JPH0323539Y2 - - Google Patents

Info

Publication number
JPH0323539Y2
JPH0323539Y2 JP13996280U JP13996280U JPH0323539Y2 JP H0323539 Y2 JPH0323539 Y2 JP H0323539Y2 JP 13996280 U JP13996280 U JP 13996280U JP 13996280 U JP13996280 U JP 13996280U JP H0323539 Y2 JPH0323539 Y2 JP H0323539Y2
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
electrode terminal
coefficient thermistor
sealing plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13996280U
Other languages
Japanese (ja)
Other versions
JPS5763230U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13996280U priority Critical patent/JPH0323539Y2/ja
Publication of JPS5763230U publication Critical patent/JPS5763230U/ja
Application granted granted Critical
Publication of JPH0323539Y2 publication Critical patent/JPH0323539Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Volume Flow (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Thermistors And Varistors (AREA)

Description

【考案の詳細な説明】 本考案は、たとえば液面計、流量計または温度
計等のセンサとして好適な正特性サーミスタ装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a positive temperature coefficient thermistor device suitable as a sensor for, for example, a liquid level gauge, a flow meter, or a thermometer.

正特性サーミスタは、周知ように、正の抵抗温
度係数を有するチタン酸バルウム系半導体磁器に
電極を付与して構成されるものであるが、第1図
に示すように、温度がキユリー温度TC1を超える
と電気抵抗値が急激に増大する特異な正の抵抗温
度特性を示す。第2図はこの正特性サーミスタの
基本的な構造を示す図で、正特性サーミスタ素体
1の両面上に電極2,3を被着形成した構造とな
つている。いま電極2−3間に交流または直流電
圧を印加すると、電圧印加の初期は、第1図に示
すように抵抗値が低いため、比較的大きな突入電
流が流れ、正特性サーミスタが自己発熱する。発
熱温度がキユリー温度TC1を超ええると、抵抗値
が急激に増加して電流が絞られ、入力エネルギー
と熱放散量とが平衡する点で、正特性サーミスタ
の発熱温度および電流が安定する。
As is well known, a positive temperature coefficient thermistor is constructed by attaching electrodes to barium titanate semiconductor porcelain, which has a positive temperature coefficient of resistance. It exhibits a unique positive resistance-temperature characteristic in which the electrical resistance value increases rapidly when the temperature exceeds . FIG. 2 is a diagram showing the basic structure of this PTC thermistor, in which electrodes 2 and 3 are formed on both sides of the PTC thermistor body 1. When an alternating current or direct current voltage is applied between the electrodes 2 and 3, at the beginning of the voltage application, since the resistance value is low as shown in FIG. 1, a relatively large inrush current flows and the positive temperature coefficient thermistor self-heats. When the heat generation temperature exceeds the Curie temperature TC 1 , the resistance value increases rapidly and the current is throttled, and the heat generation temperature and current of the positive temperature coefficient thermistor become stable at the point where the input energy and the amount of heat dissipation are balanced.

電極2−3間に加えられる印加電圧をV1
(V)、電流をI1(A)、発熱温度をT(℃)とし、
正特性サーミスタのおかれてる周囲媒質の温度を
Ta(℃)とすると、熱平衡時には近似的に次の方
程式が成立する。
The applied voltage applied between electrodes 2 and 3 is V 1 ,
(V), current I 1 (A), heat generation temperature T (℃),
The temperature of the surrounding medium in which a positive temperature coefficient thermistor is placed
Assuming Ta (°C), the following equation approximately holds true at thermal equilibrium.

V1・I1=D(T−Ta) ……(1) 但しDは熱放散係数 上記(1)式の左辺は正特性サーミスタの入力エネ
ルギーを示し、右辺はその熱放散量を示してい
る。すなわち、正特性サーミスタは、熱放散量D
(T−Ta)が増減すると、それにつれて入力エネ
ルギーV1・I1も増減し、両者が等しくなる点で熱
平衡する。したがつて、印加電圧V1を一定とし
た場合、熱放散量D(T−Ta)が増減すると、そ
れにつれて電流I1が増減することとなるから、電
流I1の変化より熱放散量D(T−Ta)の変化、即
ち周囲媒質が正特性サーミスタに対して及ぼす冷
却効果の変化を検出することができる。周囲媒質
が正特性サーミスタに対して及ぼす冷却効果は、
周囲媒質の熱伝導性竿の物性的特性、温度または
流速等に依存するから、電流I1の変化より周囲媒
質の種類の変化、温度もしくは流速等の変化を検
出することができる。このような特性に着目し、
液面計、流量計または温度計のセンサ部分とし
て、正特性サーミスタを利用した正特性サーミス
タ装置が提案されている。
V 1・ I 1 = D (T - Ta) ... (1) where D is the heat dissipation coefficient The left side of the above equation (1) indicates the input energy of the positive temperature coefficient thermistor, and the right side indicates the amount of heat dissipation. . In other words, the positive temperature coefficient thermistor has a heat dissipation amount D
When (T-Ta) increases or decreases, the input energy V 1 ·I 1 also increases or decreases, and thermal equilibrium is achieved at the point where both become equal. Therefore, when the applied voltage V 1 is constant, if the heat dissipation amount D (T - Ta) increases or decreases, the current I 1 increases or decreases accordingly, so the heat dissipation amount D It is possible to detect a change in (T-Ta), that is, a change in the cooling effect that the surrounding medium has on the positive temperature coefficient thermistor. The cooling effect of the surrounding medium on a positive temperature coefficient thermistor is
Since it depends on the physical properties of the thermally conductive rod of the surrounding medium, temperature, flow velocity, etc., changes in the type of surrounding medium, temperature, flow velocity, etc. can be detected from changes in the current I1 . Focusing on these characteristics,
A positive temperature coefficient thermistor device using a positive temperature coefficient thermistor has been proposed as a sensor part of a liquid level gauge, a flow meter, or a thermometer.

