JPH03236724A - Greenhouse cultivation of plant and system therefor - Google Patents
Greenhouse cultivation of plant and system thereforInfo
- Publication number
- JPH03236724A JPH03236724A JP2033463A JP3346390A JPH03236724A JP H03236724 A JPH03236724 A JP H03236724A JP 2033463 A JP2033463 A JP 2033463A JP 3346390 A JP3346390 A JP 3346390A JP H03236724 A JPH03236724 A JP H03236724A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- gas
- methane
- greenhouse
- methane fermentation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 184
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 130
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 92
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 92
- 238000000855 fermentation Methods 0.000 claims abstract description 33
- 230000004151 fermentation Effects 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000000446 fuel Substances 0.000 claims abstract description 9
- 238000000926 separation method Methods 0.000 claims abstract description 9
- 238000001179 sorption measurement Methods 0.000 claims abstract description 9
- 230000029553 photosynthesis Effects 0.000 claims abstract description 7
- 238000010672 photosynthesis Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 26
- 238000010248 power generation Methods 0.000 claims description 2
- 238000012364 cultivation method Methods 0.000 claims 1
- 239000003463 adsorbent Substances 0.000 abstract description 5
- 238000001816 cooling Methods 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 94
- 241000196324 Embryophyta Species 0.000 description 11
- 235000013399 edible fruits Nutrition 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000009841 combustion method Methods 0.000 description 4
- 239000002808 molecular sieve Substances 0.000 description 4
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- 241000219112 Cucumis Species 0.000 description 2
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 2
- 240000008067 Cucumis sativus Species 0.000 description 2
- 235000009849 Cucumis sativus Nutrition 0.000 description 2
- 240000006497 Dianthus caryophyllus Species 0.000 description 2
- 235000009355 Dianthus caryophyllus Nutrition 0.000 description 2
- 240000009088 Fragaria x ananassa Species 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 241000219094 Vitaceae Species 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000021021 grapes Nutrition 0.000 description 2
- 239000010800 human waste Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000243 photosynthetic effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 235000021012 strawberries Nutrition 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 244000036905 Benincasa cerifera Species 0.000 description 1
- 235000011274 Benincasa cerifera Nutrition 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 1
- 240000008384 Capsicum annuum var. annuum Species 0.000 description 1
- 235000007516 Chrysanthemum Nutrition 0.000 description 1
- 240000005250 Chrysanthemum indicum Species 0.000 description 1
- 235000015001 Cucumis melo var inodorus Nutrition 0.000 description 1
- 235000011511 Diospyros Nutrition 0.000 description 1
- 241000723267 Diospyros Species 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/25—Greenhouse technology, e.g. cooling systems therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/20—Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
Landscapes
- Cultivation Of Plants (AREA)
- Greenhouses (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は植物の温室栽培方法およびそれに用いるシステ
ム、さらに詳しくは、植物の温室栽培における、いわゆ
る炭酸ガス施用による植物の温室栽培の改良に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for cultivating plants in a greenhouse and a system used therefor, and more particularly, to an improvement in greenhouse cultivation of plants by applying so-called carbon dioxide gas.
(従来の技術および解決すべき課題)
近年、植物の温室栽培においては、日照時に温室内の炭
酸ガス濃度が低下し、その結果、光合成が阻害されて品
質や収量が低下するのを防ぐため、直接、温室内に炭酸
ガスを供給する、いわゆる炭酸ガス施用が行なわれてい
る。(Conventional technology and issues to be solved) In recent years, in greenhouse cultivation of plants, in order to prevent the carbon dioxide concentration in the greenhouse from decreasing during sunlight, which inhibits photosynthesis and reduces quality and yield, So-called carbon dioxide application, which directly supplies carbon dioxide into the greenhouse, is being carried out.
一般に、かかる炭酸ガス施用には、石油を燃焼させて炭
酸ガスを発生させる石油燃焼方式、工業用の液化炭酸ガ
スボンベから炭酸ガスを発生させるボンベ方式およびL
PGなどのガスを燃焼させて炭酸ガスを発生させるガス
燃焼方式が採用されている。In general, such carbon dioxide application methods include an oil combustion method in which petroleum is burned to generate carbon dioxide gas, a cylinder method in which carbon dioxide gas is generated from an industrial liquefied carbon dioxide gas cylinder, and an L
A gas combustion method is used in which gas such as PG is burned to generate carbon dioxide gas.
しかしながら、炭酸ガスによる地球温暖化が問題とされ
る昨今では、たとえ、炭酸ガス施用により品質や収量が
向上するとしても、実際に施用に必要な量よりもはるか
に多量の炭酸ガスを、わざわざ灯油やLPGのような化
石燃料を燃焼させて発生させたり、同様に化石燃料を原
料とした工業用の炭酸ガスを転用することは関係分野で
も問題となっている。However, in these days when global warming due to carbon dioxide gas is a problem, even if the quality and yield can be improved by applying carbon dioxide gas, it is necessary to use far more carbon dioxide gas than is actually necessary for the application of kerosene. The generation of carbon dioxide by burning fossil fuels such as carbon dioxide and LPG, and the diversion of industrial carbon dioxide gas made from fossil fuels are also problems in related fields.
さらに、炭酸ガスとともに地球を温暖化させる有機物と
して問題になっているメタンについてもその対策が急が
れている。Furthermore, there is an urgent need to take measures to deal with methane, which, along with carbon dioxide gas, is an organic substance that causes global warming.
