JPH03233861A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH03233861A
JPH03233861A JP2029889A JP2988990A JPH03233861A JP H03233861 A JPH03233861 A JP H03233861A JP 2029889 A JP2029889 A JP 2029889A JP 2988990 A JP2988990 A JP 2988990A JP H03233861 A JPH03233861 A JP H03233861A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
aromatic
thermoplastic resin
aromatic hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2029889A
Other languages
Japanese (ja)
Other versions
JP2574731B2 (en
Inventor
Hajime Kinoshita
肇 木下
Masatoshi Komori
正敏 小森
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP2029889A priority Critical patent/JP2574731B2/en
Publication of JPH03233861A publication Critical patent/JPH03233861A/en
Application granted granted Critical
Publication of JP2574731B2 publication Critical patent/JP2574731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To make possible charge and discharge of an organic electrolyte battery over a long period by using lithium as negative electrode active material, and using as a negative electrode a heat treated specific aromatic condensed polymer consisting of carbon, hydrogen and oxygen. CONSTITUTION:An organic electrolyte battery is provided with a positive electrode 1, a negative electrode 2 and an electrolyte 4 and a heat treated aromatic condensed polymer consisting of carbon, hydrogen and oxygen is used as the negative electrode 2. The aromatic condensed polymer is selected from among (a) a condensate of an aromatic hydrocarbon compound having phenol hydroxyl group and aldehyde, (b) a condensate of an aromatic hydrocarbon compound having phenol hydroxyl group, an aromatic hydrocarbon compound not having phenol hydroxyl group, and aldehyde, and (c) furan resin. When an insoluble and infusible base substance containing polyacene skeleton structure in which the ratio of hydrogen to carbon is 0.50 to 0.05 after heat treatment is molded suing a thermoplastic resin binder, of after the base substance is molded, a molding of an insoluble and infusible base substance heat treated at temperature above the melting point of the thermoplastic resin is made to carry lithium therein by more than 3mol%. The long-range cycle characteristic of the battery is thereby bettered.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機電解質電池に係り、更に詳しくは負極とし
て、ポリアセン系骨格構造を有する不溶不融性基体を熱
可塑性樹脂バインダーを用いて成形する際、もしくは成
形後融点以上で加熱処理した該成形体にリチウムを担持
させたものを用いる有I!電解質に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an organic electrolyte battery, and more specifically, as a negative electrode, an insoluble and infusible substrate having a polyacene skeleton structure is molded using a thermoplastic resin binder. It is possible to use a molded body that has been heat-treated above the melting point during or after molding and supports lithium on it! Regarding electrolytes.

(従来の技術) 近年、導電性高分子、遷移金属酸化物あるいは活性炭を
正極とした電池が提案されている。これらの電池の負極
としてリチウムを用いた場合には、高い電圧を有し、容
量及びエネルギー密度が大きいエネルギー源用二次電池
が得られる。しかしながらこのような負極にリチウムを
用いた電池の実用化に際しては、デンドライト発生に伴
う充放電サイクル寿命の低下という問題があった。デン
ドライトは充電の際にリチウム負極表面に発生する樹枝
状あるいはこけ状のリチウム結晶である。該デンドライ
トは充放電の繰返しに伴い戒長し遂には両極が短絡しサ
イクル寿命がつきてしまう、従って該デンドライトの発
生を抑制することが該電池の実用化に際しては重要とな
る。
(Prior Art) In recent years, batteries using conductive polymers, transition metal oxides, or activated carbon as positive electrodes have been proposed. When lithium is used as the negative electrode of these batteries, secondary batteries for energy sources with high voltage, capacity, and energy density can be obtained. However, when such a battery using lithium as a negative electrode is put into practical use, there is a problem in that the charge/discharge cycle life is reduced due to the generation of dendrites. Dendrites are dendritic or moss-like lithium crystals that form on the surface of a lithium negative electrode during charging. The dendrites lengthen with repeated charging and discharging, and eventually both poles are short-circuited, resulting in the end of the cycle life. Therefore, it is important to suppress the generation of dendrites when putting the battery into practical use.

近時、グラファイト等の炭素材、ポリアセチレン、ポリ
パラフェニレン等の導電性高分子にリチウムを担持させ
たリチウム電池の研究が進められている。しかしながら
、デンドライトの発生は著しく少ないもののリチウムの
出し入れに対して、構造の変化が大きく、サイクル特性
が低下するという問題があった。
Recently, research has been progressing on lithium batteries in which lithium is supported on carbon materials such as graphite, and conductive polymers such as polyacetylene and polyparaphenylene. However, although the generation of dendrites is extremely small, there is a problem in that the structure changes significantly when lithium is added or removed, resulting in a decrease in cycle characteristics.

また、一般に電池用電極は粉末等の形状にある活物質を
例えばポリ四フフ化エチレンバインダーポリエチレン、
ポリプロピレン等の熱可塑性樹脂バインダー等と混練、
加圧成形したものが、生産性2寸法安定性の観点から、
好ましく用いられる。
In general, battery electrodes use active materials in the form of powders, such as polytetrafluoroethylene binder polyethylene,
Kneading with thermoplastic resin binder such as polypropylene,
Pressure molded products are
Preferably used.

しかしながら粉末状等の上記不溶不融性基体を上記方法
で成形した成形体にリチウムを担持させた場合、電極の
ゆるみが著しく、電池特性、特に急速放電特性、サイク
ル特性に問題が残されていた。
However, when lithium is supported on a compact formed by molding the above-mentioned insoluble and infusible substrate in powder form using the above method, the electrode becomes significantly loose, and problems remain with battery characteristics, especially rapid discharge characteristics and cycle characteristics. .

(発明が解決しようとする問題点) 本発明者等は上記問題点に鑑み鋭意研究を続けた結果本
発明を完成したものである0本発明の目的は長期に亘っ
て充電、放電が可能な二次電池を提供するにある。
(Problems to be Solved by the Invention) The present inventors have completed the present invention as a result of diligent research in view of the above-mentioned problems.The purpose of the present invention is to enable charging and discharging over a long period of time. To provide secondary batteries.