第3図は液面計用の液面センサ用として具体化
された従来の正特性サーミスタ装置の正面断面図
を示し、ガラス管4の一端部寄りの内部に平板状
の正特性サーミスタ5を内蔵せしめ、該正特性サ
ーミスタ5の両面に設けた電極に弾性電極端子6
および電極端子7を対接させると共に、該電極端
子6,7に対してリード線8,9を軸方向から対
接させ、該リード線8,9をガラス管4の軸方向
の両端側に導出した構造となつている。
FIG. 3 shows a front sectional view of a conventional positive temperature coefficient thermistor device embodied as a liquid level sensor for a liquid level gauge, and a flat positive temperature coefficient thermistor 5 is built inside the glass tube 4 near one end. Finally, elastic electrode terminals 6 are connected to the electrodes provided on both sides of the positive temperature coefficient thermistor 5.
and the electrode terminals 7 are brought into contact with each other, and the lead wires 8 and 9 are brought into contact with the electrode terminals 6 and 7 from the axial direction, and the lead wires 8 and 9 are led out to both ends of the glass tube 4 in the axial direction. It has a similar structure.

しかし、この従来の正特性サーミスタ装置は、
正特性サーミスタ5、電極端子6,7をガラス管
4の軸方向に重ね、その両側からリード線8,9
によつて支える構造であるため、組立が容易でな
く、しかも組立後の安定性が悪く、機械的衝撃や
振動等によつて正特性サーミスタ5、電極端子
6,7の組立構造が簡単に崩れてしまう欠点があ
つた。また、正特性サーミスタ5、電極端子6,
7の組立構造が、ガラス管4の軸方向に長く延び
る構造となるため、正特性サーミスタ5の入る内
部空間の容積が大きくなり、熱応答性が悪く、感
度が鈍いとう欠点もあつた。
However, this conventional positive temperature coefficient thermistor device
The positive temperature coefficient thermistor 5 and electrode terminals 6 and 7 are stacked in the axial direction of the glass tube 4, and lead wires 8 and 9 are connected from both sides.
Because the structure is supported by the PTC thermistor 5 and the electrode terminals 6 and 7, it is not easy to assemble, and the stability after assembly is poor. There were some drawbacks. In addition, a positive characteristic thermistor 5, an electrode terminal 6,
Since the assembly structure of No. 7 has a structure that extends long in the axial direction of the glass tube 4, the volume of the internal space in which the positive temperature coefficient thermistor 5 is inserted becomes large, resulting in poor thermal response and low sensitivity.

更に、リード線8,9をガラス管4の軸方向の
両端側に導出せざるを得ないため、液面センサ等
に使用した場合には、一方のリード線9が必ず液
中を通ることとなり、液に対する電気絶縁性を損
ない易いとう欠点があつた。また、リード線9が
ガラス管4の端面を貫通しているため、両者9−
4間の界面に隙間を生じた場合は、その隙間を通
つて液がガラス管4の内部に侵入し、動作不良を
生じ、最悪の場合には電極間短絡を招いて動作不
能もしくは破壊に至る場合もあつた。
Furthermore, since the lead wires 8 and 9 have to be led out to both ends of the glass tube 4 in the axial direction, when used for a liquid level sensor, etc., one lead wire 9 must pass through the liquid. However, it has the disadvantage that it tends to impair electrical insulation against liquids. In addition, since the lead wire 9 passes through the end surface of the glass tube 4, both 9-
If a gap is created at the interface between the tubes 4 and 4, the liquid will enter the inside of the glass tube 4 through the gap, causing malfunction, and in the worst case, short circuit between the electrodes, leading to inoperability or destruction. There were cases.

本考案は上述する従来の欠点を除去し、機械的
衝撃や振動に対する安定性が高く、検出感度が鋭
敏で、しかも周囲媒質に対する電気的絶縁性およ
び封止性に優れた高信頼性の正特性サーミスタ装
置を提供することを目的とする。
The present invention eliminates the above-mentioned conventional drawbacks, and has high stability against mechanical shock and vibration, high detection sensitivity, and highly reliable positive characteristics with excellent electrical insulation and sealing properties against the surrounding medium. The purpose is to provide a thermistor device.