このような事情に鑑み、本発明者らは炭酸ガス施用にお
けるこれらの問題を解決すべく、鋭意検討を重ねた。そ
の結果、下水処理汚泥等のバイオマスのメタン醗酵で発
生するメタン醗酵ガス中に高濃度に含有される炭酸ガス
が安価に効率よく利用でき、また、温暖化する働きが炭
酸ガスより20〜40倍も強いといわれるメタンを燃焼
させて炭酸ガスに変え、同時に熱を回収して有効に利用
することにより、これらの問題が解決できることを見出
だした。In view of these circumstances, the present inventors have conducted extensive studies to solve these problems in carbon dioxide application. As a result, carbon dioxide gas, which is highly concentrated in methane fermentation gas generated by methane fermentation of biomass such as sewage treatment sludge, can be used cheaply and efficiently, and its global warming effect is 20 to 40 times that of carbon dioxide gas. They discovered that these problems could be solved by burning methane, which is said to be a strong carbon dioxide gas, and converting it into carbon dioxide, while at the same time recovering and effectively using the heat.
すなわち、このようなバイオマスからはメタンガスと共
に大量の炭酸ガスが放出され、従来、これらのガスはそ
のまま大気中に放出されていたが、本発明者らは、先に
、これらのガスからプレッシャースイング法により炭酸
ガスが効率よく回収でき、高純度のメタンが得られるこ
とを知り、特許出願した(特開昭58−122018号
)。その後、さらに検討を重ねた結果、この度、かかる
技術が炭酸ガス施用の改善に適用できることが判明した
。In other words, large amounts of carbon dioxide gas are released along with methane gas from such biomass, and conventionally, these gases were released into the atmosphere as they are, but the present inventors first developed a pressure swing method to extract these gases. After learning that carbon dioxide gas can be efficiently recovered and highly purified methane can be obtained, a patent application was filed (Japanese Unexamined Patent Publication No. 122018/1983). After further investigation, it was discovered that this technology could be applied to improve carbon dioxide application.
(課題を解決すべき手段)
本発明はその一つの態様として、植物を温室にて栽培す
るに際し、メタン醗酵施設から発生するガスをプレッシ
ャースイング法により炭酸ガスとメタンとに分離、蓄積
し、該炭酸ガスを植物の光合成促進のために供給し、ま
たメタンを燃焼して、熱源にするとともに排熱を回収し
て有効に利用することを特徴とする植物の温室栽培方法
を提供するものである。(Means to Solve the Problems) As one aspect of the present invention, when plants are cultivated in a greenhouse, gas generated from a methane fermentation facility is separated and accumulated into carbon dioxide gas and methane by a pressure swing method, and the This invention provides a method for cultivating plants in a greenhouse, characterized by supplying carbon dioxide gas to promote photosynthesis of plants, burning methane to use it as a heat source, and recovering and effectively utilizing waste heat. .
本発明によれば、従来、大気中に放出されていたメタン
醗酵ガス中に含有される炭酸ガスを安価に、かつ、有効
に利用できるので前記のような従来の炭酸ガス施用にお
ける問題が解消できるばかりでなく、分離されたメタン
も、例えば、温室暖房用の熱源や各種の熱機関の燃料と
して再利用できる利点がある。According to the present invention, the carbon dioxide gas contained in methane fermentation gas, which has conventionally been released into the atmosphere, can be used inexpensively and effectively, so that the above-mentioned problems with conventional carbon dioxide application can be solved. Not only that, the separated methane also has the advantage of being reusable, for example, as a heat source for greenhouse heating or as a fuel for various heat engines.
かくして、本発明の方法は、対象とする植物を特に限定
するものではなく、通常、温室栽培される果樹、野菜、
花再等いずれのものにも適用でき、例えば、メロン、ト
マト、キュウリ、シシトウ、ピーマン、イチゴ、ナス、
レタス、キク、カーネーション、柿、ブドウ等の栽培に
好適に珂いることができる。Thus, the method of the present invention is not particularly limited to target plants, and can be applied to fruit trees, vegetables, etc. that are usually grown in greenhouses.
Can be applied to any flower, such as melons, tomatoes, cucumbers, peppers, green peppers, strawberries, eggplants, etc.
It can be suitable for cultivating lettuce, chrysanthemums, carnations, persimmons, grapes, etc.
また、メタン醗酵施設は、炭酸ガスを含有するメタン醗
酵ガスを発生する嫌気性醗酵設備ならば特に限定される
ものではない。例えば、下水処理汚泥やし尿等を処理す
る嫌気性醗酵設備、あるいは、家畜ふん尿、とうもろこ
し、さとうきび、野菜、果実くず等広汎なバイオマスを
処理する嫌気性醗酵設備等が挙げられる。例えば、下水
処理汚泥の消化メタン醗酵ガスは、通常、35〜40容
量%の炭酸ガスを含有しており、本発明の方法に好適に
用いられる。Further, the methane fermentation facility is not particularly limited as long as it is an anaerobic fermentation facility that generates methane fermentation gas containing carbon dioxide gas. Examples include anaerobic fermentation equipment that processes sewage treatment sludge, human waste, etc., and anaerobic fermentation equipment that processes a wide range of biomass such as livestock manure, corn, sugar cane, vegetables, and fruit scraps. For example, methane fermentation gas from digestion of sewage treatment sludge usually contains 35 to 40% by volume of carbon dioxide gas, and is suitably used in the method of the present invention.
さらに、プレッシャースイング法自体も公知の方法が採
用され、例えば、前記、本発明者らの特開昭58−12
2018号の方法が採用できる。Furthermore, the pressure swing method itself is a known method, for example, the above-mentioned Japanese Patent Application Laid-Open No. 58-12
The method of No. 2018 can be adopted.