本発明の他の目的は急速放電特性の良い二次電池を提供
するにある。
Another object of the present invention is to provide a secondary battery with good rapid discharge characteristics.

本発明のさらに他の目的は製造が容易な二次電池を提供
するにある。
Still another object of the present invention is to provide a secondary battery that is easy to manufacture.

〈問題点を解決するための手段) 本発明の上記の目的は、正極、負極、並びにリチウム塩
を非プロトン性有機溶媒に熔解した溶液を含む電解液を
備えた有機電解1を電池において、負極活物質をリチウ
ムとし、負極として炭素、水素および酸素から威る芳香
族系縮合ポリマーの熱処理物であって、該芳香族系縮合
ポリマーは(a)フェノール性水酸基を有する芳香族炭
化水素化合物とアルデヒドの縮合物、(b)  フェノ
ール性水酸基を有する芳香族炭化水素化合物、フェノー
ル性水酸基を有さない芳香族炭化水素化合物およびアル
デヒドの縮合物及び(c) フラン樹脂から選ばれ、そ
して該熱処理物の水素原子/炭素原子の原子比が0.5
0−0.05であるポリアセン系骨格構造を含有する不
溶不融性基体を熱可塑性樹脂バインダーを用いて成形す
る際、もしくは底形後膣熱可塑性樹脂の融点以上で加熱
処理した不溶不融性基体成形体にリチウムをモル百分率
で3%以上担持させたものを用いることを特徴とする有
機電解質電池によって達成される。
<Means for Solving the Problems> The above object of the present invention is to use an organic electrolyte 1 including a positive electrode, a negative electrode, and an electrolytic solution containing a solution of a lithium salt dissolved in an aprotic organic solvent in a battery. A heat-treated product of an aromatic condensation polymer using lithium as an active material and carbon, hydrogen, and oxygen as a negative electrode, the aromatic condensation polymer comprising (a) an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. (b) a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group, an aromatic hydrocarbon compound having no phenolic hydroxyl group and an aldehyde, and (c) a furan resin; The atomic ratio of hydrogen atoms/carbon atoms is 0.5
0-0.05 when molding an insoluble and infusible substrate containing a polyacene skeleton structure using a thermoplastic resin binder, or by heat-treating it at a temperature higher than the melting point of the thermoplastic resin after the bottom shape. This is achieved by an organic electrolyte battery characterized by using a base molded body supporting lithium in a molar percentage of 3% or more.

本発明におけるポリアセン系骨格構造を含有する不溶不
融性基体(以下、PASと記す)は本願の出願人の出願
にかかる特開昭59−3806号公報に記載されている
芳香族系縮合ポリマーを特定の条件で熱処理することに
より得られる。
The insoluble and infusible substrate containing a polyacene skeleton structure (hereinafter referred to as PAS) in the present invention is an aromatic condensation polymer described in JP-A-59-3806 filed by the applicant of the present application. Obtained by heat treatment under specific conditions.

また600m”/g以上のBET法による比表面積を有
するPASは本願の出願人の出願にかかる特開昭60−
170163号公報に記載されている方法により得られ
る。
In addition, PAS having a specific surface area of 600 m"/g or more by the BET method is
It is obtained by the method described in Japanese Patent No. 170163.

具体的には高い比表面積を必要としない場合、本発明に
用いる芳香族系縮合ポリマーとしては、(a)  フェ
ノール・ホルムアルデヒド樹脂の如キ、フェノール性水
酸基を有する芳香族系炭化水素化合物とアルデヒド類の
縮合物、(b) キシレン変性フェノール、ホルムアル
デヒド樹脂(フェノールの一部をキシレンで置換したも
の)の如き、フェノール性水酸基を有する芳香族系炭化
水素化合物、フェノール性水酸基を有さない芳香族系炭
化水素化合物およびアルデヒドの縮合物及び(c) フ
ラン樹脂が好適なものとして挙げられる。
Specifically, when a high specific surface area is not required, aromatic condensation polymers used in the present invention include (a) aromatic hydrocarbon compounds and aldehydes having phenolic hydroxyl groups, such as phenol-formaldehyde resins; (b) Aromatic hydrocarbon compounds with phenolic hydroxyl groups, such as xylene-modified phenol, formaldehyde resin (phenol partially replaced with xylene), aromatic compounds without phenolic hydroxyl groups Suitable examples include condensates of hydrocarbon compounds and aldehydes and (c) furan resins.

該芳香族系縮合ポリマーを、非酸化性雰囲気(真空状態
も含む)中で、400℃〜1000℃の温度、好ましく
は600℃〜800℃の適当な温度まで徐々に加熱し水
素原子/炭素原子の原子比(以下H/Cと記す)が0.
50〜0.05 、好ましくは0.35〜0.10の熱
処理物とするとPASが得られる。600m”/g以上
のBET法による比表面積を有するPASの場合、前記
した芳香族系縮合ポリマーに塩化亜鉛、リン酸ナトリウ
ム等の無機塩を混合する。混入する量は、無機塩のIl
類及び目的とする電極の形状、性能によって異なるが、
重量比で■0/1〜1/7が好ましい。
The aromatic condensation polymer is gradually heated to a suitable temperature of 400°C to 1000°C, preferably 600°C to 800°C, in a non-oxidizing atmosphere (including a vacuum state) to form hydrogen atoms/carbon atoms. The atomic ratio (hereinafter referred to as H/C) is 0.
PAS is obtained when the heat-treated product has a molecular weight of 50 to 0.05, preferably 0.35 to 0.10. In the case of PAS having a specific surface area determined by the BET method of 600 m"/g or more, an inorganic salt such as zinc chloride or sodium phosphate is mixed with the above-mentioned aromatic condensation polymer. The amount to be mixed is
Although it varies depending on the type and the shape and performance of the intended electrode,
The weight ratio (1) is preferably 0/1 to 1/7.

