し膜厚は均一と
なる。しかしながら、磁石部分のターゲットが消耗する
につれてターゲットにリング状の溝が形成されると、結
晶方位による原子の放出分布だけではなく形状による分
散がおこなわれるようになり、ウェハー外周部の膜厚が
だんだん薄くなりウェハー上での膜厚分布が不均一とな
る。
As clarified by the above-mentioned Wenner experiment, the <110> direction has the highest distribution density in the direction of emission of atoms by sputtering. Therefore, if there are many +1101 crystal orientations on the surface of the target, the film thickness at the outer periphery of the wafer will become too thick due to the positional relationship between the wafer and the target, so the crystal orientation intensity ratio [{1001/+110
The larger the ratio of 1 is, the more the emitted atoms are dispersed and the film thickness becomes uniform. However, as a ring-shaped groove is formed in the target as the target in the magnet part wears out, the emission distribution of atoms will not only be based on the crystal orientation, but will also be dispersed based on the shape, and the film thickness at the outer periphery of the wafer will gradually decrease. The film becomes thinner and the film thickness distribution on the wafer becomes non-uniform.

しかるに、本発明によるターゲットでは、消耗につれて
直上への原子放出特性の良好な結晶方位[1101面が
多く現れることになり、ウェハー外周部での膜厚の減少
が防止され、膜厚分布が改善されて常に均一で良好なも
のとなる。
However, in the target according to the present invention, as the target is worn out, many crystal orientations [1101 planes] with good atomic emission characteristics directly above appear, which prevents the film thickness from decreasing at the outer periphery of the wafer and improves the film thickness distribution. The results are always uniform and good.

また、このような効果をより発現させるためには、結晶
方位強度比〔{1001/ no+の比〕が1.0以上
の部分がターゲット全肉厚の175〜3/4の範囲が好
ましく、より好ましくは全肉厚の174〜1/2の範囲
である。
In addition, in order to further express such an effect, it is preferable that the portion where the crystal orientation intensity ratio [{1001/no+ ratio] is 1.0 or more is in the range of 175 to 3/4 of the target total thickness, and even more Preferably it is in the range of 174 to 1/2 of the total thickness.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、本発明はこれ
等によって限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited thereto.

なお、測定は次の方法でおこなった。In addition, the measurement was performed by the following method.

X線としてはCu−にα線を用い、X線強度は以下に述
べる方法により測定する。すなわち、測定すべき面を旋
盤等により切削し、その表層部にある切削加工による極
く薄い変形領域を化学的溶解により取り除く。次にX線
回折装置により各結晶方位に対応する回折線の強度を測
定し、得られた回折線の強度をASTM 4−0787
に記載されている各結晶方位の相対強度比にもとづく補
正をおこなって補正強度値を得る。
α-rays are used for Cu- as the X-rays, and the X-ray intensity is measured by the method described below. That is, the surface to be measured is cut using a lathe or the like, and the extremely thin deformed region on the surface layer due to the cutting process is removed by chemical dissolution. Next, the intensity of the diffraction lines corresponding to each crystal orientation is measured using an X-ray diffractometer, and the intensity of the obtained diffraction lines is determined according to ASTM 4-0787.
A corrected intensity value is obtained by performing correction based on the relative intensity ratio of each crystal orientation described in .

また、膜厚分布バラツキはウェハー上の9点の膜厚を測
定し、その最大値(Xmax)と最小値(Xmin)か
ら次式より計算で求めた。
Further, the film thickness distribution variation was determined by measuring the film thickness at nine points on the wafer and calculating from the maximum value (Xmax) and minimum value (Xmin) using the following formula.

〔{Xmax −Xmin) /(Xmax +Xm1
n) ] X100%実施例1 純度99.999%の高純度アルミニウムを用いて凝固
法(ブリッジマン法)により結晶方位[1001面に面
方位を揃えた単結晶板と結晶方位[1101面に面方位
を揃えた単結晶板を作成した。
[{Xmax −Xmin) /(Xmax +Xm1
n) ] A single crystal plate with aligned orientation was created.

それぞれの板の接合面をワイヤーブラシで粗面化した後
、350℃の温度で圧下率25%で圧延してターゲット
用クラツド板を得た。
The joint surfaces of each plate were roughened with a wire brush, and then rolled at a temperature of 350° C. and a rolling reduction of 25% to obtain a clad plate for a target.

