JPH03236471A - Reduced pressure vapor growth device - Google Patents

Reduced pressure vapor growth device

Info

Publication number
JPH03236471A
JPH03236471A JP3081390A JP3081390A JPH03236471A JP H03236471 A JPH03236471 A JP H03236471A JP 3081390 A JP3081390 A JP 3081390A JP 3081390 A JP3081390 A JP 3081390A JP H03236471 A JPH03236471 A JP H03236471A
Authority
JP
Japan
Prior art keywords
gas
supply system
gaseous
film
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3081390A
Other languages
Japanese (ja)
Inventor
Minoru Osaki
大嵜 実
Mitsutoshi Shudo
首藤 光利
Yasushi Fukazawa
深澤 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON EE S M KK
NEC Corp
NEC Kyushu Ltd
Original Assignee
NIPPON EE S M KK
NEC Corp
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON EE S M KK, NEC Corp, NEC Kyushu Ltd filed Critical NIPPON EE S M KK
Priority to JP3081390A priority Critical patent/JPH03236471A/en
Publication of JPH03236471A publication Critical patent/JPH03236471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the uniformity in the quality of a film to be formed by diluting the gaseous impurity to be mixed into the film with an inert gas so as to uniformly blow a gaseous impurity against the surface of a sample. CONSTITUTION:A wafer 10 held by its holder 9 is set in a reaction furnace 3 by a hatch 8, etc. Fixed amts. of the gases for vapor-phase reaction are introduced into the furnace 3 from a TEOS(tetraethoxysilane) supply system 1 and a gaseous oxygen supply system 4. A gaseous dopant is supplied from a system 5 for supplying gaseous TMOB(tetramethyl ester of boron), gaseous N2 is discharged from an inert gas supply system 7 to dilute the dopant before entering a gas inlet pipe 6, and the mixture is introduced into the furnace 3. Even a minute amt. of the dopant is uniformly blown against the surface of the wafer 10, and a film uniform in quality is formed on the surface of the wafer 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造工程において用いられる減圧
式気相成長装置に関し、特に不純物ガスの供給手段に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reduced pressure vapor phase growth apparatus used in the manufacturing process of semiconductor devices, and particularly to means for supplying impurity gas.

5従来の技術〕 従来、この種の減圧式気相成長は第2図に示す様に、反
応炉3内にウェーハ保持部9により保持されたウェーハ
10をハツチ8等によりセットし、真空排気システム1
1により一定の真空状態にしたのち、例えばTE01 
(テトラエトキシシラン)ガス供給システム1や酸素ガ
ス供給システム4より流量コントローラ2,2Aを介し
て気相反応ガスを反応炉3内に導入し、同時に微量の不
純物をウェーハ10の表面に形成される膜に導入する為
の気相反応ガス(以下ドーピングガスという)を、例え
ばTMOB (ホウ素トリメチルエステル)供給システ
ム5より流量コントローラ2Bでその流量をコントロー
ルして、均一に不純物が成長膜に混入するように複数の
穴を有するガス導入管6を通して反応炉3内に流す構成
となっていた。
5. Prior Art] Conventionally, in this type of reduced-pressure vapor phase growth, as shown in FIG. 1
After creating a constant vacuum state using 1, for example, TE01
(Tetraethoxysilane) A gas phase reaction gas is introduced into the reactor 3 from the gas supply system 1 and the oxygen gas supply system 4 via the flow rate controllers 2 and 2A, and at the same time, a small amount of impurity is formed on the surface of the wafer 10. The flow rate of a gas phase reaction gas (hereinafter referred to as doping gas) to be introduced into the film is controlled by a flow controller 2B from, for example, a TMOB (boron trimethyl ester) supply system 5, so that impurities are uniformly mixed into the grown film. It was configured to flow into the reactor 3 through a gas introduction pipe 6 having a plurality of holes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の減圧式気相成長装置に於ては、ドーピン
グガスを導入する複数の穴が開いたガス導入管6の穴径
と穴位置にウェーハ10表面に形成される膜の膜質が依
存する傾向がある。特にドーピングガスを微量に流す場
合はこの傾向が顕著にでて膜質を悪くし、歩留りを低下
させるという欠点がある。
In the conventional reduced pressure vapor phase growth apparatus described above, the quality of the film formed on the surface of the wafer 10 depends on the hole diameter and hole position of the gas introduction tube 6, which has a plurality of holes for introducing doping gas. Tend. In particular, when a small amount of doping gas is flowed, this tendency is noticeable, resulting in poor film quality and a reduction in yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の減圧式気相成長装置は、反応炉内にセットされ
た試料表面に膜を形成する為の気相反応ガスを供給する
ガス供給システムと、前記膜内に不純物を混入させる為
の不純物ガス供給システムとを有する減圧式気相成長装
置に於て、前記不純物ガスを不活性ガスで希釈する為の
手段を設けたものである。
The reduced pressure vapor phase growth apparatus of the present invention includes a gas supply system that supplies a vapor phase reaction gas to form a film on the surface of a sample set in a reactor, and an impurity system that supplies impurities to the film. The present invention is a reduced pressure type vapor phase growth apparatus having a gas supply system, and is provided with means for diluting the impurity gas with an inert gas.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の模式断面図であり、ウェー
ハ表面にBPSG膜を成長させる場合を示している。
FIG. 1 is a schematic cross-sectional view of one embodiment of the present invention, showing the case where a BPSG film is grown on the surface of a wafer.

