JPH03234013A - Removal of vacuum evaporated metal electrodes of two-side metallized film - Google Patents

Removal of vacuum evaporated metal electrodes of two-side metallized film

Info

Publication number
JPH03234013A
JPH03234013A JP3085890A JP3085890A JPH03234013A JP H03234013 A JPH03234013 A JP H03234013A JP 3085890 A JP3085890 A JP 3085890A JP 3085890 A JP3085890 A JP 3085890A JP H03234013 A JPH03234013 A JP H03234013A
Authority
JP
Japan
Prior art keywords
metallized film
electrode
evaporated metal
vacuum evaporated
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3085890A
Other languages
Japanese (ja)
Inventor
Masayasu Fukai
深井 昌康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3085890A priority Critical patent/JPH03234013A/en
Publication of JPH03234013A publication Critical patent/JPH03234013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To set a static electricity capacity of a metallized film capacitor with a high precision by the method wherein a part of vacuum evaporated metal electrode on one side of a two-side metallized film is removed by electric discharging and then a vacuum evaporated metal electrode on the other side is removed by laser. CONSTITUTION:A vacuum evaporated metal electrode on one side of a two-side metallized film which is made by forming vacuum evaporated metal electrodes 2 on both sides of a plastic film 1 is removed by electric discharging to form a non-metallized part 3. Nextly, a vacuum evaporated metal electrode which is on the opposite side to the non-metallized part 3 and is corresponding to it is removed by laser to be processed into a specified pattern for forming a non-metallized part 5. By this method, an electrode resistance of a capacitor can be set with a high precision.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属化フィルムコンデンサに用いるプラスチ
ックフィルムの表裏両面に蒸着した両面金属化フィルム
の蒸着金属電極の除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for removing vapor-deposited metal electrodes from a double-sided metallized film deposited on both the front and back surfaces of a plastic film used in a metallized film capacitor.

従来の技術 誘電体となるグラスチックフィルムと、電極としての金
属箔を重ね合わせて所定の長さだけ巻回し、適当な電極
引き出し端子を設けた構造のコンデンサは、一般の電子
機器において以前から用いられていた。また電極として
金属箔を用いず、亜鉛、アルミニウム等の金属をプラス
チックフィルム上に真空蒸着して電極としたものは金属
化フィルムコンデンサと称し、金属箔を用いたものに比
べて、容積が減少して機器の小型化に対応できる、量産
にも適している、ヒユーズ機能等の保安機能を電極部に
具備させるのが容易であるなどの利点があるため、近年
は多用されるようになってきている。
Conventional technology Capacitors have a structure in which a glass film as a dielectric material and a metal foil as an electrode are overlapped and wound for a predetermined length, and an appropriate electrode lead terminal is provided for a long time in general electronic equipment. It was getting worse. In addition, capacitors that do not use metal foil as electrodes but are made by vacuum-depositing metals such as zinc or aluminum onto plastic films are called metallized film capacitors, and have a smaller volume than those using metal foil. It has become widely used in recent years due to its advantages such as being able to respond to the miniaturization of equipment, being suitable for mass production, and making it easy to equip the electrode with safety functions such as a fuse function. There is.

従来から、一般に、コンデンサ用金属化フィルムでは、
対向電極との短絡を防止するため電極面に蒸着金属のな
いマージン部を設けている。またコンデンサを多数の分
割電極で構成し、電極間短絡などの障害を生じたときに
特定の電極のみが蒸散するようにしてヒユーズ作用によ
る保安機能を具備させることも広く行われている。この
ような金属化フィルムコンデンサではプラスチックフィ
ルムの全面に一様に金属電極を蒸着するのではなく、一
部は蒸着金属電極のない部分を必要とする。
Traditionally, metallized films for capacitors generally include:
In order to prevent short circuits with the counter electrode, a margin portion without vapor-deposited metal is provided on the electrode surface. It is also widely practiced to construct a capacitor with a large number of divided electrodes so that only a specific electrode evaporates when a fault such as a short circuit occurs between the electrodes, thereby providing a safety function using a fuse action. In such metallized film capacitors, metal electrodes are not uniformly deposited over the entire surface of the plastic film, but some parts require no deposited metal electrodes.