上記目的を達成するため、本考案は、ガラス質
容器の内部に、一対の電極端子間に弾性的に支持
された正特性サーミスタを封入した正特性サーミ
スタ装置において、前記ガラス質容器は先端部が
ガラス質連続壁によつて袋状に閉じられた中空管
体とし、その後端側の開口部をガラス質封栓によ
つて封止してなり、前記一対の電極端子は、平板
状の一面側を凹陥させて形成された凹陥部を有す
る電極端子と、平板状の先端部を鉤形に湾曲させ
て形成した湾曲部を有する別の電極端子とより構
成すると共に、前記凹陥部及び前記湾曲部が前記
ガラス質容器の前記中空部内で対向するようにし
て、一端側を前記封栓に固着して並設し、前記正
特性サーミスタは、前記電極端子に形成された前
記凹陥部内に入れて位置決め固定するとともに、
この正特性サーミスタの上面側の電極に前記別の
電極端子の前記湾曲部を圧接させて、前記電極端
子間で弾性的に挟持し、更に前記電極端子に対
し、前記封栓を通して、ガラス質被覆を施した一
対の独立するリード線をそれぞれ導通接続させ、
これらのリード線のガラス質被覆を前記封栓に一
体的に固着して接続させたことを特徴とする。
In order to achieve the above object, the present invention provides a positive temperature coefficient thermistor device in which a positive temperature coefficient thermistor that is elastically supported between a pair of electrode terminals is enclosed inside a glass container, wherein the glass container has a tip end. The hollow tube body is closed like a bag by a continuous glass wall, and the opening on the rear end side is sealed with a glass sealing plug. An electrode terminal having a concave portion formed by recessing the side thereof, and another electrode terminal having a curved portion formed by curving a flat tip portion into a hook shape, and the electrode terminal includes the concave portion and the curved portion. The positive temperature coefficient thermistor is placed in the concave portion formed in the electrode terminal, with one end side firmly attached to the sealing plug so that the two portions face each other in the hollow portion of the glass container. In addition to positioning and fixing,
The curved portion of the other electrode terminal is brought into pressure contact with the electrode on the upper surface side of the positive temperature coefficient thermistor, and the curved portion of the another electrode terminal is held elastically between the electrode terminals. Connect a pair of independent lead wires with conductivity,
The present invention is characterized in that the vitreous coatings of these lead wires are integrally fixed and connected to the sealing plug.

以下実施例たる添付図面を参照し、本考案の内
容を具体的に説明する。第4図は本考案に係る正
特性サーミスタ装置の正面断面図である。図にお
いて、第3図と同一の参照符号は機能的に同一性
ある構造部分を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The content of the present invention will be specifically described below with reference to the accompanying drawings, which are examples. FIG. 4 is a front sectional view of a positive temperature coefficient thermistor device according to the present invention. In the figures, the same reference numerals as in FIG. 3 indicate functionally identical structural parts.

この実施例では、ガラスまたはガラスセラミツ
ク等で構成されたガラス質容器4は、先端部4a
を連続壁によつて封止した袋状の中空管体とし、
後端部の開口部を同質のガラス封栓10によつて
封着し、該封栓10に一端部を埋め込んで前記容
器4の中空部内に並設した一対の電極端子6−7
間に、正特性サーミスタ5を圧支した構造として
ある。
In this embodiment, the vitreous container 4 made of glass or glass ceramic has a tip 4a.
is a bag-like hollow tube sealed by a continuous wall,
A pair of electrode terminals 6-7 are arranged in parallel in the hollow part of the container 4 by sealing the opening at the rear end with a glass sealing plug 10 of the same quality, and embedding one end in the sealing plug 10.
It has a structure in which a positive temperature coefficient thermistor 5 is supported in between.

上述のように、ガラス質容器4は、先端部4a
がガラス質連続壁によつて袋状に閉じられた中空
管体とし、その後端側の開口部をガラス質封栓1
0によつて封止してあると、液中において検出端
となる先端部4aがガラス質連続壁による完全な
封止構造となり、ガラス質容器4内に液等が侵入
する余地がなくなり、液の侵入による動作不良、
電極間短絡等をほぼ完全に防止することができる
ようになる。
As mentioned above, the vitreous container 4 has a tip end 4a.
is a hollow tube closed like a bag by a vitreous continuous wall, and the opening on the rear end side is a vitreous sealing plug 1.
0, the tip part 4a, which becomes the detection end in the liquid, has a completely sealed structure with a continuous glass wall, and there is no room for liquid etc. to enter into the glass container 4, and the liquid malfunction due to intrusion,
Short circuits between electrodes, etc. can be almost completely prevented.