このようにして得られた無機塩と芳香族系縮合ポリマー
の混合物はポリマーの組成、無機塩の種類等によって異
なるが通常50〜180℃の温度で、2〜90分間加熱
することにより硬化、かくして得られた硬化体を、次い
で非酸化性雰囲気中で350〜800℃の温度、好まし
くは400℃〜750℃の温度まで加熱し、得られた熱
処理体を水あるいは希塩酸等で十分洗浄することによっ
て、熱処理体中に含まれている無機塩を除去する。
The mixture of inorganic salt and aromatic condensation polymer thus obtained is usually cured by heating at a temperature of 50 to 180°C for 2 to 90 minutes, although this varies depending on the composition of the polymer, the type of inorganic salt, etc. The obtained cured product is then heated to a temperature of 350 to 800°C, preferably 400 to 750°C in a non-oxidizing atmosphere, and the obtained heat-treated product is thoroughly washed with water or dilute hydrochloric acid. , to remove inorganic salts contained in the heat-treated body.

その後、これを乾燥すると、H/C=0.50〜0、0
5好ましくは0.35〜0. I Oの600m”/g
以上の比表面積を有するPASが得られる。
After that, when this is dried, H/C=0.50~0,0
5 preferably 0.35-0. 600m”/g of IO
PAS having the above specific surface area can be obtained.

本発明に用いるPASはxi回折(CuKα線)におい
てメインビークの位置が2θで24°以下に生じ、且つ
2θで41°〜46℃の間にブロードなピークを示すも
のが好適である。
It is preferable that the PAS used in the present invention has a main peak position of 24° or less in 2θ in xi diffraction (CuKα ray) and shows a broad peak between 41° and 46°C in 2θ.

また本発明において、PASが赤外吸収スペクトルから
求められる下記式で表わされる吸光度比(D)、 D = D teem−tvae / D rsha−
Iham式中、D、。1,4゜は赤外吸収スペクトルに
おける2、900〜2940カイザーの範囲の最大吸収
ピークから求められる吸光度、DI56゜〜、1゜は赤
外吸収スペクトルにおける1560−1640カイザー
の範囲の最大吸収ピークから求められる吸光度である、
が0.5以下、特に0.3以下のものが好適である。
Further, in the present invention, PAS is determined from an infrared absorption spectrum and is expressed by the following formula (D): D=Dteem-tvae/Drsha-
Iham, D. 1,4° is the absorbance determined from the maximum absorption peak in the range of 2,900 to 2,940 Kaiser in the infrared absorption spectrum, and DI56° to 1° is the absorbance determined from the maximum absorption peak in the range of 1,560 to 1,640 Kaiser in the infrared absorption spectrum. The required absorbance is
is preferably 0.5 or less, particularly 0.3 or less.

(なお上記吸光度比(D)の算出方法の詳述は、特開昭
59−3806号公報実施例1に記載されている。) PASは芳香族系多環構造が適度に発達し、かつ、平面
ポリアセン系骨格構造の平均距離が比較的大きいことが
示唆され、リチウムを安定に担持することができる。
(Details of the method for calculating the above absorbance ratio (D) are described in Example 1 of JP-A-59-3806.) PAS has a suitably developed aromatic polycyclic structure, and It is suggested that the average distance of the planar polyacene skeleton structure is relatively large, and lithium can be stably supported.

上記平均距離が小さい場合、すなわち黒鉛結晶に近づく
に従い、リチウムを担持したとき、あるいはリチウムを
出し入れしたとき(充放電時)に基体構造に変化を生じ
易くなり、サイクル特性が劣化する。
When the above-mentioned average distance is small, that is, as it approaches the graphite crystal, changes are more likely to occur in the substrate structure when lithium is supported or when lithium is put in and taken out (during charging and discharging), and the cycle characteristics deteriorate.

また芳香族多環構造が発達していない場合、リチウムを
安定に担持させることができず、この櫟なPASにリチ
ウムを担持させた負極を用いて製造した電池は自己放電
が大きくなる。
In addition, if the aromatic polycyclic structure is not developed, lithium cannot be stably supported, and a battery manufactured using a negative electrode in which lithium is supported on this straight PAS will have a large self-discharge.

本発明における負極は上記PASを成形しやすい様、粉
体、短1.ll維状等の形状に製造又は適当な形状で製
造し、粉体、短繊維状等の形り:°二加工されたPAS
を熱可塑性樹脂バンイダーで成形J・・つ該熱可塑性樹
脂の融点以上で加熱処理した成形棒にリチウムを担持さ
せたものである。
The negative electrode in the present invention is made of powder, short 1. ll PAS manufactured in the shape of fibers, etc. or manufactured in an appropriate shape and processed into powder, short fibers, etc.
is molded with a thermoplastic resin binder. Lithium is supported on a molded rod that has been heat-treated above the melting point of the thermoplastic resin.

本発明における熱可塑性樹脂はとくに限定されないが、
後で述べる電解液に不溶であり、電池の使用温度範囲、
具体的には一30℃〜80℃で軟化あるいは脆化しない
ものが好ましく、実用的には上記性質に加えて100〜
300℃で溶解するもの、例えばポリエチレン、ポリプ
ロピレン、ポリスチレン等を用いると一層好適な結果が
得られる。
The thermoplastic resin in the present invention is not particularly limited, but
It is insoluble in the electrolyte described later, and the operating temperature range of the battery is
Specifically, it is preferable to use a material that does not soften or become brittle at -30°C to 80°C, and in addition to the above properties, it is practically
More suitable results can be obtained by using a material that melts at 300° C., such as polyethylene, polypropylene, polystyrene, etc.

本発明における熱可塑性樹脂バインダーの量はPASに
対して重量で5%〜50%、好ましくは10〜30%で
あるが、適量はPASの形状、バインダーの種類、担持
させるリチウム量により決定される。
The amount of thermoplastic resin binder in the present invention is 5% to 50%, preferably 10 to 30% by weight based on PAS, but the appropriate amount is determined by the shape of PAS, the type of binder, and the amount of lithium supported. .

