JPH03236551A - Cold transporting method - Google Patents

Cold transporting method

Info

Publication number
JPH03236551A
JPH03236551A JP3154390A JP3154390A JPH03236551A JP H03236551 A JPH03236551 A JP H03236551A JP 3154390 A JP3154390 A JP 3154390A JP 3154390 A JP3154390 A JP 3154390A JP H03236551 A JPH03236551 A JP H03236551A
Authority
JP
Japan
Prior art keywords
refrigerant
expansion chamber
heat station
cooled
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3154390A
Other languages
Japanese (ja)
Other versions
JPH086979B2 (en
Inventor
Kenji Arasawa
荒沢 健児
Hidetoshi Morimoto
秀敏 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUBATSUKU KURAIO KK
Ulvac Cryogenics Inc
Original Assignee
ARUBATSUKU KURAIO KK
Ulvac Cryogenics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUBATSUKU KURAIO KK, Ulvac Cryogenics Inc filed Critical ARUBATSUKU KURAIO KK
Priority to JP2031543A priority Critical patent/JPH086979B2/en
Publication of JPH03236551A publication Critical patent/JPH03236551A/en
Publication of JPH086979B2 publication Critical patent/JPH086979B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To enable cooling of a substance to be cooled located in a remote position by a method wherein a pipe through which a refrigerant is extracted is connected to the expansion chamber of a heat station, and a refrigerant is caused to flow to a cooling stage, making contact with the substance to be cooled, through the pipe. CONSTITUTION:In a freezing device 1, when the volume of an expansion chamber 6 of a heat station 3 is minimized, a valve 8 is opened to fill the expansion chamber 6 and a chamber 10 with a refrigerant being high pressure helium gas compressed by a compressor 2. Through movement of a displacer 5, the volume of the expansion chamber 6 is increased and a gas refrigerant is moved from the chamber 10 to the expansion chamber 6 to maintain a pressure in the expansion chamber 6 approximately at a constant value. Thereafter, when the valve 8 is closed and the valve 9 is closed, a gas refrigerant in the expansion chamber 6 is forced to flow to the compressor 2, and the temperature of the refrigerant is reduced to a low value through a Simon expansion. A pipe 11 is installed to the expansion chamber 6 of the heat station 3 to extract a refrigerant therethrough, and a refrigerant is caused to flow to a cooling stage 13 thermally contacting with a substance 12 to be cooled through the pipe 11.

Description

【発明の詳細な説明】 〈産業上の利用分野) 本発明は、クライオポンプ、超伝導マグネットの予冷、
超伝導材料の実験等に適用される寒冷輸送方法に関する
[Detailed Description of the Invention] <Industrial Application Fields> The present invention is applicable to cryopumps, precooling of superconducting magnets,
Concerns cold transport methods applied to experiments on superconducting materials.