また、一対の電極端子6,7の一端部を封栓1
0内に埋め込み、その電極端子6−7間で正特性
サーミスタを5を圧支する構造であると、電極端
子6,7の支持構造が強固になり、電極端子6,
7のグラツキがなくなるから、機械的衝撃や振動
が加わつても、正特性サーミスタ5を電極端子6
−7間に確実に圧支し、その脱落事故などを防止
することができる。しかも、一対の電極端子6,
7の一端側だけを封栓10内に埋め込み、他端側
は中空部内で開放してあるから、ガラス質容器4
及び封栓10と電極端子6,7との間の熱膨張係
数の差に起因する熱的ストレスの発生箇所が、電
極端子6,7の埋め込み部分だけに限定され、電
極端子6,7の長さ方向の両端側から引つ張るよ
うな熱的ストレスが発生することがない。このた
め、電極端子6,7のバネ性が熱的に劣化するこ
とがなく、正特性サーミスタ5を長期に亘つて安
定に圧支することができる。
Also, one end of the pair of electrode terminals 6 and 7 is sealed with the plug 1.
If the structure is such that the positive temperature coefficient thermistor 5 is embedded within the electrode terminals 6 and 7, the support structure for the electrode terminals 6 and 7 becomes strong, and the electrode terminals 6 and
7 is eliminated, even if mechanical shock or vibration is applied, the positive temperature coefficient thermistor 5 can be connected to the electrode terminal 6.
-7 can be reliably pressed and accidents such as falling off can be prevented. Moreover, a pair of electrode terminals 6,
Since only one end of 7 is embedded in the sealing plug 10 and the other end is open in the hollow part, the vitreous container 4
The location where thermal stress occurs due to the difference in thermal expansion coefficient between the sealing plug 10 and the electrode terminals 6, 7 is limited to only the embedded portions of the electrode terminals 6, 7, and the length of the electrode terminals 6, 7 is No tensile thermal stress is generated from both ends in the longitudinal direction. Therefore, the spring properties of the electrode terminals 6 and 7 do not deteriorate thermally, and the positive temperature coefficient thermistor 5 can be stably supported over a long period of time.

更に、電極端子6,7を並設してその間に正特
性サーミスタ5を圧支する構造、すなわち電極端
子6,7および正特性サーミスタ5を、容器4の
内部に並列的に配置する構造であるから、第3図
の軸方向配列の場合に比べて、容器4の内部空間
の容積を著しく縮小し、正特性サーミスタ5の熱
応答性を高め、検出感度を向上させることができ
る。
Further, there is a structure in which the electrode terminals 6 and 7 are arranged in parallel and the PTC thermistor 5 is supported between them, that is, the electrode terminals 6 and 7 and the PTC thermistor 5 are arranged in parallel inside the container 4. Therefore, compared to the case of the axial arrangement shown in FIG. 3, the volume of the internal space of the container 4 can be significantly reduced, the thermal response of the PTC thermistor 5 can be improved, and the detection sensitivity can be improved.

また、電極端子6,7による正特性サーミスタ
5の支持位置が、ガラス質容器4の中空部内とな
つているから、正特性サーミスタ5がガラス質容
器4の熱膨張、熱容量等の影響を受けることがな
くなる。このため、正特性サーミスタ5に対する
熱的ストレスが緩和され、正特性サーミスタの熱
的劣化が防止されると共に、微小な温度変化をも
確実に感知できるようになる。
Furthermore, since the position where the positive temperature coefficient thermistor 5 is supported by the electrode terminals 6 and 7 is inside the hollow part of the glass container 4, the positive temperature coefficient thermistor 5 is not affected by the thermal expansion, heat capacity, etc. of the glass container 4. disappears. Therefore, thermal stress on the PTC thermistor 5 is alleviated, thermal deterioration of the PTC thermistor is prevented, and even minute temperature changes can be reliably sensed.

正特性サーミスタ5と電極端子6,7の結合構
造は、第5図に拡大して示すように、電極端子7
の一面側にプレス加工等の手段によつて凹陥部7
aを形成し、該凹陥部7a内に正特性サーミスタ
5を入れて位置決めすると共に、この正特性サー
ミスタ5の上面側の電極に、電極端子6のバネ片
6aを圧接させた構造となつている。このような
構造であると、電極端子6,7に対する、正特性
サーミスタ5の位置決めが容易になると同時に、
位置ズレが防止され、正特性サーミスタ5の脱落
等がより完全に防止される。
The coupling structure between the positive temperature coefficient thermistor 5 and the electrode terminals 6 and 7 is as shown in an enlarged view in FIG.
A concave portion 7 is formed on one side of the plate by means such as press processing.
a, and a positive temperature coefficient thermistor 5 is inserted and positioned in the recessed part 7a, and a spring piece 6a of an electrode terminal 6 is pressed against the upper electrode of the positive coefficient thermistor 5. . With such a structure, positioning of the positive temperature coefficient thermistor 5 with respect to the electrode terminals 6 and 7 becomes easy, and at the same time,
Misalignment is prevented, and falling off of the PTC thermistor 5 is more completely prevented.