本発明において、融点以上での加熱処理は電極に強度を
与える為に重要な工程である。上記熱可塑性樹脂は一般
にバインダーとして用いる場合、該熱可塑性樹脂粉末、
繊維等を活物質に対し重量で数%〜数十%混合した後加
圧成形、あるいは短時間の加熱加圧成形する方法が知ら
れている。従来の方法では強度を得る為には大量の熱可
塑性樹脂バインダーを必要とし、当然のことながら電極
内の活物質量が減少し、容量等の電池特性の低下をまね
く、特に上記方法で作成したPAS戒形体にリチウムを
担持させる場合、電極のゆるみが大きく、板状あるいは
フィルム状のPASをリチウム担持体として用いる場合
に比べ電池の内部抵抗が増大し、急速放電が困難となり
、さらには十分なサイクル特性が得られない。
In the present invention, heat treatment at a temperature above the melting point is an important step for imparting strength to the electrode. When the above thermoplastic resin is generally used as a binder, the thermoplastic resin powder,
A method is known in which fibers and the like are mixed in an amount of several percent to several tens of percent by weight with respect to the active material, and then pressure molded, or heat and pressure molded for a short time. Conventional methods require a large amount of thermoplastic resin binder to obtain strength, which naturally reduces the amount of active material in the electrode, leading to a decline in battery characteristics such as capacity. When lithium is supported on a PAS-shaped body, the electrode becomes loose and the internal resistance of the battery increases compared to when a plate-like or film-like PAS is used as a lithium-supporting material, making rapid discharge difficult. Cycle characteristics cannot be obtained.

本発明における加熱処理は使用する熱可塑性樹脂の融点
以上で行なわれなければならない、すなわち融点以上で
加熱処理を行なうことにより、熱可塑性樹脂の一部ある
いは全部が溶融し、より均質に、かつ混合時の樹脂粉体
、あるいは繊維等の形状がくずれ、より多くの面積でP
ASと接着する為強度が高く、リチウムを担持させた時
の電極のゆるみの少ないPAS成形体が得られる。
The heat treatment in the present invention must be performed at a temperature higher than the melting point of the thermoplastic resin used. In other words, by performing the heat treatment at a temperature higher than the melting point, part or all of the thermoplastic resin is melted, and the mixture becomes more homogeneous and mixed. When the shape of resin powder or fibers is distorted, P
Because it adheres to AS, a PAS molded body with high strength and less loosening of the electrode when lithium is supported can be obtained.

本発明における加熱方法としてはPASと熱可塑性樹脂
バインダーの混合物の加圧成形と同時に行なう方法と加
圧成形後、電気炉等で加熱処理する方法があり、いずれ
の場合においても、熱可塑性樹脂が溶融するまで行う必
要がある。温度1時間については、樹脂の種類、量1加
熱方法により異なるが異なるが前述した溶融状態になる
様決定することが肝要である。
The heating method used in the present invention includes a method in which a mixture of PAS and a thermoplastic resin binder is pressure-molded simultaneously, and a method in which a mixture of PAS and a thermoplastic resin binder is heat-treated in an electric furnace or the like after pressure-molding. It is necessary to do this until it melts. The temperature for 1 hour varies depending on the type of resin, amount, heating method, etc., but it is important to determine the temperature so that the above-mentioned molten state is obtained.

本発明における負極は上述の方法で得られるPAS威形
体にリチウムを担持せしめればよい。
The negative electrode in the present invention may be formed by supporting lithium on a PAS body obtained by the method described above.

このときの担持の方法としては、電解法、気相法、液相
法、イオン注入性等公知の方法から適宜選択して行えば
よい0例えば電解法でリチウムを担持する場合は、リチ
ウムイオンを含む電解液中に、PAS戒形鉢形体用電極
として浸漬し、同一電解液中の対極との間で、電流を流
すか、又は電圧を印加する。
The supporting method at this time may be appropriately selected from known methods such as electrolytic method, gas phase method, liquid phase method, and ion implantation method.For example, when supporting lithium by electrolytic method, lithium ions are It is immersed as an electrode for a PAS pot-shaped body in an electrolytic solution containing the electrode, and a current is passed or a voltage is applied between it and a counter electrode in the same electrolytic solution.

また上記成形体に適量のリチウム箔を直接接触させる方
法によっても担持されることができる。
It can also be supported by a method in which an appropriate amount of lithium foil is brought into direct contact with the molded body.

気相法を用いる場合には、例えばリチウムの蒸気に、P
AS成形体を晒す、また液相法を用いる場合は例えばリ
チウムイオンを含む錯体と不溶不融性基体とを反応せし
める。この反応に用いる錯体としては、例えばアルカリ
金属のナフタレン錯体、アルコキシドなどが挙げられる
が、これらに限定されるものではない。
When using a gas phase method, for example, lithium vapor is added with P.
The AS molded body is exposed, or when a liquid phase method is used, for example, a complex containing lithium ions is reacted with an insoluble and infusible substrate. Examples of the complex used in this reaction include, but are not limited to, alkali metal naphthalene complexes and alkoxides.

上記方法によってPASに担持せしめるリチウムの量は
モル百分率(PASの炭素原子1個に対するリチウムの
数の百分率)で表わして3%以上、好ましくは10%以
上である。リチウムの量はPASの比表面積によっても
異なり、リチウムを担持せしめたPAS戒形鉢形体位が
Li/Li”に対して1.0〜Ovになる様にリチウム
を担持させるのが望ましい、リチウムの量が少ない場合
、本発明の電池の容量が低下し、多い場合には過剰のリ
チウムがPAS威形体形体表面出し、好ましくない。
The amount of lithium supported on PAS by the above method is 3% or more, preferably 10% or more, expressed as a molar percentage (percentage of lithium to one carbon atom of PAS). The amount of lithium varies depending on the specific surface area of PAS, and it is desirable to carry lithium so that the PAS on which lithium is carried is in a bowl-shaped position with a ratio of 1.0 to 0v with respect to Li/Li. If the amount is too low, the capacity of the battery of the present invention will decrease, and if it is too much, excess lithium will be exposed to the surface of the PAS, which is not preferable.

特に高い比表面積のPASを用いる場合、担持するリチ
ウム量が多くなることから、従来の方法では電極がゆる
みやすく本発明の効果が顕著に表れる。すなわち600
m’/g以上のBET法による比表面積を持つPASは
基体中でのLjの拡散速度が速いことから電池の内部抵
抗を小さくできることがil!!されていたものの、酸
形法に問題があり、実用できなかったわけであるが、本
発明の方法を用いることにより、高性能の二次電池が得
られる。
In particular, when PAS with a high specific surface area is used, the amount of lithium supported increases, so the electrode tends to loosen in the conventional method, and the effects of the present invention are noticeable. i.e. 600
PAS, which has a specific surface area determined by the BET method of m'/g or more, has a high diffusion rate of Lj in the substrate, so it is possible to reduce the internal resistance of the battery! ! However, by using the method of the present invention, a high-performance secondary battery can be obtained.