(従来の技術) 従来、被冷却体を超低温に冷却するための寒冷輸送方法
として、例えば第6図示のように、冷凍装置Aで発生さ
せた寒冷を循環装置Bにより輸送して被冷却体Cを極低
温に冷却する方法が知られている。該冷凍装置Aは、例
えばサイモン膨脂を利用するG−Mサイクル(G i 
f fo r d −M c M a h o nサイ
クル〉の装置が用いられ、具体的には、該冷凍装置Aは
、圧縮機aと、容積可変の膨脹室eを有するヒートステ
ーションbとを配管Cで接続して構成され、該圧縮機a
で圧縮されて高圧化したガス冷媒を膨脹室eの容積を小
さくした状態のヒートステーションbに充満したのち該
膨脹室eの容積をガス冷媒の圧力を変えずに拡大し、該
膨脹室eを該圧縮機aの吸入側に接続してガス冷媒をサ
イモン膨脂させ、該膨脂室e内のガス冷媒を該膨脹室e
の縮小により排除し、この作動を繰り返1、て該ヒート
ステーション1つを極低温化するように作動する。、該
ヒートステー ジョン1)に発生(7た寒冷は、該ヒー
トステーションbに熱的に接触するヒートステーション
冷却ステージdと、被冷却体Cに熱的に接触する冷却ス
テージfとを備えた冷媒輸送ラインgに冷媒供給用圧縮
機りを介在させて前記冷凍装置Aとは別個の冷媒を循環
させるよう1こ[、y 4=循環装置Hにより運ばれ、
被冷却体Cが冷却される。該冷媒供給用圧縮機りは室温
で動作A−るため、冷媒輸送ラインgに設けられた熱交
換器lにより冷媒の行きと戻りで熱交換を行う。
(Prior Art) Conventionally, as a cold transport method for cooling an object to be cooled to an ultra-low temperature, for example, as shown in FIG. A method is known to cool the material to an extremely low temperature. The refrigeration device A is, for example, a GM cycle (G i
Specifically, the refrigeration system A connects a compressor a and a heat station b having a variable-volume expansion chamber e through piping. The compressor a
After filling the heat station b with the compressed and high-pressure gas refrigerant in a state where the volume of the expansion chamber e is reduced, the volume of the expansion chamber e is expanded without changing the pressure of the gas refrigerant. It is connected to the suction side of the compressor a to subject the gas refrigerant to Simon fat expansion, and the gas refrigerant in the fat expansion chamber e is transferred to the expansion chamber e.
This operation is repeated 1 to bring the heat station to a cryogenic temperature. , the cold generated in the heat station 1) is cooled by a refrigerant provided with a heat station cooling stage d in thermal contact with the heat station b and a cooling stage f in thermal contact with the object to be cooled C. A refrigerant supply compressor is interposed in the transportation line g to circulate a refrigerant separate from the refrigeration device A.
The object to be cooled C is cooled. Since the refrigerant supply compressor operates at room temperature, the heat exchanger l provided in the refrigerant transport line g exchanges heat between the refrigerant and its return.

また、第6図;l′Xの冷媒輸送ラインZを設置)ずに
、ヒートステーション1〕に直接に被冷却体Cを熱的に
接触させる直接冷却タイプの冷却方性も知られている。
Furthermore, a direct cooling type cooling method is also known in which the object to be cooled C is brought into direct thermal contact with the heat station 1] without installing the refrigerant transport line Z of l'X in FIG.

(発明が解決17ようとする課題) 前記従来の寒冷輸送方法は、冷凍装置Aと循環装置Hの
夫々に別個の冷媒を循環させるので、2台の冷媒圧縮機
a、hか心変になり、設備及び運転コスI・が高くなる
不都合があった。まノー、冷媒輸送ラインgに設置ノら
れた熱交換器lの熱交換効率が、冷却ステージfの能力
を決定する上で重要な要素になるが、該熱交換器1を安
価Hつコンパクトに製作するJ]とは困難て、、該熱交
換器1の1.−めに装置が高価で大型になる欠点があっ
た。
(Problems to be Solved by the Invention 17) In the conventional refrigerated transportation method, separate refrigerants are circulated in each of the refrigeration device A and the circulation device H, so the two refrigerant compressors a and h may change their minds. However, there was an inconvenience that equipment and operating costs were high. Although the heat exchange efficiency of the heat exchanger l installed in the refrigerant transport line g is an important factor in determining the capacity of the cooling stage f, it is possible to make the heat exchanger 1 inexpensive and compact. 1 of the heat exchanger 1 is difficult to manufacture. -The disadvantage was that the equipment was expensive and large.

このような不都合、欠点は、冷媒輸送ラインgが無く、
被冷却体Cを直接にヒートステーションhに接触させた
直接冷却タイプの場合には生じないが、その反面、冷凍
装置Aの振動が被冷却体に伝わりやすく、被冷却体Cを
加熱1−7たときに、熱が冷凍装置Aに伝わって損傷す
る等の悪影響が発生ずる欠点がある。
These inconveniences and drawbacks are that there is no refrigerant transport line g;
This does not occur in the case of the direct cooling type in which the object C is brought into direct contact with the heat station h, but on the other hand, the vibrations of the refrigeration device A are easily transmitted to the object to be cooled, causing the object C to be heated 1-7. When this happens, heat is transferred to the refrigeration device A, causing damage and other negative effects.