該クラツド板から厚さ5mm、直径5インチのターゲッ
トを得た。なお、接合位置は表面から全肉厚の1/4の
位置になるように調整した。
A target with a thickness of 5 mm and a diameter of 5 inches was obtained from the clad plate. The bonding position was adjusted to be 1/4 of the total thickness from the surface.

該ターゲットを用い直流マグネトロンスパッタリング装
置により、直径3インチのウェハー上に1μm程度の薄
膜を形成させ、その膜厚分布を測定した。また、膜厚分
布の測定には四端子法による電気抵抗の測定から換算し
た。
Using this target, a thin film of about 1 μm was formed on a wafer with a diameter of 3 inches using a DC magnetron sputtering device, and the film thickness distribution was measured. In addition, the film thickness distribution was measured by converting it from the measurement of electrical resistance using the four-terminal method.

スパッタリング時の出力は500Wとし、アルゴンガス
の圧力は8X 10”−3Torr、ターゲットとウェ
ハー間の距離は80mmとした。
The output during sputtering was 500 W, the argon gas pressure was 8×10''-3 Torr, and the distance between the target and the wafer was 80 mm.

膜厚分布の測定は、30分のプレスバッターで表面を除
去してから3分間ウェハー上にスパッタリングして膜厚
を測定し、更に20時間空打ち後2分間ウェハー上にス
パッタリングして膜厚の測定をおこなった。
To measure the film thickness distribution, remove the surface with press batter for 30 minutes, then sputter on the wafer for 3 minutes to measure the film thickness, and then dry-batter for 20 hours and then sputter on the wafer for 2 minutes to measure the film thickness. Measurements were made.

比較例1 純度99.999%の高純度アルミニウムを用いて凝固
法(ブリッジマン法)により結晶方位[1001に面方
位を揃えた単結晶板から厚さ5mm、直径5インチのタ
ーゲットを得た。
Comparative Example 1 A target with a thickness of 5 mm and a diameter of 5 inches was obtained from a single-crystal plate with crystal orientation [1001] using high-purity aluminum with a purity of 99.999% by a solidification method (Bridgeman method).

該ターゲットを用い実施例1と同様にして膜厚分布の測
定をおこなった。
Using this target, the film thickness distribution was measured in the same manner as in Example 1.

比較例2 純度99.999%の高純度アルミニウムを用いて凝固
法(ブリッジマン法)により結晶方位[110)に面方
位を揃えた単結晶板から厚さ5mm、直径5インチのタ
ーゲットを得た。
Comparative Example 2 A target with a thickness of 5 mm and a diameter of 5 inches was obtained from a single crystal plate whose surface orientation was aligned to [110] by a solidification method (Bridgeman method) using high-purity aluminum with a purity of 99.999%. .

該ターゲットを用い実施例1と同様にして膜厚分布の測
定をおこなった。
Using this target, the film thickness distribution was measured in the same manner as in Example 1.

得られた膜厚分布の結果を下表に示す。The obtained film thickness distribution results are shown in the table below.

30分   20時間 実施例19%   8% 比較例110%   17% 比較例2  7%   15% 〔発明の効果〕 本発明において、ターゲット表面から内部に入るにつれ
て結晶方位[1101を多くすることにより、ウェハー
上のICチップ等の膜厚不足による品質不良を低減させ
るだけでなく、大型のウェハーにおいても均一な膜厚が
得られるなど、工業的価値は頗る大である。
30 minutes 20 hours Example 19% 8% Comparative example 110% 17% Comparative example 2 7% 15% [Effect of the invention] In the present invention, by increasing the crystal orientation [1101] from the target surface to the inside, the wafer This method not only reduces quality defects caused by insufficient film thickness on IC chips, etc., but also provides a uniform film thickness even on large wafers, so it has great industrial value.