本発明に用いる電解液を構成する溶媒としては非プロト
ン性有機溶媒が用いられる。非プロトン性有Ilt@媒
としては、例えばエチレンカーボネイト、プロピレンカ
ーボネイト、γ−ブチロラクトン、ジメチルホルムアミ
ド、ジメチルアセトアミド、ジメチルスルホキシド、ア
セトニトリル、ジメトキシエタン、テトラヒドロフラン
、ジオキソラン、塩化メチレン、スルホラン又はこれら
非プロトン性有機溶媒の二種以上の混合液のいずれを使
用しても良い。
An aprotic organic solvent is used as the solvent constituting the electrolytic solution used in the present invention. Examples of the aprotic Ilt@ medium include ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane, or these aprotic organic solvents. Any mixture of two or more of these may be used.

また、上記の混合又は単一の溶媒に溶解させる電解質は
、リチウムイオンを生威しうる電解質のいずれでも良い
、このような電解質は、例えばLit   LiC10
,、LiAsFa、LiBFi 、又はLiHFアであ
る。
Further, the electrolyte dissolved in the above mixed or single solvent may be any electrolyte capable of producing lithium ions. Such an electrolyte may be, for example, Lit LiC10.
, , LiAsFa, LiBFi, or LiHF.

上記の電解質及び溶媒は十分に脱水された状態で混合さ
れ、電解液とするのであるが、電解液中の前FJI 1
it解質の濃度は電解液による内部抵抗を小さくするた
め少なくとも0.1モル/1以上とするのが望ましく、
通常0.2〜1.5モル/1とするのがより好ましい。
The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolytic solution.
The concentration of IT solute is preferably at least 0.1 mol/1 or more in order to reduce the internal resistance due to the electrolyte.
It is usually more preferable to set it as 0.2-1.5 mol/1.

本発明の有機電解質電池の正極としては、例えば後述す
る電気化学的にドーピング及びアンドーピングできる導
電性高分子体、金属酸化物、金属硫化物、活性炭などを
用いることができる。
As the positive electrode of the organic electrolyte battery of the present invention, for example, conductive polymers, metal oxides, metal sulfides, activated carbon, etc. which can be electrochemically doped and undoped, which will be described later, can be used.

電気化学的にドーピング及びアンド−ピングできる導電
性高分子としては、ポリアセチレン、ポリチオフェン、
ポリアニリン及び芳香族系縮合ポリマーの熱処理物であ
るポリアセン系有機半導体等がある。を極材として用い
る場合、安定性、及び底型性が実用上極めて重要であり
、この観点から、ポリアセン系有機半導体及びアニリン
類の重合物が好ましい。
Conductive polymers that can be electrochemically doped and undoped include polyacetylene, polythiophene,
Examples include polyacene organic semiconductors, which are heat-treated products of polyaniline and aromatic condensation polymers. When used as an electrode material, stability and bottom shape are extremely important from a practical standpoint, and from this viewpoint, polymers of polyacene-based organic semiconductors and anilines are preferred.

正極として好ましく用いうる金属の酸化物は、リチウム
イオンをインターカレーション又はデインターカレーシ
ラン(本発明においてはドーピング又はアンド−ピング
と呼ぶ)により可逆的に出入れできる、例えはバナジウ
ム、クロム、マンガン、モリブデン、ビスマスのごとき
遷移金属の酸化物である。
Metal oxides that can be preferably used as the positive electrode include vanadium, chromium, and manganese, which can reversibly introduce and remove lithium ions by intercalating or deintercalating silane (referred to as doping or and-doping in the present invention). , molybdenum, and bismuth.

例えばVzOs、  Van’s、  CrxO@、 
 Mn01.  MoO3゜CuzVxOq等を一種以
上用いる。これら遷移金属酸化物のfill造は、結晶
質状態であっても、あるいは加熱処理等により非晶質状
態としたものでもよい。
For example, VzOs, Van's, CrxO@,
Mn01. One or more types of MoO3°CuzVxOq are used. The fill structure of these transition metal oxides may be in a crystalline state or may be made into an amorphous state by heat treatment or the like.

正極として好ましく用いうる金j!硫化物の例としては
Ti5t、 Mo5t、 Mo5sが挙げられる。これ
らの金r/1kfi化物の構造は、結晶質状態であって
も非晶質状態であっても良い。
Gold can be preferably used as a positive electrode! Examples of sulfides include Ti5t, Mo5t, and Mo5s. The structure of these gold r/1kfi compounds may be in a crystalline state or an amorphous state.

上記正極の中で最も好ましいのは、ポリアセン系有機半
導体である(特開昭60−170163号公報)、該半
導体は特に安定性に優れており、該半導体を正極に用い
ることに4.0■の電圧を有する高電圧の電池を作成す
ることも可能であり、また繰り返し充放電による劣化も
ほとんどなく、サイクル特性に優れる電池が作成可能と
なる。
Among the positive electrodes mentioned above, the most preferred is a polyacene organic semiconductor (Japanese Patent Application Laid-open No. 170163/1983). This semiconductor has particularly excellent stability, and the use of this semiconductor as a positive electrode is 4.0 It is also possible to create a high-voltage battery having a voltage of

電池外部に電流を取り出すための集電体としてはドーピ
ング剤及び電解液に対し耐蝕性の導電物質、例えば炭素
、0近、ニンケル、ステンレス等を用いることが出来る
As a current collector for extracting a current to the outside of the battery, a conductive material that is resistant to corrosion by the doping agent and the electrolytic solution, such as carbon, nickel, stainless steel, etc., can be used.