第1図において減圧式気相成長装置は、反応炉3と、こ
の反応炉3内を排気する真空ポンプ等からなる真空排気
システム11と、反応炉3内に気相反応ガスを供給する
ためのTEOSガス供給システム1及び酸素ガス供給シ
ステム4と、ドーピングガスを供給するためのTMOB
ガス供給システム5と、このドーピングガスを希釈する
ためのドーピングガス配管に接続された不活性ガス供給
システム7とから主に構成されている。以下操作方法と
共に更に説明する。
In FIG. 1, the reduced pressure vapor phase growth apparatus includes a reactor 3, a vacuum evacuation system 11 consisting of a vacuum pump etc. for evacuating the inside of the reactor 3, and a system 11 for supplying a vapor phase reaction gas into the reactor 3. TEOS gas supply system 1, oxygen gas supply system 4, and TMOB for supplying doping gas
It mainly consists of a gas supply system 5 and an inert gas supply system 7 connected to a doping gas pipe for diluting the doping gas. This will be further explained below along with the operating method.

反応炉3内にウェーハ保持具9により保持されたウェー
ハ10をハツチ8等によりセットし、反応炉3内を真空
排気システム11により一定の真空状態とする。次でT
EOSガス供給システム1と酸素ガス供給システム4よ
り流量コントローラ2.2Aを介して一定量の気相反応
ガスを反応炉3内に導入する。同時にドーピングガスを
TM○Bガス供給システム5から流量コントローラ2B
によりその流量をコントロールすると共に、不活性ガス
供給システム7からN2ガスを出して流量コントローラ
2Cで流量をコントロールし、複数の穴を有するガス導
入管6に入る前でこのドーピングガスを希釈する。
A wafer 10 held by a wafer holder 9 is set in a reaction furnace 3 using a hatch 8 or the like, and the inside of the reaction furnace 3 is brought into a constant vacuum state by an evacuation system 11. Next T
A certain amount of gas phase reaction gas is introduced into the reactor 3 from the EOS gas supply system 1 and the oxygen gas supply system 4 via the flow rate controller 2.2A. At the same time, the doping gas is supplied from the TM○B gas supply system 5 to the flow rate controller 2B.
At the same time, N2 gas is output from the inert gas supply system 7 and the flow rate is controlled by the flow rate controller 2C to dilute the doping gas before it enters the gas introduction pipe 6 having a plurality of holes.

なおドーピングガスとしては、TMOBガスの他にホス
フィン(p)(3)ガスを他のガス導入管より反応炉3
に同時導入する。
In addition to TMOB gas, phosphine (p) (3) gas was introduced into the reactor 3 from another gas introduction pipe as a doping gas.
will be introduced simultaneously.

このように本発明によれば、ドーピングガスとしてのT
MOBガスは、N2ガスにより希釈されてガス導入管6
より導入されるため、ドーピングガスが微量の場合でも
ドーピングガスは均一にウェーハ10の表面に吹き付け
られる。従って、つ工−ハ10の表面に形成される膜は
均一な膜質のものとなる。
Thus, according to the present invention, T as a doping gas
The MOB gas is diluted with N2 gas and passed through the gas introduction pipe 6.
Since the doping gas is introduced in a small amount, the doping gas can be uniformly sprayed onto the surface of the wafer 10 even if the amount of the doping gas is small. Therefore, the film formed on the surface of the tube 10 has a uniform quality.