すなわち、1塔以上のガス吸着塔を備えたプレッシャー
スイング装置を用い、好ましくは、10kg7cm”G
以下、さらに好ましくは、2〜5kg/cm’G程度の
圧力で常法に従い、装置の運転を実施する。圧力が高す
ぎると設備費が高価になり、それにともないエネルギー
コストも高くなる。また、圧力が低すぎると装置が大き
くなりすぎ、得策でない。吸着剤としては、カーボンモ
レキュラーシーブ、ゼオライトモレキュラーシーブ、シ
リカゲル、アルミナゲル等公知のものを単独で、あるい
は併用して用いることができ、特に、処理能力、耐用期
間等の点てカーボンモレキュラーシーブが好ましい。That is, a pressure swing device equipped with one or more gas adsorption towers is used, and preferably 10 kg 7 cm"G
Hereinafter, the apparatus is more preferably operated according to a conventional method at a pressure of about 2 to 5 kg/cm'G. If the pressure is too high, equipment costs will be high, and energy costs will also be high. Also, if the pressure is too low, the device will become too large, which is not a good idea. As the adsorbent, known ones such as carbon molecular sieve, zeolite molecular sieve, silica gel, alumina gel, etc. can be used alone or in combination, and carbon molecular sieve is particularly preferred in terms of processing capacity, service life, etc. .
メタン醗酵施設で発生するガスは通常、35〜55℃程
度の温度を有し、水分飽和の状態なので、これを40℃
以下、好ましくは、20℃程度に冷却して水分を減少さ
せてプレッシャースイングに付すのが望ましい。また、
吸着剤によっては、より低温にし、脱水、乾燥をする。Gas generated in methane fermentation facilities usually has a temperature of about 35 to 55 degrees Celsius and is saturated with water, so it is heated to 40 degrees Celsius.
Hereinafter, it is preferable to cool the material to about 20.degree. C. to reduce the moisture content and then subject it to a pressure swing. Also,
Depending on the adsorbent, the temperature may be lower, followed by dehydration and drying.
本発明の方法においては、このようにしてプレッシャー
スイング法により分離した炭酸ガスとメタンを常法によ
り、夫々、適当な加圧タンクに蓄積する。なお、本明細
書で用いる「メタン」なる語は、メタン醗酵ガスから炭
酸ガスを分離した、メタンに富んだ高カロリーのガスを
意味する。In the method of the present invention, the carbon dioxide gas and methane separated by the pressure swing method are stored in appropriate pressurized tanks by a conventional method. Note that the term "methane" used in this specification means a high-calorie gas rich in methane obtained by separating carbon dioxide gas from methane fermentation gas.
蓄積した炭酸ガスは所望の温室内の炭酸ガス濃度に応じ
てタンクより適宜の手段、例えば、適当な炭酸ガス供給
管や開閉弁を組み合わせて手動もしくは自動的に、また
、間欠的もしくは連続的に所定期間、温室内に供給され
る。温室内の炭酸ガス濃度は公知のセンサー、ガス検知
器等で測定できる。対象とする植物等にもよるが、通常
、温室内では、自然状態で約350 ppm程度の炭酸
ガスが存在するが、光合成を促進させるためには700
〜3,000ppmの炭酸ガスの存在が好ましいとされ
ている。この光合成時の炭酸ガス濃度を維持するために
は、例えば、面積10アール、高さ3.5mの温室で1
日、午前8時より12時の4時間炭酸ガス施用を行う場
合、1時間当たり1〜10kgの炭酸ガスが必要となる
。The accumulated carbon dioxide is removed from the tank by appropriate means depending on the desired carbon dioxide concentration in the greenhouse, such as manually or automatically in combination with an appropriate carbon dioxide supply pipe or on-off valve, or intermittently or continuously. It is supplied into the greenhouse for a predetermined period of time. The carbon dioxide concentration in the greenhouse can be measured using a known sensor, gas detector, or the like. It depends on the target plants, etc., but normally in a greenhouse there is about 350 ppm of carbon dioxide in the natural state, but in order to promote photosynthesis, 700 ppm of carbon dioxide gas is present.
It is said that the presence of carbon dioxide gas of ~3,000 ppm is preferred. In order to maintain this carbon dioxide concentration during photosynthesis, for example, in a greenhouse with an area of 10 are and a height of 3.5 m,
When applying carbon dioxide gas for 4 hours from 8 a.m. to 12 noon on Sundays, 1 to 10 kg of carbon dioxide gas is required per hour.
一方、蓄積したメタンは醗酵により発生した状態のガス
と比較してカロリーが、例えば、2.000−3,00
0Kcal/Nm’増加しており、バーナー等の適当な
燃焼装置に供給し、要すれば、他の補助燃料と共に燃焼
させて温室の暖房用に用いることができる。通常、炭酸
ガス1kg当たり、0.5〜0 、7 kgメタンが得
られるので、得られたメタンは単に燃焼させるだけでな
く、例えば、ガスエンジンやガスタービン等の熱機関の
燃料として用い、電力、動力、熱風、蒸気、温水、冷水
等の各種エネルギーに変えることができ、プレッシャー
スイング装置の動力、温室内の気象条件の制御を始め、
メタン醗酵施設の管理、その他の冷暖房等に使用するこ
とができる。On the other hand, the accumulated methane has a caloric value of, for example, 2,000-3,000 compared to the gas generated by fermentation.
It has an increase of 0 Kcal/Nm' and can be supplied to a suitable combustion device such as a burner and burned with other auxiliary fuels for heating a greenhouse if necessary. Normally, 0.5 to 0.7 kg of methane is obtained per 1 kg of carbon dioxide gas, so the obtained methane is not only used for combustion, but also used as fuel for heat engines such as gas engines and gas turbines, and used for power generation. It can be converted into various types of energy such as power, hot air, steam, hot water, and cold water, and can be used to power pressure swing devices, control weather conditions in greenhouses, etc.