また、液面計、液量計または温度センサとして
使用する場合、正特性サーミスタ5は1mm角程度
の微小部品となるが普通であるため、高度に支持
安定性を確保しつつ、支持構造の熱容量を小さく
し、検出感度を高める構造をとることが必要であ
る。本考案においては、上述したように、正特性
サーミスタ5を挟持する電極端子が、平板状の一
面側を凹陥させて形成された凹陥部7aを有する
電極端子7と、平板状の先端部を鉤形に湾曲させ
て形成した湾曲部6aを有する電極端子6との組
合せとなつていて、正特性サーミスタ5を、電極
端子7に形成された前記凹陥部7a内に入れて位
置決め固定するとともに、この正特性サーミスタ
5の上面側の電極に電極端子6の湾曲部6aを圧
接させて、正特性サーミスタ5を弾性的に挟持す
る構造であるから、正特性サーミスタ5が微小で
あつても、確実に安定に支持できる。しかも、電
極端子6,7は、平板部材で成り、凹陥部7aや
湾曲部6aを有するだけの小型かつ薄型の形状と
なるので、熱容量を小さくし、検出感度を高める
ことができる。
In addition, when used as a liquid level gauge, liquid volume meter, or temperature sensor, the positive temperature coefficient thermistor 5 is normally a minute component with a size of about 1 mm square, so while ensuring a high degree of support stability, the heat capacity of the support structure is It is necessary to adopt a structure that reduces the detection sensitivity and increases the detection sensitivity. In the present invention, as described above, the electrode terminal holding the PTC thermistor 5 has the electrode terminal 7 having the recessed part 7a formed by recessing one side of the flat plate, and the electrode terminal 7 having the flat tip thereof hooked. The positive temperature coefficient thermistor 5 is placed in the recessed part 7a formed in the electrode terminal 7, and is positioned and fixed. Since the structure is such that the curved portion 6a of the electrode terminal 6 is brought into pressure contact with the electrode on the upper surface side of the PTC thermistor 5 and the PTC thermistor 5 is elastically held, even if the PTC thermistor 5 is minute, it can be reliably Can be stably supported. Moreover, since the electrode terminals 6 and 7 are made of flat plate members and have a small and thin shape with only the concave portion 7a and the curved portion 6a, the heat capacity can be reduced and the detection sensitivity can be increased.

前記電極端子6,7の一端部には、ガラス質被
覆11を施したリード線8,9の一端を、たとえ
ばスポツト溶着等の手段によつて接続固定してあ
る。このリード線8,9は、ガラス質被覆11の
基部を封栓10に一体的に固着して同一方向に導
出してある。このような構造であると、リード線
8,9、電極端子6,7および正特性サーミスタ
5に対する電気的絶縁性および封止性が非常に高
くなり、信頼性が向上する。
One ends of lead wires 8, 9 coated with a glassy coating 11 are connected and fixed to one ends of the electrode terminals 6, 7 by, for example, spot welding or the like. The lead wires 8 and 9 are integrally fixed to the base of the vitreous coating 11 to the sealing plug 10 and led out in the same direction. With such a structure, the electrical insulation and sealing properties for the lead wires 8, 9, electrode terminals 6, 7, and positive temperature coefficient thermistor 5 are extremely high, and reliability is improved.

また、この実施例では、電極端子6,7とリー
ド線8,9の接続部分を、ガラス質封栓10の内
部を封着して機械的接続強度の弱い接続部分を補
強し、リード線8,9が引張り力等によつて電極
端子6,7から剥離しないようにしてある。なお
リード線8,9は、ガラス質被覆11や封栓10
の線膨張係数とできるだけ近い線膨張係数を有す
る導線、たとえばジユメツト線によつて構成する
ことが望ましい。
In addition, in this embodiment, the connection parts between the electrode terminals 6, 7 and the lead wires 8, 9 are sealed inside the glass sealing plug 10 to reinforce the connection parts with weak mechanical connection strength, and the lead wires 8, 9 are sealed. , 9 are prevented from peeling off from the electrode terminals 6, 7 due to tensile force or the like. Note that the lead wires 8 and 9 are connected to the vitreous coating 11 and the sealing plug 10.
It is preferable to use a conductive wire, such as a composite wire, having a coefficient of linear expansion as close as possible to that of .

第6図は本考案に係る正特性サーミスタを液面
計用の液面センサとして使用した場合の電圧電流
特性図を示し、横軸に印加電圧(DCV)をとり、
縦軸に電流(mA)をとつてある。曲線A1は正特
性サーミスタ5のあるガラス質容器4を水中に入
れた場合の特性、曲線A2は前記容器4を水中か
ら引き上げて空気中においた場合の特性をそれぞ
れ示している。
Figure 6 shows a voltage-current characteristic diagram when the positive temperature coefficient thermistor according to the present invention is used as a liquid level sensor for a liquid level gauge, and the horizontal axis represents the applied voltage (DCV).
The vertical axis shows the current (mA). Curve A 1 shows the characteristics when the glass container 4 containing the positive temperature coefficient thermistor 5 is placed in water, and curve A 2 shows the characteristics when the container 4 is lifted out of water and placed in air.

正特性サーミスタ5としては、キユリー温度
TC1=90℃、常温(20℃)抵抗R20=170Ωで、
1x1x0.5tmmの形状のものを使用し、これを3.3φmm
のガラス質容器4内に封入した。
As the positive characteristic thermistor 5, the Curie temperature
TC 1 = 90℃, room temperature (20℃) resistance R 20 = 170Ω,
Use a 1x1x0.5 t mm shape and convert it to 3.3φmm
It was sealed in a glass container 4.