なお、上記実施例においては不活性ガスとしてN2ガス
を用いた場合について説明したが、Ar等他のガスであ
ってもよい。
In addition, although the case where N2 gas was used as an inert gas was demonstrated in the said Example, other gases, such as Ar, may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は、不純物ガスを微量に流して
使用する減圧式気相成長装置において、不純物ガスを不
活性ガスで希釈するための手段を設けることにより、不
純物ガスを試料に均一に吹き付けることかできるため、
試料表面に形成される膜の膜質の均一性を向上させるこ
とができるという効果がある。
As explained above, the present invention provides a means for diluting the impurity gas with an inert gas in a reduced pressure vapor phase growth apparatus that is used by flowing a small amount of impurity gas, thereby uniformly distributing the impurity gas onto the sample. Because it can be sprayed,
This has the effect of improving the uniformity of the film quality of the film formed on the sample surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の模式断面図、第2図は従来
の減圧式気相成長装置の模式断面図である。 1・・・TEOSガス供給システム、2A、2B。 2C・・・流量コントローラ、3・・・反応炉、4・・
・酸素ガス供給システム、5・・・TMOBガス供給シ
ステム、6・・・ガス導入管、7・・・不活性ガス供給
システム、8・・・ハツチ、9・・・ウェーハ保持治具
、10・・・ウェーハ、11・・・真空排気システム。
FIG. 1 is a schematic sectional view of an embodiment of the present invention, and FIG. 2 is a schematic sectional view of a conventional reduced pressure type vapor phase growth apparatus. 1...TEOS gas supply system, 2A, 2B. 2C...Flow rate controller, 3...Reactor, 4...
- Oxygen gas supply system, 5... TMOB gas supply system, 6... Gas introduction pipe, 7... Inert gas supply system, 8... Hatch, 9... Wafer holding jig, 10. ...Wafer, 11...Vacuum exhaust system.

Claims (1)

【特許請求の範囲】[Claims] 反応炉内にセットされた試料表面に膜を形成する為の気
相反応ガスを供給するガス供給システムと、前記膜内に
不純物を混入させる為の不純物ガス供給システムとを有
する減圧式気相成長装置に於て、前記不純物ガスを不活
性ガスで希釈する為の手段を設けたことを特徴とする減
圧式気相成長装置。
A reduced pressure vapor phase growth system that has a gas supply system that supplies a gas phase reaction gas to form a film on the surface of a sample set in a reactor, and an impurity gas supply system that mixes impurities into the film. A reduced pressure type vapor phase growth apparatus, characterized in that the apparatus is provided with means for diluting the impurity gas with an inert gas.
JP3081390A 1990-02-09 1990-02-09 Reduced pressure vapor growth device Pending JPH03236471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081390A JPH03236471A (en) 1990-02-09 1990-02-09 Reduced pressure vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081390A JPH03236471A (en) 1990-02-09 1990-02-09 Reduced pressure vapor growth device

Publications (1)

Publication Number Publication Date
JPH03236471A true JPH03236471A (en) 1991-10-22

Family

ID=12314133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081390A Pending JPH03236471A (en) 1990-02-09 1990-02-09 Reduced pressure vapor growth device

Country Status (1)

Country Link
JP (1) JPH03236471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333266B1 (en) 1998-03-12 2001-12-25 Nec Corporation Manufacturing process for a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333266B1 (en) 1998-03-12 2001-12-25 Nec Corporation Manufacturing process for a semiconductor device

Similar Documents

Publication Publication Date Title
US6197694B1 (en) In situ method for cleaning silicon surface and forming layer thereon in same chamber
JPH04218916A (en) Heat treatment device
JPS6115322A (en) Homogeneous chemical depositing method and device therefor
CN101477945B (en) Method and apparatus for preventing/reducing substrate back polymer deposition
JPH03236471A (en) Reduced pressure vapor growth device
US4651673A (en) CVD apparatus
JPH03263818A (en) Metal organic vapor growth apparatus
JPH04279022A (en) Semiconductor manufacturing device
JPH0658880B2 (en) Vapor phase epitaxial growth system
JPS6136372B2 (en)
JPS6134932A (en) Vapor growing process
US5286523A (en) Method of processing substrates and substrate processing apparatus
JPH0888187A (en) Equipment and method for vapor growth of semiconductor
JPH11102871A (en) Manufacture of semiconductor single-crystal thin film
JPH01257321A (en) Vapor growth apparatus
JP2000195812A (en) Vapor phase doping apparatus and vapor phase doping method
EP0279406A2 (en) Device for forming silicon oxide film
JPH01106425A (en) Manufacture of semiconductor device
JPH11186171A (en) Semiconductor manufacturing device
JPH01148788A (en) Device for vapor phase epitaxial growth
JPH0722124B2 (en) Exhaust gas device for CVD furnace
JPH04329626A (en) Processor of semiconductor device
JPH0669138A (en) Low pressure vapor phase epitaxial growth system
JPH0648829Y2 (en) Compound semiconductor vacuum vapor deposition equipment
JPH10237654A (en) Vapor growth device