It can be used for managing methane fermentation facilities and for other heating and cooling purposes.
本発明の方法は、一般に、添付の第1図に示すシステム
を用いて実施される。The method of the present invention is generally implemented using the system shown in the accompanying FIG.
すなわち、メタン醗酵施設!から発生したメタン醗酵ガ
スは、要すれば、脱硫器(図示せず)等で処理した後、
昇圧器2により所定の圧力に昇圧され、クーラー3で冷
却して水分含量を低下させる。Namely, a methane fermentation facility! The methane fermentation gas generated is treated with a desulfurizer (not shown), etc., if necessary.
The pressure is increased to a predetermined pressure by a pressure booster 2, and the water content is reduced by cooling by a cooler 3.
昇圧されたガスは吸着剤が充填された吸着塔4に導入さ
れる。吸着塔は少なくともl塔、好ましくは第1図に示
すごとく2塔以上より排出され、6塔の圧力を交互に変
動させて醗酵ガス中の炭酸ガスの吸着を交互に行う。塔
数は多いほど炭酸ガスの回収率が上昇するが、設備費も
上がるので、般に、2〜6塔が好ましい。炭酸ガスが吸
着、分離されたメタンは吸着塔を通過し、タンク5に導
入され、蓄積される。一方、吸着された炭酸ガスは真空
ポンプ6により脱着され、タンク7に導入され、蓄積さ
れる。タンク7に蓄積された炭酸ガスは、温室8内の炭
酸ガス濃度に応じ、供給手段9を介して温室8内に供給
される。また、タンク5に蓄積されたメタンはバーナー
あるいは熱機関10に送られ、燃料として消費され、温
室8内の冷暖房などの気象条件制御、あるいはメタン醗
酵施設置やその他のエネルギー源とされる。炭酸ガスや
メタンの供給は、所望の条件に応じてコントロール手段
11により、制御される。The pressurized gas is introduced into an adsorption tower 4 filled with an adsorbent. The adsorption tower includes at least one tower, preferably two or more towers as shown in FIG. 1, and the pressure of the six towers is alternately varied to alternately adsorb carbon dioxide gas in the fermentation gas. The higher the number of columns, the higher the recovery rate of carbon dioxide gas, but the equipment cost also increases, so 2 to 6 columns is generally preferred. The methane from which carbon dioxide gas has been adsorbed and separated passes through the adsorption tower, is introduced into the tank 5, and is stored therein. On the other hand, the adsorbed carbon dioxide gas is desorbed by the vacuum pump 6, introduced into the tank 7, and accumulated. The carbon dioxide gas accumulated in the tank 7 is supplied into the greenhouse 8 via the supply means 9 according to the carbon dioxide concentration within the greenhouse 8 . Further, the methane accumulated in the tank 5 is sent to a burner or a heat engine 10, where it is consumed as fuel, and is used to control weather conditions such as heating and cooling in the greenhouse 8, or as an energy source for a methane fermentation facility or other purposes. The supply of carbon dioxide gas and methane is controlled by control means 11 according to desired conditions.
かくして、本発明はもう一つの態様として、本発明方法
の実施に用いる第1図に示すごときシステムを提供する
もので、該システムは、原料ガス入口端がメタン醗酵施
設のガス排出端に連絡された少なくとも!基の吸着塔を
備えたプレッシャースイング・ガス分離装置と、該ガス
分離装置の吸着ガス排出端に連絡され、そこから排出さ
れる装置により吸着分離された炭酸ガスを蓄積する炭酸
ガスタンクと、該ガス分離装置の非吸着ガス排出端に連
絡され、そこから排出される分離メタンガスを蓄積する
メタンガスタンクと、
該炭酸ガスタンクから温室内に炭酸ガスを供給する供給
手段と、
該メタンガスを燃料とするバーナーまたは熱機関と、
該炭酸ガスの供給および温室内の気象条件を制御するコ
ントロール手段とからなることを特徴とする。Thus, in another aspect of the invention, there is provided a system as shown in Figure 1 for use in carrying out the process of the invention, the system having a feed gas inlet end connected to a gas outlet end of a methane fermentation facility. At least! a pressure swing gas separation device equipped with an adsorption tower; a carbon dioxide gas tank connected to an adsorbed gas discharge end of the gas separation device and storing carbon dioxide adsorbed and separated by the device from which the gas is discharged; A methane gas tank connected to the non-adsorbed gas discharge end of the separator and accumulating the separated methane gas discharged therefrom; a supply means for supplying carbon dioxide from the carbon dioxide tank into the greenhouse; and a burner using the methane gas as fuel; It is characterized by comprising a heat engine and control means for controlling the supply of carbon dioxide gas and the weather conditions within the greenhouse.
該システムにおけるプレッシャースイング・ガス分離装
置としては、前記のような2〜6塔式の装置が好適に用
いられ、炭酸ガスやメタンの蓄積タンクには公知の加圧
タンクが使用できる。供給手段としては、前記した供給
管と開閉弁の組み合わせや、下記コンピューター制御と
連動したガス供給システムを用いることができる。コン
トロール手段としては、例えば、温室内に配置し゛た温
度、湿度、ガス濃度等の検知器と、その検知結果に対応
して炭酸ガス供給手段や、温室の冷暖房、給水等の設備
を作動、停止させる装置を用いることができる。かかる
装置は手動でも自動でもよく、要すれば、コンピュータ
ー制御を採用してもよい。As the pressure swing gas separation device in this system, a 2- to 6-column device as described above is preferably used, and a known pressurized tank can be used as the carbon dioxide gas or methane storage tank. As the supply means, a combination of the above-mentioned supply pipe and on-off valve or a gas supply system linked to computer control as described below can be used. Control means include, for example, temperature, humidity, gas concentration, etc. detectors placed inside the greenhouse, and depending on the detection results, the carbon dioxide supply means, greenhouse air conditioning, water supply, and other equipment are activated or stopped. It is possible to use a device that allows Such equipment may be manual or automatic and, if desired, may employ computer control.