電極のない部分を設ける方法は、蒸着時に必要な部分の
みを蒸着する方法と、−旦全面蒸着後、電極の不要な部
分のみ蒸着金属電極を除去する方法とがある。前者には
、例えばラプスチックフィルム面近傍に遮蔽板を設けた
シ(遮蔽蒸着法)、マスキングテープ(テープマスキン
グ法)やオイルマスク(オイルマスキング法)によって
不必要な部分の蒸着を防ぎながら必要な部分のみを金属
蒸着する方法があるが、蒸着時に溶融金属を使用するた
め温度変化によるフィルムの伸縮、マスキングテープの
熱収縮、オイル蒸気の影響等のために蒸着電極の寸法精
度は極めて悪い。後者の方法は電気的放電による除去や
、レーザで除去する方法が提案されている。
There are two methods for providing a portion without an electrode: a method in which only the necessary portion is vapor-deposited during vapor deposition, and a method in which the vapor-deposited metal electrode is removed from only the unnecessary portion of the electrode after the entire surface is vapor-deposited. For the former, for example, a shielding plate is provided near the surface of the plastic film (shielded deposition method), or a masking tape (tape masking method) or an oil mask (oil masking method) is used to prevent deposition on unnecessary areas while allowing necessary There is a method of vapor-depositing metal only on the part, but since molten metal is used during vapor deposition, the dimensional accuracy of the vapor-deposited electrode is extremely poor due to expansion and contraction of the film due to temperature changes, thermal contraction of the masking tape, and the influence of oil vapor. As the latter method, removal using electric discharge or laser removal has been proposed.

発明が解決しようとする課題 電気的放電によれば、上述の遮蔽蒸着法やテープマヌキ
ング法、オイルマスキング法などに比べて電極の寸法精
度は優れているが、最近要求される精度に対して十分で
はない。レーザで除去する方法は精密な光学系を用いて
任意の光像を形成させて加工することができ、寸法精度
の高い任意の電極パターンを形成させることができる。
Problems to be Solved by the Invention According to electrical discharge, the dimensional accuracy of the electrode is superior to the above-mentioned shielded deposition method, tape manufacturing method, oil masking method, etc., but it is difficult to meet the accuracy required recently. Not enough. In the laser removal method, an arbitrary optical image can be formed using a precise optical system for processing, and an arbitrary electrode pattern with high dimensional accuracy can be formed.

しかし、レーザ光はプラスチックフィルムを透過するた
め両面同時に蒸着金属電極が除去され片面の蒸着金属?
!!極のみと必要なパターンに加工することはできない
However, since the laser beam passes through the plastic film, the metal electrodes deposited on both sides are removed at the same time, and the metal electrodes deposited on one side are removed at the same time.
! ! Only poles cannot be processed into the required pattern.

本発明は、上記課題を解決するもので、寸法精度の高い
電極を提供できる蒸着金属電極の除去方法を提供するこ
とを目的としている。
The present invention solves the above-mentioned problems, and aims to provide a method for removing a vapor-deposited metal electrode that can provide an electrode with high dimensional accuracy.

課題を解決するための手段 本発明は上記目的を達成するために、両面金属化フィル
ムの片面側の一部の蒸着金属電極を電気的放電によって
除去し、その後、対向した面の蒸着金属電極をレーザに
より除去するものである。
Means for Solving the Problems In order to achieve the above object, the present invention removes a part of the vapor-deposited metal electrode on one side of a double-sided metallized film by electrical discharge, and then removes the vapor-deposited metal electrode on the opposite side. It is removed using a laser.

作  用 本発明は上記した方法により、まず電気的放電によって
片面の蒸着金属電極の一部が寸法精度良く除去されるが
、プラスチックフィルムが電気的絶縁体であるため反対
側の蒸着金属電極は除去されない。ついで、その除去さ
れた非金属化部分に対向した部分の蒸着金属電極の一部
がレーザによシさらに高精度で除去される。このとき反
対側の蒸着金属電極は既に除去されているため影響はな
い。
According to the method described above, the present invention first removes a part of the vapor-deposited metal electrode on one side with good dimensional accuracy by electrical discharge, but since the plastic film is an electrical insulator, the vapor-deposited metal electrode on the opposite side is removed. Not done. Then, a portion of the vapor-deposited metal electrode opposite the removed non-metalized portion is further removed using a laser with high precision. At this time, the vapor-deposited metal electrode on the opposite side has already been removed, so there is no effect.