次に図により本発明の実施態様の一例を説明する。第1
図は本発明に係る!池の基本構成図である。第1図にお
いて、(1)は正極であり、(2〉 は負極である。 
 (3)、 (3’)は集電体であり、各電極及び外部
端子(7)、 (7’)に電圧降下を生じないように接
続されている。(4)は電解液であり、ドーピングされ
うるイオンを生威しうる前述の化合物が非プロトン性有
機溶媒に溶解されている。!解凍は通常液状であるが漏
液を防止するためゲル状又は固体状にして用いることも
できる。(5)は正負両極の接触を阻止する事及び電解
液を保持する事を目的として配置されたセパレーターで
ある。
Next, an example of an embodiment of the present invention will be explained with reference to the drawings. 1st
The figure pertains to the invention! This is a basic configuration diagram of a pond. In FIG. 1, (1) is the positive electrode, and (2> is the negative electrode).
(3) and (3') are current collectors, which are connected to each electrode and external terminals (7) and (7') so as not to cause a voltage drop. (4) is an electrolytic solution in which the aforementioned compound capable of generating ions to be doped is dissolved in an aprotic organic solvent. ! Thawing is usually done in liquid form, but it can also be used in gel or solid form to prevent leakage. (5) is a separator placed for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolyte.

該セパレーターは、電解液或はt極活物質に対し、該セ
パレータは電解液或はドーピング剤やアルカリ金属等の
電極活物質に対し耐久性のある連通気孔を有する電子伝
導性のない多孔体であり、通常ガラス繊維、ポリエチレ
ン或はポリプロピレン等からなる布、不織布或は多孔体
が用いられる。
The separator is a porous body with no electronic conductivity and has continuous pores that are durable against the electrolytic solution or the t-electrode active material, such as a doping agent or an alkali metal. Generally, cloth, nonwoven fabric, or porous material made of glass fiber, polyethylene, polypropylene, etc. is used.

セパレータの厚さは電池の内部抵抗を小さくするため薄
い方が好ましいが、電解液の保持量、流通性、強度等を
勘案して決定される。正負極及びセパレータは電池ケー
ス(6)内に実用上問題が生じないように固定される。
The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but it is determined by taking into consideration the amount of electrolyte retained, flowability, strength, etc. The positive and negative electrodes and the separator are fixed in the battery case (6) so as not to cause any practical problems.

1を極の形状、大きさ等は目的とする電池の形状、性能
により適宜決められる。
The shape, size, etc. of pole 1 can be appropriately determined depending on the shape and performance of the intended battery.

(発明の効果〉 本発明の有at解質電池は、ポリアセン系骨格構造を含
有した不溶不融性基体を熱可塑性樹脂バインダーを用い
て底形する際、もしくは底形後膣熱可塑性樹脂の融点以
上で加熱処理した成形棒にリチウムを担持させたものを
負極に用いることにより、急速放電特性、長期サイクル
特性に優れた二次電池である。
(Effects of the Invention) The AT electrolyte battery of the present invention is characterized by the fact that when the insoluble and infusible substrate containing a polyacene skeleton structure is shaped into a bottom using a thermoplastic resin binder, or after the bottom is formed, the melting point of the thermoplastic resin is By using the above-heat-treated molded rod on which lithium is supported as the negative electrode, the secondary battery has excellent rapid discharge characteristics and long-term cycle characteristics.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例 (1)PASの製造方l ノボラック型フェノール樹脂シリコニント電気炉に入れ
、窒素雰囲気下650℃(PASI−1)、800℃(
PASI−2)まで10℃/時間の昇温速度にて熱処理
し、ディスクミルで粉砕することによりPAS粉末を得
た。
Example (1) Method for producing PAS 1 Novolak type phenolic resin silicone was placed in an electric furnace and heated at 650°C (PASI-1) and 800°C (
PAS powder was obtained by heat treatment at a temperature increase rate of 10° C./hour to PASI-2) and pulverization with a disk mill.

(2)PASの製造法2 水溶性レゾール(約60%濃度)、塩化亜鉛及び水を重
量比で10:25:4の割合で混合した水溶液をフィル
ムアプリケーターでガラス板上にjj!膜した0次にr
Ii、膜した水溶液上にガラス板を被せ水分が蒸発しな
い様にした後、約100℃の温度で1時間加熱して硬化
させた。
(2) PAS manufacturing method 2 An aqueous solution of a water-soluble resol (approximately 60% concentration), zinc chloride, and water mixed in a weight ratio of 10:25:4 is applied onto a glass plate using a film applicator. filmed zero-order r
Ii. A glass plate was placed over the filmed aqueous solution to prevent moisture from evaporating, and then heated at a temperature of about 100° C. for 1 hour to cure it.

該フェノール樹脂フィルムをシリコニット電気炉中に入
れ窒素気流下で1007時間の速度で昇温しで550℃
(PAS2−1>、750’C(PAS2−2)まで熱
処理を行った。
The phenol resin film was placed in a siliconite electric furnace and heated to 550°C under a nitrogen stream at a rate of 1007 hours.
(PAS2-1>, heat treatment was performed to 750'C (PAS2-2).

次に核熱処理物を希塩酸で洗った後、水洗し、その後乾
燥することにより高比表面積のPASフィルムを得た。
Next, the nuclear heat treated product was washed with dilute hydrochloric acid, then water, and then dried to obtain a PAS film with a high specific surface area.

このPASフィルムをディスクミルで粉砕することによ
りPAS粉体を得た。
PAS powder was obtained by pulverizing this PAS film with a disk mill.

(PASの製造法3・・・正極) 水溶性レゾール(約60%濃度)、塩化亜鉛及び水を重
量比でIO:25:4の割合で混合した水溶液をフィル
ムアプリケーターでガラス板上に成膜した1次に成膜し
た水溶液上にガラスを被せ水分が蒸発しない様にした後
、約100℃の塩度1時間加熱して硬化させた。
(PAS manufacturing method 3...positive electrode) A film is formed on a glass plate using a film applicator with an aqueous solution containing water-soluble resol (approximately 60% concentration), zinc chloride, and water mixed in a weight ratio of IO:25:4. The first aqueous solution was covered with glass to prevent moisture from evaporating, and then heated at a salinity of about 100° C. for 1 hour to harden it.