該システムの運転条件は対象とする植物、メタン醗酵施
設の規模等に応じて適宜決定できる。The operating conditions of the system can be determined as appropriate depending on the target plant, the scale of the methane fermentation facility, etc.
(実施例) 以下、実施例を挙げて本発明をさらに詳しく説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.
用いたシステムは第1図に示すとおりであり、以下のメ
タン醗酵施設より以下のプレッシャースイング装置で分
離した炭酸ガスおよびメタンをそれぞれの蓄積タンクに
貯えた。炭酸ガスは温室に供給され、メタンは温水ボイ
ラーまたは補助ボイラーの熱源として使用し、各種の果
菜、野菜、果物、花再等の温室栽培を行なった。The system used was as shown in Figure 1, and carbon dioxide and methane separated from the methane fermentation facility using the pressure swing device shown below were stored in respective storage tanks. Carbon dioxide gas was supplied to the greenhouse, and methane was used as a heat source for a hot water boiler or auxiliary boiler, and various fruits, vegetables, fruits, and flowers were cultivated in the greenhouse.
メタン醗酵施設
し尿処理のための嫌気性醗酵施設
し尿処理量=67〜74k12/日
メタン醗酵ガス発生量;22〜27Nm137時(組成
メタン65vo1.%、
炭酸ガス35vo1.%)
プレッシャースイング・ガス分離装置
カーボンモレキュラーシーブ充填2塔式プレッシャース
イング・ガス分離装置
吸着剤量:1002/塔
昇圧器における昇圧: 2.5kg/cm”G醗酵ガス
冷却温度:30℃
プレッシャースイング間隔= 1分30秒生成炭酸ガス
純度;97〜99vo1.%
生成量: 7,6〜8.4Nm3/時
(14,5〜16.5に9/時)
生成メタンガス
純度:93〜95vo1.%
生成量:16.8〜17.4 Nm”/時熱117,8
00〜8.100Kcal/Nl11’実施例1
60−ガラス温室(両屋根式南北棟ガラス)にて金網床
で秋冬作メロン(アールス・フェボリット系、整糸3号
A)を下記の条件で栽培した。Methane fermentation facility Anaerobic fermentation facility for human waste treatment Night waste processing amount = 67-74 k12/day Methane fermentation gas generation amount: 22-27 Nm 137 hours (composition methane 65 vol.%, carbon dioxide gas 35 vol. %) Pressure swing gas separation device Carbon molecular sieve-filled two-column pressure swing gas separation device Adsorbent amount: 1002/Tower Pressure increase in booster: 2.5 kg/cm"G Fermented gas cooling temperature: 30°C Pressure swing interval = 1 minute 30 seconds Produced carbon dioxide gas Purity: 97 to 99 vol.% Production amount: 7.6 to 8.4 Nm3/hour (14.5 to 16.5 to 9/hour) Produced methane gas purity: 93 to 95 vol.% Production amount: 16.8 to 17. 4 Nm”/hourly heat 117.8
00-8.100Kcal/Nl11' Example 1 Autumn/winter melons (Earl's Favorite series, No. 3 A) were cultivated under the following conditions on a wire mesh floor in a 60-glass greenhouse (double-roofed north-south glass). .
定植 11月4日炭酸ガス施用
期間 !2月2日〜1月25日同上時間
8時〜14時(6時間)同上濃度
800〜1 、200ppm温室内温度
25〜30℃炭酸ガス施用終了後1週間経過してか
ら収穫し、集電を測定したところ、無施用の場合と比較
して、30%の増加がみられた。また、糖度、ネット指
数とも良好でこれらの結果は通常のボンベ方式で炭酸ガ
ス施用を行なった場合と同等であった。Planting: Carbon dioxide application period on November 4th! February 2nd - January 25th Same time as above
8:00 to 14:00 (6 hours) Same concentration as above
800-1, 200ppm greenhouse temperature
When the plants were harvested one week after the application of carbon dioxide gas at 25 to 30°C and the current collection was measured, a 30% increase was observed compared to the case without application. In addition, the sugar content and net index were both good, and these results were comparable to those obtained when carbon dioxide gas was applied using a conventional cylinder method.
一方、分離蓄積されたメタンガスは温室暖房用の温水ボ
イラーの熱源として使用した。Meanwhile, the separated and accumulated methane gas was used as a heat source for a hot water boiler for greenhouse heating.
実施例2
春作メロン(アールス・フエボリット系、巻糸1号)を
用い、下記の条件にて栽培を行なった。Example 2 Spring-harvested melons (Arus Faevolit series, No. 1 winding thread) were used for cultivation under the following conditions.
定植 2月27日炭酸ガス施用
期間 4月16日〜5月24日同上時間
日の出30分後〜10時同上濃度
900〜1,1100pI)温室内温度
25〜30℃上記以外は実施例1と同様にして栽培
を行なったところ、実施例1とほぼ同様の結果が得られ
た。Planting February 27th Carbon dioxide application period April 16th to May 24th Same time as above
30 minutes after sunrise to 10 o'clock same concentration
900-1,1100 pI) Greenhouse temperature
Cultivation was carried out in the same manner as in Example 1 except for the above conditions at 25 to 30°C, and almost the same results as in Example 1 were obtained.