本発明は、こう1.た不都合、欠点を解決り、、冷凍装
置から遠隔位置にある被冷却体を簡単安価に冷却するこ
とが可能な寒冷輸送ツノ法を提供することを目的とする
ものである。
The present invention is as follows: 1. The object of the present invention is to provide a refrigerated transport horn method that solves the above disadvantages and drawbacks and can simply and inexpensively cool objects located remote from a refrigeration system.

(課題を解決するための手段) 本発明では、圧縮機ど膨脹室を有するヒートステーショ
ンとを備え5、該圧縮機により高ff化されたffス冷
媒を膨脹室を小容積と1.たヒートステーションに充満
さゼー1次いて該ヒートステーションの膨脹室の容積を
その内部のガス冷媒の圧力を変えずに拡大したのち該膨
脹室を該圧縮機の吸入側に接続I7てガス冷媒をサイモ
ン膨脂させ、該膨脹室内のガス冷媒を該膨脹室の縮小に
より排除1.て該ヒートステーションを極低温化する冷
凍装置に於て、該ヒートステーションの膨脹室に、該冷
媒を抽出するバイブを接続し、該バイブを介して被冷却
体に接1.た冷却ステージへ該冷媒を流通させたことに
より、遠隔位置にある被冷却体を冷却するように1−た
(Means for Solving the Problems) In the present invention, a compressor and a heat station having an expansion chamber are provided, and the FF refrigerant increased in FF by the compressor is transferred to the expansion chamber with a small volume. Then, the volume of the expansion chamber of the heat station is expanded without changing the pressure of the gas refrigerant therein, and the expansion chamber is connected to the suction side of the compressor to supply the gas refrigerant. Simon expands the fat and removes the gas refrigerant in the expansion chamber by reducing the expansion chamber.1. In a refrigeration system that lowers the heat station to an extremely low temperature, a vibrator for extracting the refrigerant is connected to the expansion chamber of the heat station, and the object to be cooled is contacted via the vibrator. By flowing the refrigerant to the cooling stage, the object to be cooled at a remote location was cooled.

(作用) 圧縮機により例えばヘリウムガスの冷媒を圧縮l、て膨
脹室の容積が最小状態にあるヒートステーション内に充
満させ、次いで該膨脹室の容積をその内部のガス冷媒の
圧力を変えずに拡大12、該膨脹室を該圧縮機の吸入側
に接続l−でガス冷媒をザイモン膨狭により冷却I7た
のち該膨脹室の容積を縮小させてその内部のガス冷媒を
排除17、この作動を繰り返すことによりヒートステー
ションが極低温に冷却されることは従来の冷凍機の場合
と同様であるが、本発明の場8、該ヒートステーション
の膨脹室に接続1−たバイブから該冷媒が抽出されて直
接に冷却ステージへと流通するので、該冷却ステージも
ヒートステーションと同様に冷却され、これに熱的に接
触させて設けた被冷却体を小型簡素な手段で冷却でき、
冷凍機の振動が被冷却体に伝わり難く、また、被冷却体
が加熱されたときにその熱が冷凍機に伝わり難く、冷凍
機の損傷も防止できる。
(Operation) A refrigerant, for example, helium gas, is compressed by a compressor to fill the heat station in which the volume of the expansion chamber is in a minimum state, and then the volume of the expansion chamber is reduced without changing the pressure of the gas refrigerant inside. Expansion 12, connect the expansion chamber to the suction side of the compressor l-, cool the gas refrigerant by Zymon expansion and constriction I7, then reduce the volume of the expansion chamber to eliminate the gas refrigerant inside 17, perform this operation. The heat station is repeatedly cooled to an extremely low temperature, as in the case of conventional refrigerators, but in the case of the present invention, the refrigerant is extracted from a vibrator connected to the expansion chamber of the heat station. Since the heat station directly flows to the cooling stage, the cooling stage is also cooled in the same way as the heat station, and an object to be cooled provided in thermal contact with the cooling stage can be cooled by a small and simple means.
The vibrations of the refrigerator are less likely to be transmitted to the object to be cooled, and when the object to be cooled is heated, the heat is less likely to be transmitted to the refrigerator, thereby preventing damage to the refrigerator.