該フェノール樹脂フィルムをシリコニット電気炉中に入
れ窒素気流下で40℃/時間の速度で昇温して、soo
’cまで熱処理を行った0次に該熱処理物を希塩酸で洗
った後、水洗し、その後乾燥することによって不溶不融
性基体を得た。
The phenolic resin film was placed in a siliconite electric furnace and heated at a rate of 40°C/hour under a nitrogen stream to produce a soo
The heat-treated product was washed with dilute hydrochloric acid, water, and then dried to obtain an insoluble and infusible substrate.

該不溶不融性基体をディスクミルで粉砕した粉末100
部、アセチレンブラック15部、四フフ化エチレン粉末
10部を充分に混練後、ローラーを用いて約500μの
フィルムに底形した。
Powder 100 obtained by pulverizing the insoluble and infusible substrate with a disk mill
After thoroughly kneading 15 parts of acetylene black and 10 parts of tetrafluoroethylene powder, a film of about 500 μm was formed using a roller.

(PAS3) (負極の製造法1) P A S  1−1.PASl−2それぞれの粉体1
00部に対して、ポリプロピレン粉末20部(重量あた
り)を混合し、200kg/cm”の圧力で加圧成形し
た後、窒素雰囲気下250℃で2時間加熱処理し、50
0μのPAS戒形体を得た。該成形体を作用極とし、リ
チウム金属を対極及び参照極とし、十分に脱水したブロ
ビレンカーホネートにLiCI Oaを溶解させた1モ
ル/1の溶液を電解液とし、電気化学セルを組んだ、リ
チウムに対し、0.2 Vの電圧を12時間印加するこ
とにより、不溶不融性基体にリチウムを担持させた。
(PAS3) (Negative electrode manufacturing method 1) PAS 1-1. PASL-2 each powder 1
00 parts, 20 parts (per weight) of polypropylene powder were mixed, pressure molded at a pressure of 200 kg/cm'', heat treated at 250°C for 2 hours in a nitrogen atmosphere,
A PAS precipitate of 0μ was obtained. An electrochemical cell was assembled using the molded body as a working electrode, lithium metal as a counter electrode and a reference electrode, and a 1 mol/1 solution of LiCI Oa dissolved in sufficiently dehydrated brobylene carbonate as an electrolyte. By applying a voltage of 0.2 V to lithium for 12 hours, lithium was supported on the insoluble and infusible substrate.

担持させたリチウム量はPASの炭素原子1個に対する
リチウムの数の百分率で表わす、PASI−1底形体に
は35%、PASl−2底形体には31%のリチウムが
担持された(それぞれ負極組l、拠2)。
The amount of lithium supported is expressed as a percentage of the number of lithium to one carbon atom of PAS, and 35% and 31% of lithium were supported on the PASI-1 and PASI-2 base bodies (respectively). l, basis 2).

(負極の製造法2) PAS2−1.PAS2−2それぞれの粉体100部に
対してポリレチレン粉末25部(重量あたり)を混合し
、200kg/cm”の圧力で加圧成形した後、窒素雰
囲気下200℃で2時間加熱処理し、500μのPAS
成形体を得た。
(Negative electrode manufacturing method 2) PAS2-1. 25 parts (per weight) of polyethylene powder was mixed with 100 parts of each powder of PAS2-2, and after pressure molding at a pressure of 200 kg/cm'', heat treatment was performed at 200°C for 2 hours in a nitrogen atmosphere to form a 500μ PAS of
A molded body was obtained.

該成形体に300μのLi金属箔(リチウム担持口約8
0%)を圧着し、1 m o l / l (,1C1
0aプロピレンカーボネート溶液中に48時間放置した
ところ、Li金属箔は完全になくなり、すべてのIjが
PAS7i!形体に担持させることができた。
A 300μ Li metal foil (approximately 8 lithium-carrying openings) was placed on the molded body.
0%) and 1 mol/l (,1C1
When left in the 0a propylene carbonate solution for 48 hours, the Li metal foil completely disappeared and all Ij was PAS7i! It was possible to carry it in the form.

PAS2−1底形体は0.46V、PAS2−2底形体
は0.34 V (V SLi/Li” ) 0)電位
を持つ負極とした(それぞれ負極Na3.Na4)。
The PAS2-1 bottom body had a potential of 0.46 V, and the PAS2-2 bottom body had a potential of 0.34 V (VSLi/Li") 0) as a negative electrode (negative electrodes Na3 and Na4, respectively).

(電池の作成) 正極にPAS3を正極とし、負極m1〜4と組合せて第
1図のように電池を組んだ。
(Preparation of battery) A battery was assembled as shown in FIG. 1 by using PAS3 as a positive electrode and combining it with negative electrodes m1 to m4.

集電体としてはステンレス金網を用い、セパレーターと
してはガラス繊維からなるフェルトを用いた。また電解
液としては1モル/ j! LiCj!0゜プロピレン
カーボネート溶液を用い電池を組んだ。
A stainless wire mesh was used as the current collector, and felt made of glass fiber was used as the separator. Also, as an electrolyte, 1 mol/j! LiCj! A battery was assembled using a 0° propylene carbonate solution.

(サイクル特性の測定〉 上記電池に外部電源より4.Ovの電圧を約1時間印加
し、充電を行ない、次いで1 m A / c m”の
電流密度で2.0■まで放電し、初期容量を求めた。更
にこの充放電サイクルを重ね、初期容量の80%となる
回数を測定した。
(Measurement of cycle characteristics) A voltage of 4.Ov was applied to the above battery from an external power supply for about 1 hour to charge it, and then it was discharged at a current density of 1 mA/cm" to 2.0μ to determine the initial capacity. This charge/discharge cycle was further repeated, and the number of times the capacity reached 80% of the initial capacity was measured.

(急速放電特性の測定) 充電方法はサイクル特性の測定と同様にして、5mA/
cm”の電流密度で2.0■になるまで放電し、1mA
/Cm!放電時の容量と比較した。
(Measurement of rapid discharge characteristics) The charging method was the same as the measurement of cycle characteristics.
Discharge at a current density of 1 mA until the current density is 2.0 cm.
/CM! The capacity was compared with that during discharge.