実施例 以下、本発明の一実施例について第1図〜第3図を参照
しながら説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

第1図に示すように、プラスチックフィルム10両面に
蒸着金属電[2を設けた両面金属化フィルムの片面の蒸
着金属電極を第2図に示すように電気的放電によシ除去
して非金属化部分3を形成する。残った蒸着金属電極4
の寸法精度は±0.1鱈で従来の蒸着中のテープマスキ
ング法などに比べて高い精度である。つぎに、第3図に
示すように、非金属化部分3の反対側の面であって非金
属化部分3に対応する部分の面の蒸着金属電極をレーザ
によって所定のパターンに除去加工して非金属化部分6
を形成する。この加工の結果残った蒸属電極4の電気抵
抗値とは異なり、非金属化部分5のパターンに依存する
が、レーザ加工の寸法精度は十〇01mで、従来のテー
プマスキング法。
As shown in FIG. 1, the vapor-deposited metal electrodes [2] are provided on both sides of the plastic film 10. The vapor-deposited metal electrodes on one side of the double-sided metallized film are removed by electric discharge as shown in FIG. forming a converted portion 3. Remaining evaporated metal electrode 4
The dimensional accuracy is ±0.1, which is higher accuracy than the conventional tape masking method during vapor deposition. Next, as shown in FIG. 3, the vapor-deposited metal electrode on the surface opposite to the non-metalized portion 3 and corresponding to the non-metalized portion 3 is removed into a predetermined pattern using a laser. Non-metalized part 6
form. Although the electrical resistance value of the vaporized electrode 4 remaining as a result of this processing is different and depends on the pattern of the non-metalized portion 5, the dimensional accuracy of laser processing is 1001 m, compared to the conventional tape masking method.

電気的放電法などに比して加工が極めて高精度で行われ
るため、その抵抗値を厳密に制御設定することができる
。本実施例の加工において使用した電気的放電装置およ
びレーザ装置は従来より用いられているものである。
Since machining is performed with extremely high precision compared to electrical discharge methods, the resistance value can be precisely controlled and set. The electric discharge device and laser device used in the processing of this example are conventional ones.

発明の効果 上記実施例から明らかなように本発明によれば、電気的
放電によシかなシの高精度で非電極部を形成することが
でき、金属化フィルムコンデンサの静電容量を高精度で
設定することができる。ついでレーザ加工では光学系を
操作することにより任意のパターンを高寸法精度で得る
ことができるからコンデンサの電極抵抗値を高精度で制
御設定することができ、ジュー〃熱による蒸着金属電極
の溶断金利用した安全機能付き高信頼性金属化フィルム
コンデンサも容易に製造することができる。
Effects of the Invention As is clear from the above embodiments, according to the present invention, it is possible to form a non-electrode portion with high precision without causing electrical discharge, and the capacitance of a metallized film capacitor can be formed with high precision. It can be set with . Next, in laser processing, it is possible to obtain arbitrary patterns with high dimensional accuracy by operating the optical system, so the electrode resistance value of the capacitor can be controlled and set with high precision. Highly reliable metallized film capacitors with safety features can also be easily manufactured.

第1図は加工前の両面金属化フィルムの断面図、第2図
は電気的放電によって形成された両面金属化フィルムの
断面図、第3図は本発明により電気的放電によって形成
された両面金属化フィルムの非金属化部分に対向した蒸
着金属電極にレーザ加工を施した両面金属化フィルムの
斜視図である。
FIG. 1 is a cross-sectional view of a double-sided metallized film before processing, FIG. 2 is a cross-sectional view of a double-sided metalized film formed by electric discharge, and FIG. 3 is a cross-sectional view of a double-sided metallized film formed by electric discharge according to the present invention. FIG. 2 is a perspective view of a double-sided metallized film in which a vapor-deposited metal electrode facing a non-metalized portion of the metallized film is laser-processed.