(実施例) 本発明の実施例を図面に基づき説明すると、第1図に於
て、符号(1)は圧縮機(2)とヒートステーション(
3)を配管0)により接続して構成した例えば(、−M
サイクル (GiffordM c M a h o 
11サイクル)の冷凍装置をjミす。
(Embodiment) An embodiment of the present invention will be explained based on the drawings. In Fig. 1, reference numeral (1) indicates a compressor (2) and a heat station (
For example, (, -M) configured by connecting 3) with piping 0)
Cycle (GiffordMcMaho
11 cycles) refrigeration equipment.

該冷凍装置(1)の詳細は第2図示の如くであり、往復
動するピストン状のディスプレーザー(5)を内部に備
えたシリンダ状のヒートステーション〈3〉内の1室を
膨脂室(6)に構成し、該膨脂室(6)を、途中に蓄冷
器(7)及びバルブ(8) (9)を設けた配管(4)
を介して圧縮機(2)の吸入側と吐出側に接続し、更に
該蓄冷器(7)の前方の配管(4)が該ヒートステーシ
ョン(3)のもう−方の室(10)に接続される。
The details of the refrigeration system (1) are as shown in the second figure, and one chamber in a cylindrical heat station (3) equipped with a reciprocating piston-shaped dispersor (5) is a fat expansion chamber (1). 6), and the fat expansion chamber (6) is connected to a pipe (4) provided with a regenerator (7) and valves (8) and (9) in the middle.
It is connected to the suction side and the discharge side of the compressor (2) through the pipe, and the pipe (4) in front of the regenerator (7) is connected to the other chamber (10) of the heat station (3). be done.

該冷凍装置(L)は、ヒートステーション(3)の膨脂
室(6)の容積が最小のときに、バルブ(8)を開いて
圧縮機(2〉で圧縮された高圧のヘリウムガスの冷媒を
膨脂室(6〉及び室(10)に充満させ、次いでディス
プレーサ−(5)を移動させて膨脂室(6)の容積を拡
大すると共に室(10〉から膨脂室(6)にガス冷媒を
移動させて該膨脂室(6)の圧力を略一定に維持し、こ
のあとバルブ(8)を閉じバルブ(9〉を開くと該膨脂
室(6)のガス冷媒が圧縮機(2)へと流出してサイモ
ン膨脂で低温化し、該ヒートステーション(3)が低温
になり、ディスプレーサ−(5)を膨脂室(6)を最小
とする位置に移動させ、この作動を例えば1秒間に1回
繰り返すことにより該ヒートステーション(3〉が極低
温になる。
The refrigeration system (L) opens the valve (8) when the volume of the fat expansion chamber (6) of the heat station (3) is at its minimum, and supplies high-pressure helium gas refrigerant compressed by the compressor (2). Fill the fat-blowing chamber (6> and chamber (10) with The gas refrigerant is moved to maintain the pressure in the fat expansion chamber (6) at a substantially constant level, and when the valve (8) is closed and the valve (9> is opened), the gas refrigerant in the fat expansion chamber (6) is transferred to the compressor. The heat station (3) becomes low temperature and moves the displacer (5) to the position where the fat expansion chamber (6) is minimized, and this operation is activated. For example, by repeating this once every second, the heat station (3) becomes extremely cold.