実施例3 下記の条件でトマトの温室栽培を行なった。Example 3 Tomatoes were grown in a greenhouse under the following conditions.
品 種 たのも
温室 135m”
定 植 1月7日
炭酸ガス施用期間 1月8日〜4月30日同上時間
7時〜12時(5時間)同上濃度
900〜1,1100pp温 度 温室
白昼28℃以下、夜10℃以上
収量 30%増
品 質 空洞果減少し品質向上。Variety: Tanomo Greenhouse 135m” Planting: January 7th Carbon dioxide application period: January 8th to April 30th Same time as above
7:00 to 12:00 (5 hours) Same concentration as above
900 to 1,1100pp Temperature: Below 28℃ during the day in the greenhouse, above 10℃ at night Yield: 30% increase in quality Quality: Reduced hollow fruits and improved quality.
上記の結果はボンベ方式による炭酸ガス施用で得られた
結果とほぼ同等であった。また、メタンガスは温室暖房
用の熱源として用いられた。The above results were almost the same as those obtained by applying carbon dioxide gas using a cylinder method. Methane gas was also used as a heat source for greenhouse heating.
実施例4 下記の条件でイチゴの温室栽培を行なった。Example 4 Strawberries were grown in a greenhouse under the following conditions.
品 種 案文早生
温室 1201
定 植 10月16日
炭酸ガス施用期間 11月I8日〜1月17日同上時
間 6時30分〜16時30分(10時間)
同上濃度 1 、200〜l、 500pp
m瓜 度 温室白昼20〜25℃、夜lO
℃以上
収 量 約50%増
上記の結果は灯油燃焼方式で炭酸ガス施用を行なった場
合よりもややすぐれていた。また、メタンは温室暖房用
の熱源として用いられた。Variety: Kanmon Early Greenhouse 1201 Planting: October 16th Carbon dioxide application period: November I8th - January 17th Same time as above: 6:30 am - 4:30 pm (10 hours) Same as above concentration: 1, 200-1, 500pp
Temperature: 20-25℃ during the day in the greenhouse, 10℃ at night
℃ or higher Yield: Approximately 50% increase The above results were slightly better than when carbon dioxide gas was applied using the kerosene combustion method. Methane was also used as a heat source for heating greenhouses.
実施例5 下記の条件でキュウリの温室栽培を行なった。Example 5 Cucumbers were grown in a greenhouse under the following conditions.
品 種 王金越冬
温室 53m2
定 植 11月13日
炭酸ガス施用期間 11月13日〜1月9日同上時間
午前7時〜lO時(3時間)同上濃度
900〜1.200ppm温 度
温室白昼33℃以下、夜13℃以上
収量 全果数 43%増
全果重 61%増
上記の結果はボンベ方式で炭酸ガス施用を行なった場合
とほぼ同等であった。また、メタンガスは温室暖房用の
熱源として使用した。Variety Okine overwintering greenhouse 53m2 Planted on November 13th Carbon dioxide application period November 13th to January 9th Same time as above 7:00 a.m. to 10:00 (3 hours) Same as above concentration
900~1.200ppm temperature
The greenhouse temperature was 33°C or lower during the day and 13°C or higher at night. Yield: 43% increase in total fruit number; 61% increase in total fruit weight. The above results were almost the same as when carbon dioxide gas was applied using the cylinder method. In addition, methane gas was used as a heat source for greenhouse heating.
実施例6
温室栽培のブドウにプレッシャースイング装置で分離し
た炭酸ガスを施用した。但し、本実施例では果実につい
ての評価ではなく、ブドウの同一葉面をlea”のディ
スク状にリーフパンチで炭酸ガス施用前(9時)と施用
後(15時)の2枚を左右対称に打ち抜き、葉の乾燥重
量を比較して光合成能力を測定した。Example 6 Separated carbon dioxide gas was applied to grapes grown in a greenhouse using a pressure swing device. However, in this example, the evaluation was not on the fruit, but on the same leaf surface of the grape using a leaf punch in the shape of a lea'' disc before (9 o'clock) and after (15 o'clock) the application of carbon dioxide gas. The photosynthetic ability was measured by punching out the leaves and comparing the dry weight of the leaves.
品 種 マスカット・オブ・アレキサンド
リア
温室 165+n″
試験日 6月15日
炭酸ガス施用時間 9時〜15時(6時間)同上濃度
1,000〜1,300ppm温度
36〜39℃
その結果、光合成能力は炭酸ガス無施用の場合に比較し
て49%増大しており、灯油燃焼方式で炭酸ガスを施用
した場合とほぼ同等の結果が得られた。Variety: Muscat of Alexandria Greenhouse 165+n'' Test date: June 15th Carbon dioxide gas application time: 9:00 to 15:00 (6 hours) Same as above Concentration: 1,000 to 1,300 ppm Temperature
36-39°C As a result, the photosynthetic capacity was increased by 49% compared to the case without application of carbon dioxide gas, and almost the same result as in the case of applying carbon dioxide gas in the kerosene combustion method was obtained.
実施例7 下記の条件で電照式カーネーションの栽培を行なった。Example 7 Carnations were cultivated under the following conditions.