図に示すように、ガラス質容器4を水中に入れ
た場合と、空気中においた場合とでは、2〜4m
A程度の電流変化が得られるから、検出感度の鋭
敏な液面センサを実現することができる。また印
加電圧が変化した場合でも、同一電圧で2〜4m
A程度の電流変化が得られるから、電圧変動に対
して安定に動作するセンサを得ることができる。
As shown in the figure, the difference between the case where the glass container 4 is placed in water and the case where it is placed in the air is 2 to 4 m.
Since a current change of about A can be obtained, a liquid level sensor with high detection sensitivity can be realized. In addition, even if the applied voltage changes, it will be 2 to 4 m at the same voltage.
Since a current change of approximately A can be obtained, a sensor that operates stably against voltage fluctuations can be obtained.

以上述べたように、本考案によれば次のような
効果が得られる。
As described above, according to the present invention, the following effects can be obtained.

(a) ガラス質容器の内部に、一対の電極端子間に
弾性的に支持された正特性サーミスタを封入し
た正特性サーミスタにおいて、ガラス質容器は
先端部がガラス質連続壁によつて袋状に閉じら
れた中空管体とし、その後端側の開口部をガラ
ス質封栓によつて封止してなるから、液中にお
いて検出端となるガラス質容器の先端部がガラ
ス質連続壁による完全な封止構造となり、ガラ
ス質容器内に液等が侵入する余地がなくなる。
このため、液の侵入による動作不良、電極間短
絡等をほぼ完全に防止することができる。
(a) In a positive temperature coefficient thermistor in which a positive temperature coefficient thermistor elastically supported between a pair of electrode terminals is enclosed inside a glass container, the tip of the glass container is formed into a bag shape by a continuous glass wall. Since it is a closed hollow tube and the opening on the rear end side is sealed with a vitreous sealing plug, the tip of the vitreous container, which becomes the detection end in the liquid, is completely sealed by the vitreous continuous wall. It has a sealed structure, and there is no room for liquid etc. to enter into the glass container.
Therefore, malfunctions caused by liquid intrusion, short circuits between electrodes, etc. can be almost completely prevented.

(b) 一対の電極端子は、ガラス質容器中空部内で
対向するようにして、一端側をガラス質封栓に
固着して並設し、正特性サーミスタを電極端子
間で弾性的に挟持したから、次のような効果が
得られる。
(b) A pair of electrode terminals were arranged side by side with one end fixed to a glass sealing plug so as to face each other inside the hollow part of the glass container, and a positive temperature coefficient thermistor was elastically sandwiched between the electrode terminals. , the following effects can be obtained.

(b1) 電極端子の支持構造が強固になり、
グラツキがなくなるから、機械的衝撃や振動
が加わつても、正特性サーミスタを電極端子
間に確実に圧支し、この脱落事故などを防止
することができる。
(b1) The support structure of the electrode terminal becomes stronger,
Since there is no wobble, even if mechanical shock or vibration is applied, the positive temperature coefficient thermistor can be reliably pressed between the electrode terminals, and accidents such as falling off can be prevented.

(b2) 一対の電極端子の一端側だけを封栓
内に埋め込み、他端側は中空部内で開放して
あるから、ガラス質容器及び封栓と電極端子
との間の熱膨張係数の差に起因する熱的スト
レスの発生箇所が、電極端子の埋め込み部分
だけに限定され、電極端子の長さ方向の両端
側から引つ張るような熱的ストレスが発生す
ることがない。こため、電極端子のバネ性が
熱的に劣化することがなく、正特性サーミス
タを長期に亘つて安定に圧支することができ
る。
(b2) Since only one end of the pair of electrode terminals is embedded in the sealing cap, and the other end is open in the hollow space, the difference in thermal expansion coefficient between the glass container and the sealing cap and the electrode terminal The location where the resulting thermal stress occurs is limited to only the embedded portion of the electrode terminal, and no tensile thermal stress is generated from both longitudinal ends of the electrode terminal. Therefore, the spring properties of the electrode terminals are not thermally degraded, and the positive temperature coefficient thermistor can be stably supported over a long period of time.

(b3) 電極端子を並設してその間に正特性
サーミスタを圧支する構造であるから、第3
図の軸方向配列の場合に比べて、容器の内部
空間の容積を著しく縮小し、正特性サーミス
タの熱応答性を高め、検出感度を向上させる
ことができる。
(b3) Since the structure is such that the electrode terminals are arranged in parallel and the positive temperature coefficient thermistor is supported between them, the third
Compared to the case of the axial arrangement shown in the figure, the volume of the internal space of the container can be significantly reduced, the thermal response of the PTC thermistor can be improved, and the detection sensitivity can be improved.