こうした構成・作動は従来の冷凍装置と変わりがないが
、本発明では該ヒートステーション(3)の膨脂室(6
)にバイブ(11〉を設けて冷媒を抽出し、該バイブ(
11)を介して被冷却体(12)に熱的に接触させた冷
却ステージ(13)に該冷媒を流通させるようにしたの
で、該膨脂室(6〉内の圧力変動に伴い該バイブ(11
)の中を冷却されたヘリウムガスの冷媒が往復運動を行
い、冷却ステージ(13〉が極低温に冷却され、これに
接した被冷却体(12)が極低温に冷却される。
These configurations and operations are the same as those of conventional refrigeration equipment, but in the present invention, the fat expansion chamber (6) of the heat station (3)
) is equipped with a vibrator (11>) to extract the refrigerant, and the vibrator (
Since the refrigerant is made to flow through the cooling stage (13) which is in thermal contact with the object to be cooled (12) through the cooling device (11), the vibration ( 11
) The cooled helium gas refrigerant makes a reciprocating motion, cooling the cooling stage (13>) to an extremely low temperature, and cooling the object to be cooled (12) in contact with it to an extremely low temperature.

該冷却ステージ(13)の冷却能力を上げるためには、
バイブ(11)の終端に大きな空間を設け、該冷却ステ
ージ(13)を通過する冷媒の量を増やせばよいが、G
−Mサイクルの冷凍装置の性能は、第3図のP−v線図
(14)に見られるように、圧縮機(2)で作られる高
圧と低圧の圧力差と、膨脂室(6)の体積変化で決まる
ものであるため、冷却ステージ(13)を通過する冷媒
の量を増やすために過剰に設けた空間はすべてデッドス
ペースとなって圧縮機(2)での圧力差がとれなくなる
原因になり、また冷媒の流量が増えることにより蓄冷器
(7)の効率が下かり、かえって冷凍能力が低下するの
で、バイブ(11)を流通する冷媒の量は冷凍装置に見
合った量に設定することが好ましい。第3図の符号(1
5)は冷凍装置(1〉にバイブ(11)を設けた場合の
P−v線図である。
In order to increase the cooling capacity of the cooling stage (13),
A large space may be provided at the end of the vibrator (11) to increase the amount of refrigerant passing through the cooling stage (13), but G
- The performance of the M cycle refrigeration system is determined by the pressure difference between the high pressure and low pressure created by the compressor (2) and the fat expansion chamber (6), as seen in the P-v diagram (14) in Figure 3. This is determined by the change in volume of the refrigerant, so any excess space created to increase the amount of refrigerant passing through the cooling stage (13) becomes a dead space, causing the pressure difference in the compressor (2) to become impossible. , and as the flow rate of refrigerant increases, the efficiency of the regenerator (7) decreases, and the refrigerating capacity decreases, so the amount of refrigerant flowing through the vibrator (11) should be set to an amount commensurate with the refrigeration system. It is preferable. Symbol (1) in Figure 3
5) is a P-v diagram when a vibrator (11) is provided in the refrigeration device (1>).

上記の冷凍装置(1)にはG−Mサイクルを使用したが
、ツルベイサイクルやスターリングサイクルの冷凍装置
を使用してもよく、ヒートステーション(3)を第4図
、第5図示のように2段に構成し、一方の段から或いは
両方の段からバイブ(11)を介して冷媒を抽出し、2
個の冷却ステージ(13)で2個の被冷却体(12)を
冷却することもできる。
Although the G-M cycle was used for the above-mentioned refrigeration system (1), a Tsurubay cycle or Stirling cycle refrigeration system may also be used. The refrigerant is extracted from one stage or both stages via a vibrator (11).
It is also possible to cool two objects (12) to be cooled using two cooling stages (13).