品 種 インブルーブト・ニューピンク・
シムコーラル
温室 361
定 植 10月12日炭酸ガス施用期
間 11月1日〜3月15日同上時間 午
前4時〜5時(IQ間)同上濃度 500〜
700ppm温 度 温室白昼16℃以下
、夜lO℃以上
品 質 電照により細長くなった茎が丈夫
になった。Variety Inbrubuto New Pink
Sim Coral Greenhouse 361 Planting October 12th Carbon dioxide application period November 1st - March 15th Same as above Time 4:00 am - 5:00 am (between IQ) Same as above Concentration 500~
700ppm Temperature: Below 16°C during the day in the greenhouse, above 10°C at night Quality: The elongated stems have become stronger due to electric lighting.
上記の結果はボンベ方式で炭酸ガス施用を行なった場合
とほぼ同等であった。また、メタンガスは温室暖房用の
熱源として使用した。The above results were almost the same as when carbon dioxide gas was applied using a cylinder method. In addition, methane gas was used as a heat source for greenhouse heating.
(発明の効果)
本発明によれば、従来の炭酸ガス施用における安全上、
経済上の問題が解消されると共に、廃棄物として大気に
放出されているメタン醗酵ガスの有効な再利用が図れる
。(Effect of the invention) According to the present invention, in terms of safety in conventional carbon dioxide application,
In addition to solving economic problems, it is possible to effectively reuse methane fermentation gas that is released into the atmosphere as waste.
第1図は本発明の植物の温室栽培システムの一具体例を
示すフローシートである。
図面中の主な符号はつぎのらのを意味する。FIG. 1 is a flow sheet showing a specific example of the greenhouse cultivation system for plants of the present invention. The main symbols in the drawings mean the following.
Claims (7)
から発生するガスをプレッシャースイング法により炭酸
ガスとメタンとに分離、蓄積し、該炭酸ガスを植物の光
合成促進のために供給することを特徴とする植物の温室
栽培方法。(1) When cultivating plants in a greenhouse, the gas generated from the methane fermentation facility is separated into carbon dioxide and methane using the pressure swing method, accumulated, and the carbon dioxide is supplied to promote photosynthesis of the plants. Featured greenhouse cultivation methods for plants.
)記載の方法。(2) Claim (1) in which the methane is used as fuel for greenhouse heating
) method described.
)項記載の方法。(3) Claim No. (1) in which the methane is used as fuel for a heat engine.
) method described in section.
(3)項記載の方法。(4) The method according to claim (3), wherein the heat engine is used to control weather conditions in a greenhouse.
。(5) The method according to claim (3), wherein the heat engine is used for power generation.
連絡された少なくとも1基の吸着塔を備えたプレッシャ
ースイング・ガス分離装置と、該ガス分離装置の吸着ガ
ス排出端に連絡され、そこから排出される該装置により
吸着分離された炭酸ガスを蓄積する炭酸ガスタンクと、 該ガス分離装置の非吸着ガス排出端に連絡され、そこか
ら排出される分離メタンガスを蓄積するメタンガスタン
クと、 該炭酸ガスタンクから温室内に炭酸ガスを供給する供給
手段と、 該メタンガスを燃料とするバーナーまたは熱機関と、 該炭酸ガスの供給および温室内の気象条件を制御するコ
ントロール手段とからなることを特徴とする植物の温室
栽培システム。(6) a pressure swing gas separation device equipped with at least one adsorption tower, the feed gas inlet end of which is connected to the gas discharge end of the methane fermentation facility; a carbon dioxide gas tank that stores carbon dioxide adsorbed and separated by the device, which is discharged from the gas separation device; a methane gas tank that is connected to the non-adsorbed gas discharge end of the gas separation device and stores separated methane gas that is discharged from there; It is characterized by comprising a supply means for supplying carbon dioxide gas from a gas tank into the greenhouse, a burner or heat engine that uses the methane gas as fuel, and a control means for controlling the supply of the carbon dioxide gas and the weather conditions inside the greenhouse. Plant greenhouse cultivation system.
(6)項記載のシステム。(7) The system according to claim (6), wherein the heat engine is used to control weather conditions in a greenhouse.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2033463A JPH03236724A (en) | 1990-02-14 | 1990-02-14 | Greenhouse cultivation of plant and system therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2033463A JPH03236724A (en) | 1990-02-14 | 1990-02-14 | Greenhouse cultivation of plant and system therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03236724A true JPH03236724A (en) | 1991-10-22 |
Family
ID=12387239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2033463A Pending JPH03236724A (en) | 1990-02-14 | 1990-02-14 | Greenhouse cultivation of plant and system therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03236724A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000006693A1 (en) * | 1998-07-28 | 2000-02-10 | Victoria Ann Heslop | A digester |
US6205704B1 (en) * | 1998-03-09 | 2001-03-27 | William C. Crutcher | Method and apparatus for enhancing plant growth in greenhouses utilizing landfill gas |
JP2003019415A (en) * | 2001-07-06 | 2003-01-21 | Kuraray Chem Corp | Method for separating gaseous mixture |
WO2003069977A1 (en) * | 2000-07-25 | 2003-08-28 | Bingqiang Liu | Multi-storied ecological system for culturing and sequential cropping under temperature control |
EP1634946A1 (en) * | 2004-09-13 | 2006-03-15 | RÜTGERS CarboTech Engineering GmbH | Environmentally safe process for generating biological natural gas |
JP2006212524A (en) * | 2005-02-02 | 2006-08-17 | Mitsubishi Heavy Ind Ltd | Composite incineration system and method for waste |
CN102668924A (en) * | 2011-03-17 | 2012-09-19 | 淄博天尧工贸有限公司 | Circulation multifunctional greenhouse |