1・・・・・・プラスチックフィルム、2・・・・・・
蒸着金属N極、3・・・・・・非金属化部分、4・・・
・・・蒸着金属電極の残存部分、6・・・・・・非金属
化部分、6・・・・・・蒸着金属電極の残存部分。
1...Plastic film, 2...
Vapor deposited metal N pole, 3... Non-metalized portion, 4...
. . . Remaining portion of evaporated metal electrode, 6 . . . Non-metalized portion, 6 .

Claims (1)

【特許請求の範囲】[Claims] プラスチックフィルムの両面に金属蒸着した両面金属化
フィルムの片面側の一部の蒸着金属電極を電気的放電に
よって除去し、この除去により形成された金属化フィル
ムの非金属化部分に対向した部分の蒸着金属電極の一部
をレーザにより除去する両面金属化フィルムの蒸着金属
電極の除去方法。
A part of the deposited metal electrode on one side of a double-sided metallized film in which metal is deposited on both sides of the plastic film is removed by electrical discharge, and the part of the metalized film formed by this removal is deposited opposite the non-metalized part. A method for removing a vapor-deposited metal electrode from a double-sided metallized film, in which a portion of the metal electrode is removed using a laser.
JP3085890A 1990-02-09 1990-02-09 Removal of vacuum evaporated metal electrodes of two-side metallized film Pending JPH03234013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3085890A JPH03234013A (en) 1990-02-09 1990-02-09 Removal of vacuum evaporated metal electrodes of two-side metallized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3085890A JPH03234013A (en) 1990-02-09 1990-02-09 Removal of vacuum evaporated metal electrodes of two-side metallized film

Publications (1)

Publication Number Publication Date
JPH03234013A true JPH03234013A (en) 1991-10-18

Family

ID=12315420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3085890A Pending JPH03234013A (en) 1990-02-09 1990-02-09 Removal of vacuum evaporated metal electrodes of two-side metallized film

Country Status (1)

Country Link
JP (1) JPH03234013A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035626A (en) * 2012-08-08 2014-02-24 Wacom Co Ltd Electronic circuit and position indicator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035626A (en) * 2012-08-08 2014-02-24 Wacom Co Ltd Electronic circuit and position indicator

Similar Documents

Publication Publication Date Title
US6380577B1 (en) Tantalum chip capacitor
EP1488917A1 (en) Thin-film laminated body, thin-film cell, capacitor, and method and equipment for manufacturing thin-film laminated body
US3617373A (en) Methods of making thin film patterns
US3457478A (en) Wound film capacitors
US5844770A (en) Capacitor structures with dielectric coated conductive substrates
EP0035536A1 (en) Method of manufactoring adjustable thick film capacitors.
JPH03234013A (en) Removal of vacuum evaporated metal electrodes of two-side metallized film
US3365378A (en) Method of fabricating film-forming metal capacitors
US3324362A (en) Electrical components formed by thin metallic form on solid substrates
JPH043098B2 (en)
JPH03252160A (en) Capacitor, capacitor network, and r-c network
US3454999A (en) Capacitor
JPS60102727A (en) Trimming condenser and method of producing same
US20060258082A1 (en) Structure Of Embedded Capacitors And Fabrication Method Thereof
JPS61287119A (en) Metalized film capacitor
KR0130868B1 (en) Multilayer chip capacitor electrode producing method
JPS5897823A (en) Method of producing metallized film condenser
KR0130869B1 (en) Chip resistor electrode producing method
US3695954A (en) Process for manufacturing microwave capacitors
KR20020068561A (en) Plastic film of metal evaporation and condenser manufactured method using thereof
JP2742818B2 (en) Manufacturing method of multilayer film capacitor
JPS60236207A (en) Method of forming electrode of laminated electronic part
JPH0232771B2 (en)
JPH02192709A (en) Manufacture of laminated film capacitor
JPS61174710A (en) Manufacture of laminate type film capacitor