第4図、第5図の場合、冷凍能力アップのために、バイ
ブ(11)の塞いだ終端をヒートステーション(3)に
接触させて冷却し、或いはバイブ(11)の終端にリザ
ーバ(16)を取り付け、該バイブ(11)の冷媒の流
通量を増大するようにした。
In the case of Figures 4 and 5, in order to increase the refrigerating capacity, the closed end of the vibrator (11) is cooled by contacting the heat station (3), or a reservoir (16) is placed at the end of the vibrator (11). was attached to increase the flow rate of refrigerant through the vibrator (11).

第4図示の実施例の場合の冷凍能力を測定したところ、
第1段のヒートステーション(3a〉に連なる冷却ステ
ージ(13a)が80に1第2段のヒートステーション
(3b)に連なる冷却ステージ(13b)が20にの時
、第1段の冷却ステージ(18a)で5W、第2段の冷
却ステージ(13b)でIWの冷凍能力が得られた。
When the refrigerating capacity was measured in the case of the example shown in Figure 4,
When the cooling stage (13a) connected to the first stage heat station (3a> ), a cooling capacity of 5W was obtained, and a cooling capacity of IW was obtained at the second cooling stage (13b).

(発明の効果) 以上のように本発明では、サイモン膨脂により極低温に
冷却されるヒートステーションの膨脂室から、被冷却体
に熱的に接触させた冷却ステージへ冷媒をバイブを介し
て流通させたので、ヒートステーションから遠隔位置に
設けた被冷却体を別個の循環装置を設けることなく簡単
且つ安価で狭いスペース内に於て極低温に冷却すること
ができ、ヒートステーションの冷媒をバイブで抽出する
ので、軽量な設備で遠くに寒冷を輸送出来、ヒートステ
ーションと被冷却体とを十分に離せてヒートステーショ
ンへの熱的影響や被伶却体への冷凍装置からの振動の影
響を最小限にすることができる等の効果がある。
(Effects of the Invention) As described above, in the present invention, the refrigerant is transferred from the fat expansion chamber of the heat station, which is cooled to an extremely low temperature by Simon swelling fat, to the cooling stage, which is in thermal contact with the object to be cooled, via the vibrator. By circulating the refrigerant in the heat station, it is possible to easily and inexpensively cool objects to be cooled located at a remote location from the heat station to extremely low temperatures in a narrow space without installing a separate circulation device. Because it extracts cold water over long distances with lightweight equipment, the heat station and the object to be cooled can be separated sufficiently to prevent thermal effects on the heat station and vibrations from the refrigeration equipment on the object to be cooled. It has the effect of being able to minimize the amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の側面図、第2図は第1図の具
体的な説明図、第3図はG−Mサイクル冷凍装置のP−
v線図、第4図および第5図は本発明の他の実施例の側
面図、第6図は従来例の側面図である。 (1)・・・冷凍装置 (2〉・・・圧縮機 (3〉・・・ヒートステーション (4)・・・配管 (6)・・・膨脂室 (11〉・・・バイブ (12)・・・被冷却体 (13〉・・・冷却ステージ
Fig. 1 is a side view of an embodiment of the present invention, Fig. 2 is a concrete explanatory diagram of Fig. 1, and Fig. 3 is a P-M cycle refrigeration system.
The V diagram, FIGS. 4 and 5 are side views of other embodiments of the present invention, and FIG. 6 is a side view of a conventional example. (1) Refrigeration equipment (2> Compressor (3> Heat station (4) Piping (6) Fat expansion chamber (11) Vibrator (12) ...Object to be cooled (13>...Cooling stage

Claims (1)