(b4) 電極端子による正特性サーミスタの
支持位置が、ガラス質容器の中空部内となつ
ているから、正特性サーミスタがガラス質容
器の熱膨張、熱容量等の影響を受けることが
なくなる。このため、正特性サーミスタに対
する熱的ストレスが緩和され、正特性サーミ
スタ熱的劣化が防止されると共に、微小な温
度変化をも確実に感知できるようになる。
(b4) Since the position where the PTC thermistor is supported by the electrode terminal is within the hollow part of the glass container, the PTC thermistor is not affected by thermal expansion, heat capacity, etc. of the glass container. Therefore, thermal stress on the PTC thermistor is alleviated, thermal deterioration of the PTC thermistor is prevented, and even minute temperature changes can be reliably sensed.

(c) 一対の電極端子は、平板状の一面側を凹陥さ
せて形成された凹陥部を有する電極端子と、平
板状の先端部を鉤形に湾曲させて形成した湾曲
部を有する別の電極端子とより構成すると共
に、正特性サーミスタは、電極端子に形成され
た凹陥部内に入れて位置決め固定するととも
に、この正特性サーミスタの上面側の電極に、
別の電極端子の湾曲部を圧接させて、電極端子
間で弾性的に挟持する構造であるから、次のよ
うな効果が得られる。
(c) A pair of electrode terminals includes an electrode terminal having a recessed part formed by recessing one side of a flat plate, and another electrode having a curved part formed by curving the tip of the flat plate into a hook shape. The positive temperature coefficient thermistor is positioned and fixed by being placed in a recess formed in the electrode terminal, and the positive temperature coefficient thermistor has an electrode on the upper surface side of the positive temperature coefficient thermistor.
Since the structure is such that the curved portion of another electrode terminal is pressed into contact with the other electrode terminals and elastically sandwiched between the electrode terminals, the following effects can be obtained.

(a1) 正特性サーミスタが微小であつても、
電極端子に対する正特性サーミスタの位置決
めが容易になると同時に、位置ズレが防止さ
れ、正特性サーミスタの脱落等がより完全に
防止される確実に安定に支持できる。
(a1) Even if the positive temperature coefficient thermistor is minute,
The positive temperature coefficient thermistor can be easily positioned with respect to the electrode terminal, and at the same time, positional deviation is prevented, and the positive temperature coefficient thermistor can be more completely prevented from falling off, and can be supported reliably and stably.

(c2) 電極端子は、平板部材で成り、凹陥部
や湾曲部を有するだけの小型かつ薄型の形状
となるので、熱容量を小さくし、検出感度を
高めることができる。
(c2) Since the electrode terminal is made of a flat plate member and has a small and thin shape with only a recessed part and a curved part, the heat capacity can be reduced and the detection sensitivity can be increased.

(d) 更に電極端子に対し、封栓を通して、ガラス
質被覆を施した一対の独立するリード線をそれ
ぞれ導通接続させ、これらのリード線のガラス
質被覆を封栓に一体的に固着して連続させたか
ら、リード線、電極端子および正特性サーミス
タに対する電気的絶縁性および封止性が非常に
高くなり、信頼性が向上する。
(d) Furthermore, a pair of independent glass-coated lead wires are electrically connected to the electrode terminals through the sealing plugs, and the glassy coatings of these lead wires are integrally fixed to the sealing plugs so as to connect them continuously. As a result, electrical insulation and sealing properties for lead wires, electrode terminals, and positive temperature coefficient thermistors are extremely high, and reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は正特性サーミスタの抵抗温度特性図、
第2図は同じくその基本的な構造を示す断面図、
第3図は従来の液面計用の正特性サーミスタ装置
の正面断面図、第4図は本考案に係る正特性サー
ミスタ装置の正面断面図、第5図は同じく要部の
拡大分解斜視図、第6図は液面センサとして用い
た場合の電圧電流特性図である。 4……ガラス質容器、5……正特性サーミス
タ、6,7……電極端子、8,9……リード線、
10……封栓、11……ガラス被覆。
Figure 1 is a resistance temperature characteristic diagram of a positive temperature coefficient thermistor.
Figure 2 is a sectional view showing its basic structure.
FIG. 3 is a front sectional view of a conventional positive temperature coefficient thermistor device for a liquid level gauge, FIG. 4 is a front sectional view of a positive temperature coefficient thermistor device according to the present invention, and FIG. 5 is an enlarged exploded perspective view of the main parts. FIG. 6 is a voltage-current characteristic diagram when used as a liquid level sensor. 4... Glass container, 5... Positive temperature coefficient thermistor, 6, 7... Electrode terminal, 8, 9... Lead wire,
10...Sealing, 11...Glass coating.