手続補正書 (自 発) 平成ユ年ユ月ユO日 1、事件の表示 平成1年 特許願 第134016号 2)発明の名称 スパッタリング用アルミニウムターゲット3、補正をす
る者 事件との関係  特許出願人 住 所 大阪市中央区北浜四丁目5番33号名 称 (
209)住友化学工業株式会社代表者    森  英
 雄 4、代理人 住 所 大阪市中央区北浜四丁目5番33号5、補正の
対象 6、補正の内容 (1)明細書の第4頁第3行の「回転」を「磁力線」に
訂正する。
Procedural amendment (spontaneous) Date of May, May, 1999 1, Indication of the case, 1999 Patent Application No. 134016 2) Name of the invention Aluminum target for sputtering 3, Person making the amendment Relationship to the case Patent applicant Address 4-5-33 Kitahama, Chuo-ku, Osaka Name (
209) Sumitomo Chemical Co., Ltd. Representative: Hideo Mori 4, Agent address: 5-5-33 Kitahama 4-chome, Chuo-ku, Osaka, Subject of amendment 6, Contents of amendment (1) Page 4 of the specification, No. 3 Correct "rotation" in the line to "lines of magnetic force".

以上that's all

Claims (4)

【特許請求の範囲】[Claims] (1)高純度アルミニウムまたはその合金からなる平板
状のスパッタリング用ターゲットにおいて、ターゲット
表面に平行な面のX線による結晶方位強度比〔{100
}/{110}の比〕がターゲット表面から内部に入る
につれて小さくなっていくことを特徴とするスパッタリ
ング用アルミニウムターゲット。
(1) In a flat sputtering target made of high-purity aluminum or its alloy, the crystal orientation intensity ratio [{100
An aluminum target for sputtering, characterized in that the ratio of }/{110}] decreases from the surface of the target toward the inside.
(2)特許請求の範囲第1項記載のスパッタリング用ア
ルミニウムターゲットにおいて、ターゲット表面のX線
による結晶方位強度比〔{100}/{110}の比〕
が1.0以上であり、反対側表面(ターゲット裏面)の
結晶方位強度比〔{100}/{110}の比〕が1.
0未満であることを特徴とするスパッタリング用アルミ
ニウムターゲット。
(2) In the aluminum target for sputtering according to claim 1, the X-ray crystal orientation intensity ratio of the target surface [ratio of {100}/{110}]
is 1.0 or more, and the crystal orientation intensity ratio [ratio of {100}/{110}] on the opposite surface (back surface of the target) is 1.0.
An aluminum target for sputtering, characterized in that the aluminum target is less than 0.
(3)特許請求の範囲第1項記載のスパッタリング用ア
ルミニウムターゲットにおいて、X線による結晶方位強
度比〔{100}/{110}の比〕が1.0以上であ
る範囲がターゲット表面からの肉厚の1/5を超え、か
つ3/4を超えない範囲であることを特徴とするスパッ
タリング用アルミニウムターゲット。
(3) In the aluminum target for sputtering according to claim 1, the range in which the X-ray crystal orientation intensity ratio [ratio of {100}/{110}] is 1.0 or more is the thickness from the target surface. An aluminum target for sputtering, characterized in that the thickness is more than 1/5 and not more than 3/4.
(4)特許請求の範囲第1項記載のスパッタリング用ア
ルミニウムターゲットにおいて、結晶方位の異なる板を
重ね合せ、圧延または鍛造によりターゲット用アルミニ
ウムクラッド板を製造することを特徴とする製造方法。
(4) A manufacturing method for the aluminum target for sputtering according to claim 1, which comprises stacking plates with different crystal orientations and manufacturing an aluminum clad plate for the target by rolling or forging.
JP13401689A 1989-05-26 1989-05-26 Aluminum target for sputtering Expired - Fee Related JP2712561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13401689A JP2712561B2 (en) 1989-05-26 1989-05-26 Aluminum target for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13401689A JP2712561B2 (en) 1989-05-26 1989-05-26 Aluminum target for sputtering

Publications (2)

Publication Number Publication Date
JPH032369A true JPH032369A (en) 1991-01-08
JP2712561B2 JP2712561B2 (en) 1998-02-16

Family

ID=15118406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13401689A Expired - Fee Related JP2712561B2 (en) 1989-05-26 1989-05-26 Aluminum target for sputtering

Country Status (1)