【特許請求の範囲】[Claims] 圧縮機と膨脹室を有するヒートステーションとを備え、
該圧縮機により高圧化されたガス冷媒を膨脹室を小容積
としたヒートステーションに充満させ、次いで該ヒート
ステーションの膨脹室の容積をその内部のガス冷媒の圧
力を変えずに拡大したのち該膨脹室を該圧縮機の吸入側
に接続してガス冷媒をサイモン膨脹させ、該膨脹室内の
ガス冷媒を該膨脹室の縮小により排除して該ヒートステ
ーションを極低温化する冷凍装置に於て、該ヒートステ
ーションの膨脹室に、該冷媒を抽出するパイプを接続し
、該パイプを介して被冷却体に接した冷却ステージへ該
冷媒を流通させたことを特徴とする寒冷輸送方法。
Equipped with a compressor and a heat station having an expansion chamber,
A heat station with a small expansion chamber is filled with gas refrigerant pressurized by the compressor, and then the volume of the expansion chamber of the heat station is expanded without changing the pressure of the gas refrigerant therein, and then the expansion is performed. In a refrigeration system, a chamber is connected to the suction side of the compressor to subject the gas refrigerant to Simon expansion, and the gas refrigerant in the expansion chamber is removed by contraction of the expansion chamber to bring the heat station to a cryogenic temperature. 1. A cold transport method, characterized in that a pipe for extracting the refrigerant is connected to an expansion chamber of a heat station, and the refrigerant is caused to flow through the pipe to a cooling stage in contact with an object to be cooled.
JP2031543A 1990-02-14 1990-02-14 Cold transportation method Expired - Lifetime JPH086979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2031543A JPH086979B2 (en) 1990-02-14 1990-02-14 Cold transportation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031543A JPH086979B2 (en) 1990-02-14 1990-02-14 Cold transportation method

Publications (2)

Publication Number Publication Date
JPH03236551A true JPH03236551A (en) 1991-10-22
JPH086979B2 JPH086979B2 (en) 1996-01-29

Family

ID=12334107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031543A Expired - Lifetime JPH086979B2 (en) 1990-02-14 1990-02-14 Cold transportation method

Country Status (1)

Country Link
JP (1) JPH086979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001127A1 (en) * 2001-06-21 2003-01-03 Air Water Inc. Cold storage type freezing machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139959A (en) * 1987-11-27 1989-06-01 Sumitomo Heavy Ind Ltd Helium refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139959A (en) * 1987-11-27 1989-06-01 Sumitomo Heavy Ind Ltd Helium refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001127A1 (en) * 2001-06-21 2003-01-03 Air Water Inc. Cold storage type freezing machine
US7047749B2 (en) 2001-06-21 2006-05-23 Air Water Inc. Regenerative refrigerating apparatus

Also Published As

Publication number Publication date
JPH086979B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
CN103062951B (en) Low-temperature J-T (Joule-Thomson) throttling cooler precooled by Stirling/pulse tube composite type cooler
CN100467976C (en) Cryogenic vessel system with pulse tube refrigeration
US3609982A (en) Cryogenic cycle and apparatus for refrigerating a fluid
US6263677B1 (en) Multistage low-temperature refrigeration machine
JPS61256158A (en) Refrigeration system
JPH07180921A (en) Stirling cold storage box
JPH03236551A (en) Cold transporting method
US4281517A (en) Single stage twin piston cryogenic refrigerator
JPH031053A (en) Refrigerating machine
JP3618886B2 (en) Pulse tube refrigerator
JPH0452468A (en) Cryogenic refrigerator
JPH03286967A (en) Pulse pipe type freezer
JP3152542B2 (en) Refrigeration equipment
JPH0996480A (en) Low-temperature storage box
JP2980624B2 (en) Cooling method using heat storage type liquid receiver and liquid pump, and cooling and heating methods
JPH0151747B2 (en)
JP2834897B2 (en) Refrigeration equipment
JP2525269B2 (en) Refrigeration system
Lee et al. The influence of gas velocity on surface heat pumping for the orifice pulse tube refrigerator
JPH05312423A (en) Double inlet type freezer device
JPS6256420B2 (en)
JPH11257769A (en) Cold storage refrigerating machine
JPH08189716A (en) Cool storage vessel type refrigerating machine
JP2526904B2 (en) Cryogenic device
JPS5840454A (en) Cryogenic refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 15