Claims (1)

【実用新案登録請求の範囲】 (1) ガラス質容器の内部に、一対の電極端子間に
弾性的に支持された正特性サーミスタを封入し
た正特性サーミスタ装置において、前記ガラス
質容器は先端部がガラス質連続壁によつて袋状
に閉じられた中空管体とし、その後端側の開口
部をガラス質封栓によつて封止してなり、前記
一対の電極端子は、平板状の一面側を凹陥させ
て形成された凹陥部を有する電極端子と、平板
状の先端部を鉤形に湾曲させて形成した湾曲部
を有する別の電極端子とより構成すると共に、
前記凹陥部及び前記湾曲部が前記ガラス質容器
の前記中空部内で対向するようにして、一端側
を前記封栓に固着して並設し、前記正特性サー
ミスタは、前記電極端子に形成された前記凹陥
部内に入れて位置決め固定するとともに、この
正特性サーミスタの上面側の電極に前記別の電
極端子の前記湾曲部を圧接させて、前記電極端
子間で弾性的に挟持し、更に前記電極端子に対
し、前記封栓を通して、ガラス質被覆を施した
一対の独立するリード線をそれぞれ導通接続さ
せ、これらのリード線のガラス質被覆を前記封
栓に一体的に固着して連続させたことを特徴と
する正特性サーミスタ装置。 (2) 前記電極端子と前記リード線の接続部分は、
前記封栓内に位置させたことを特徴とする実用
新案登録請求の範囲第1項に記載の正特性サー
ミスタ装置。 (3) 前記リード線はジユメツト線より成ることを
特徴とする実用新案登録請求の範囲第1項また
は第2項に記載の正特性サーミスタ装置。
[Claims for Utility Model Registration] (1) A PTC thermistor device in which a PTC thermistor elastically supported between a pair of electrode terminals is enclosed inside a glass container, wherein the glass container has a tip end. The hollow tube body is closed like a bag by a continuous glass wall, and the opening on the rear end side is sealed with a glass sealing plug. Consisting of an electrode terminal having a concave portion formed by recessing the side, and another electrode terminal having a curved portion formed by curving a flat tip portion into a hook shape,
The concave portion and the curved portion are arranged side by side with one end fixed to the sealing plug so as to face each other in the hollow portion of the glass container, and the positive temperature coefficient thermistor is formed on the electrode terminal. The PTC thermistor is inserted into the concave portion, positioned and fixed, and the curved portion of the other electrode terminal is brought into pressure contact with the electrode on the upper surface side of the PTC thermistor to be elastically sandwiched between the electrode terminals. On the other hand, a pair of independent lead wires coated with glass are electrically connected through the sealing plug, and the glassy coatings of these lead wires are integrally fixed to the sealing plug and continuous. Characteristic positive characteristic thermistor device. (2) The connection portion between the electrode terminal and the lead wire is
The positive temperature coefficient thermistor device according to claim 1, wherein the PTC thermistor device is located within the sealing plug. (3) The positive temperature coefficient thermistor device according to claim 1 or 2, wherein the lead wire is made of a composite wire.
JP13996280U 1980-09-30 1980-09-30 Expired JPH0323539Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13996280U JPH0323539Y2 (en) 1980-09-30 1980-09-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13996280U JPH0323539Y2 (en) 1980-09-30 1980-09-30

Publications (2)

Publication Number Publication Date
JPS5763230U JPS5763230U (en) 1982-04-15
JPH0323539Y2 true JPH0323539Y2 (en) 1991-05-22

Family

ID=29499893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13996280U Expired JPH0323539Y2 (en) 1980-09-30 1980-09-30

Country Status (1)

Country Link
JP (1) JPH0323539Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046116B2 (en) 2002-11-12 2006-05-16 Heraeus Sensor Technology Gmbh Temperature probe and its use
US8183974B2 (en) 2007-09-28 2012-05-22 Heracus Sensor Technology GmbH 1200° C. film resistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643915B2 (en) * 1986-01-13 1994-06-08 松下電器産業株式会社 Continuous level gauge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046116B2 (en) 2002-11-12 2006-05-16 Heraeus Sensor Technology Gmbh Temperature probe and its use
US8183974B2 (en) 2007-09-28 2012-05-22 Heracus Sensor Technology GmbH 1200° C. film resistor

Also Published As

Publication number Publication date
JPS5763230U (en) 1982-04-15

Similar Documents

Publication Publication Date Title
JPH0351913Y2 (en)
JPH0323539Y2 (en)
US5142267A (en) Level sensor which has high signal gain and can be used for fluids particularly chemically corrosive fluids
JPH0323538Y2 (en)
JPS6222821Y2 (en)
US3175178A (en) Electric temperature probe
JPH0514470Y2 (en)
JPS595919A (en) Heat sensitive type flow rate detector
JP2014190804A (en) Humidity sensor
JPH095173A (en) Temperature detector
JP3045559B2 (en) Pirani vacuum gauge
JPH11153466A (en) Flow sensor
JPH0120664Y2 (en)
JPH06242048A (en) Thermal conduction type absolute humidity sensor
CN217390439U (en) Sensing mechanism, empty pot detection device and electric rice cooker
JPS5914733Y2 (en) Air flow detection device
JPS6312923A (en) Liquid level detector
JPS6219954Y2 (en)
JPS64715Y2 (en)
JP3555229B2 (en) Temperature sensor
JPS6236243Y2 (en)
JP2524801Y2 (en) Positive characteristic thermistor device
JPS5850630Y2 (en) heating element device
JPH0331041Y2 (en)
JP2569725Y2 (en) Positive characteristic thermistor device