JP2016052630A (en) * | 2014-09-04 | 2016-04-14 | 本田技研工業株式会社 | Carbon dioxide recovery device |
JP2016119896A (en) * | 2014-12-24 | 2016-07-07 | 吉佳エンジニアリング株式会社 | Method for utilizing resources and energy |
JP2016131920A (en) * | 2015-01-19 | 2016-07-25 | 本田技研工業株式会社 | Carbon dioxide recovery device |
JP2016131921A (en) * | 2015-01-19 | 2016-07-25 | 本田技研工業株式会社 | Carbon dioxide recovery device |
CN109417957A (en) * | 2017-08-31 | 2019-03-05 | 双叶产业株式会社 | Carbon dioxide application equipment |
CN111871147A (en) * | 2019-08-27 | 2020-11-03 | 天津大学 | Movable carbon capture system applied to agricultural building |
WO2024114831A1 (en) * | 2022-12-01 | 2024-06-06 | 上海倍奇新能源科技有限公司 | Anaerobic fermentation system and method |
-
1990
- 1990-02-14 JP JP2033463A patent/JPH03236724A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6205704B1 (en) * | 1998-03-09 | 2001-03-27 | William C. Crutcher | Method and apparatus for enhancing plant growth in greenhouses utilizing landfill gas |
WO2000006693A1 (en) * | 1998-07-28 | 2000-02-10 | Victoria Ann Heslop | A digester |
WO2003069977A1 (en) * | 2000-07-25 | 2003-08-28 | Bingqiang Liu | Multi-storied ecological system for culturing and sequential cropping under temperature control |
JP2003019415A (en) * | 2001-07-06 | 2003-01-21 | Kuraray Chem Corp | Method for separating gaseous mixture |
EP1634946A1 (en) * | 2004-09-13 | 2006-03-15 | RÜTGERS CarboTech Engineering GmbH | Environmentally safe process for generating biological natural gas |
JP2006212524A (en) * | 2005-02-02 | 2006-08-17 | Mitsubishi Heavy Ind Ltd | Composite incineration system and method for waste |
CN102668924A (en) * | 2011-03-17 | 2012-09-19 | 淄博天尧工贸有限公司 | Circulation multifunctional greenhouse |
JP2016052630A (en) * | 2014-09-04 | 2016-04-14 | 本田技研工業株式会社 | Carbon dioxide recovery device |
JP2016119896A (en) * | 2014-12-24 | 2016-07-07 | 吉佳エンジニアリング株式会社 | Method for utilizing resources and energy |
JP2016131920A (en) * | 2015-01-19 | 2016-07-25 | 本田技研工業株式会社 | Carbon dioxide recovery device |
JP2016131921A (en) * | 2015-01-19 | 2016-07-25 | 本田技研工業株式会社 | Carbon dioxide recovery device |
CN109417957A (en) * | 2017-08-31 | 2019-03-05 | 双叶产业株式会社 | Carbon dioxide application equipment |
CN109417957B (en) * | 2017-08-31 | 2021-05-07 | 双叶产业株式会社 | Carbon dioxide application apparatus |
CN111871147A (en) * | 2019-08-27 | 2020-11-03 | 天津大学 | Movable carbon capture system applied to agricultural building |
WO2024114831A1 (en) * | 2022-12-01 | 2024-06-06 | 上海倍奇新能源科技有限公司 | Anaerobic fermentation system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6205704B1 (en) | Method and apparatus for enhancing plant growth in greenhouses utilizing landfill gas | |
Gruda et al. | Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production–a review | |
JPH03236724A (en) | Greenhouse cultivation of plant and system therefor | |
US20210084832A1 (en) | Devices, systems and methods for enhanced biomass growth in greenhouses | |
CA2212506C (en) | Method and apparatus for producing carbon dioxide, fungicidal compounds and thermal energy | |
Baddeley et al. | Effects of increased nitrogen and phosphorus availability on the photosynthesis and nutrient relations of three arctic dwarf shrubs from Svalbard | |
Dion et al. | Review of CO2 recovery methods from the exhaust gas of biomass heating systems for safe enrichment in greenhouses | |
RU2684594C2 (en) | Installation for treating and using animal waste comprising methanisation, cultivation of microalgae and macrophytes, and vermicultivation | |
CN101175400B (en) | Method for regulating heat and CO2 concentration of air in enclosed space | |
US20140193898A1 (en) | System for producing a biogas | |
EP4043089A1 (en) | Method and system for capturing and sequestering biogenic carbon dioxide | |
JP6090810B2 (en) | Carbon dioxide concentrator and carbon dioxide supply method | |
CN109068601A (en) | System and method for planting plants | |
JP2018110568A (en) | Plant cultivation method and plant cultivation system | |
CN115589866A (en) | Fruit tree recarburization device and use method | |
KR20120074515A (en) | Co2 collecting apparatus for anaerobic digestion tank and environment facilities of use it | |
EP3818821A1 (en) | Method for the useful recycling of a co2-containing gas stream | |
CN113813774A (en) | Carbon capture-algae/plant culture carbon fixation system | |
CN204237566U (en) | A kind of system reducing discharging Coal Chemical Industry carbonic acid gas | |
CN104115690A (en) | Method for applying industrial CO2 in crop growth | |
CN113385141B (en) | Facility CO for improving plant cultivation by applying ZSM-5 molecular sieve2Concentration and method of crop growth | |
US20180169564A1 (en) | Apparatus for Concentrating Carbon Dioxide and a Method of Supplying Carbon Dioxide | |
Longuenesse | Influence of CO2 enrichment regime on photosynthesis and yield of a tomato crop | |
Li et al. | Selecting carbon dioxide enrichment technologies for urban farming, from the perspectives of energy consumption and cost | |
Janhunen | Control of habitat's carbon dioxide level by biomass burning |