Country Link
JP (1) JP2712561B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688220A (en) * 1992-08-18 1994-03-29 Internatl Business Mach Corp <Ibm> Metal film having large particle size and method for coating thereof
US5456815A (en) * 1993-04-08 1995-10-10 Japan Energy Corporation Sputtering targets of high-purity aluminum or alloy thereof
EP0746436A1 (en) * 1994-12-23 1996-12-11 Johnson Matthey Electronics Inc Sputtering target with ultra-fine, oriented grains and method of making same
JPH0925564A (en) * 1995-07-06 1997-01-28 Japan Energy Corp Aluminum or aluminum alloy sputtering target
EP0785292A1 (en) 1993-09-27 1997-07-23 Japan Energy Corporation High purity titanium sputtering targets
US6585870B1 (en) * 2000-04-28 2003-07-01 Honeywell International Inc. Physical vapor deposition targets having crystallographic orientations
US11618942B2 (en) 2017-06-22 2023-04-04 Uacj Corporation Sputtering-target material, sputtering target, sputtering-target aluminum plate, and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688220A (en) * 1992-08-18 1994-03-29 Internatl Business Mach Corp <Ibm> Metal film having large particle size and method for coating thereof
US5456815A (en) * 1993-04-08 1995-10-10 Japan Energy Corporation Sputtering targets of high-purity aluminum or alloy thereof
EP0785292A1 (en) 1993-09-27 1997-07-23 Japan Energy Corporation High purity titanium sputtering targets
EP0785293A1 (en) 1993-09-27 1997-07-23 Japan Energy Corporation High purity titanium sputtering targets
EP1053810A2 (en) * 1994-12-23 2000-11-22 Johnson Matthey Electronics Inc Sputtering target and method of making same
EP0746436A4 (en) * 1994-12-23 1997-05-07 Johnson Matthey Elect Inc Sputtering target with ultra-fine, oriented grains and method of making same
US5780755A (en) * 1994-12-23 1998-07-14 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
US5809393A (en) * 1994-12-23 1998-09-15 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
EP0746436A1 (en) * 1994-12-23 1996-12-11 Johnson Matthey Electronics Inc Sputtering target with ultra-fine, oriented grains and method of making same
EP1053810A3 (en) * 1994-12-23 2000-11-29 Johnson Matthey Electronics Inc Sputtering target and method of making same
JPH0925564A (en) * 1995-07-06 1997-01-28 Japan Energy Corp Aluminum or aluminum alloy sputtering target
US6585870B1 (en) * 2000-04-28 2003-07-01 Honeywell International Inc. Physical vapor deposition targets having crystallographic orientations
US11618942B2 (en) 2017-06-22 2023-04-04 Uacj Corporation Sputtering-target material, sputtering target, sputtering-target aluminum plate, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2712561B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
JP2857015B2 (en) Sputtering target made of high-purity aluminum or its alloy
JP3993530B2 (en) Ag-Bi alloy sputtering target and method for producing the same
KR0135369B1 (en) High purity titanium sputtering targets
KR100568392B1 (en) Silver alloy sputtering target and process for producing the same
US4842706A (en) Sputtering target
JPH10330923A (en) High purity copper sputtering target and thin coating
JPH032369A (en) Aluminum target for sputtering
JP4817536B2 (en) Sputter target
US11125708B2 (en) Silver alloy-based sputter target
CN106661720A (en) Silver-alloy based sputtering target
JP5793069B2 (en) Manufacturing method of copper target material for sputtering
JP2671397B2 (en) Target for magnetron sputtering
JP2004084065A (en) Silver alloy sputtering target and its producing method
JP2901854B2 (en) High purity titanium sputtering target
JP3177208B2 (en) High purity titanium sputtering target
JP6871301B2 (en) Sputtering target, titanium nitride film manufacturing method, and semiconductor device manufacturing method
JP2948073B2 (en) High purity titanium sputtering target
JPH0790560A (en) High purity titanium sputtering target
JPH0681141A (en) Sputtering target
JP3246223B2 (en) Sputtering target for Pt thin film formation
JP2901853B2 (en) High purity titanium sputtering target
JP2901852B2 (en) High purity titanium sputtering target
TW201907023A (en) MoNb target
JP3792291B2 (en) Ti target for magnetron sputtering
US11177119B2 (en) Tantalum sputtering target

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 11

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

LAPS Cancellation because of no payment of annual fees