結果は(5mA/cm”時の容量)/ (1mA/c 
m 1時の容量)で示した。
The result is (capacity at 5mA/cm)/(1mA/c
m 1 hour capacity).

第1表にPASの物性、第2表に本発明のテスト結果を
まとめて示す。
Table 1 summarizes the physical properties of PAS, and Table 2 summarizes the test results of the present invention.

第 表 第2表 比較例 A 】 AS 〜 2 。No. table Table 2 Comparative example A ] A.S. ~ 2.

PAS2−2の粉体を加熱処理しないこと以外はは実施
例と同様にして負極を作成して(負極Nal’〜4′と
する)、サイクル特性、急速放電特性を調べた。結果を
第3表に示す。
A negative electrode was prepared in the same manner as in the example except that the powder of PAS2-2 was not heat-treated (designated as negative electrode Nal' to 4'), and its cycle characteristics and rapid discharge characteristics were examined. The results are shown in Table 3.

第3表 比較例2 PAS2−2の粉体ioo部に対して10部(重量あた
り)のポリ四フフ化エチレン(P T F E)パウダ
ーを混合、混練した後、500μにフィルムにロール底
形した。
Table 3 Comparative Example 2 After mixing and kneading 10 parts (per weight) of polytetrafluoroethylene (PTFE) powder to 10 parts of powder of PAS2-2, roll bottom shape was applied to a film of 500 μm. did.

負極の製造法2にある方法でリチウムを担持させた所、
その電位は0.41 Vであった。実施例と同様の方法
で電池を組みサイクル特性、急速放電特性を測定した。
When lithium was supported by the method in negative electrode manufacturing method 2,
Its potential was 0.41V. A battery was assembled in the same manner as in the example, and cycle characteristics and rapid discharge characteristics were measured.

172回で初期容量の80%となり急速放電時の割合は
0.38であった。
After 172 cycles, the initial capacity reached 80%, and the ratio during rapid discharge was 0.38.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電池の基本構成図であり(1)は
正極、(2)負極、(3) 、 (3’)は集電体、(
4)は電解液、(5)はセパレーター、(6) !池ケ
ース(7) 、 (7’)は外部端子を表わす。 第 図 手続補正書(自発) 平成3年4月I5日 1、事件の表示 平底2年特許願第29889号 2、発明の名称 有機電解質電池 3、補正をする者 事件との関係  特許出願人 住所 東京都墨田区墨田五丁目17番4号〒534 大阪市部島区友渕町1丁目5番90号 鐘紡株式会社 特許部 電話(06)921−1251 5、補正の対象 明細書「特許請求の範囲」及び「発明の詳細な説明」の
欄 6、補正の内容 (1)  明細書「特許請求の範囲」の欄の記載を添付
の別紙(「訂正された特許請求の範囲」)の通り補正致
しまず。 (2)明細書「発明の詳細な説明jの欄の記載を下記の
通り補正致します。 記 ■ 明細書「発明の詳細な説明」の欄第3頁第20行目
にr上記不溶不融性基体jとあるを「ポリアセン系骨格
構造を含有する不溶不融性基体jに補正致します。 ■ 同第4頁第18行目に「負極活物質をリチウムとし
1とあるを削除致します。 7、添付書類の目録 (1)別紙(「訂正された特許請求の範囲」)1通以上 別紙(「訂正された特許請求の範1fflj)(1)正
極、負極、並びにリチウム塩を非プロトン性有機溶媒に
溶解した溶液を含む電解液を備えた有機電解1Xt池に
おいて、負極として炭素、水素および酸素から成る芳香
族系縮合ポリマーの熱処理物であって、該芳香族系縮合
ポリマーは(a)フェノール性水酸基を有する芳香族炭
化水素化合物とアルデヒドの縮合物、(b)フェノール
性水酸基を有する芳香族炭化水素化合物、フェノール性
水M基を有さない芳香族炭化水素化合物およびアルデヒ
ドの縮合物及び(c)フラン樹脂から選ばれ、モして該
熱処理物の水素原子/炭素原子の原子比が0.50〜0
.05であるポリアセン系骨格構造を含有する不溶不融
性基体を熱可塑性樹脂バインダーを用いて成形する際、
もしくは底形後膣熱可塑性樹脂の融点以上で加熱処理し
た不溶不融性基体成形体にリチウムをモル百分率で3%
以上担持させたものを用いることを特徴とする有機電解
質電池。
FIG. 1 is a basic configuration diagram of a battery according to the present invention, in which (1) is a positive electrode, (2) a negative electrode, (3) and (3') are current collectors, and (
4) is an electrolyte, (5) is a separator, and (6) ! The case (7) and (7') represent external terminals. Figure Procedural Amendment (Spontaneous) April I5, 1991 1, Indication of the case Flat-bottomed 2-year patent application No. 29889 2, Name of the invention Organic electrolyte battery 3, Person making the amendment Relationship to the case Patent applicant address 5-17-4 Sumida, Sumida-ku, Tokyo 534 1-5-90 Tomobuchi-cho, Bejima-ku, Osaka Kanebo Co., Ltd. Patent Department Telephone (06) 921-1251 5. Specification to be amended "Scope of Claims ” and “Detailed Description of the Invention” Column 6, Contents of Amendment (1) The description in the “Claims” column of the specification has been amended as shown in the attached appendix (“Amended Scope of Claims”). first. (2) The description in column ``Detailed Description of the Invention j'' of the specification will be amended as follows. The text ``Substrate j'' has been corrected to ``Insoluble and infusible substrate j containing a polyacene skeleton structure.'' ■ On page 4, line 18 of the same page, ``The negative electrode active material is lithium and 1 has been deleted. 7. List of attached documents (1) Attachment (“Amended Claims”) One or more attachments (“Amended Claims 1fflj)” (1) The positive electrode, the negative electrode, and the lithium salt are aprotic. In an organic electrolytic 1Xt cell equipped with an electrolytic solution containing a solution dissolved in an organic solvent, a heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen and oxygen is used as a negative electrode, the aromatic condensation polymer is (a) (b) A condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, (b) an aromatic hydrocarbon compound having a phenolic hydroxyl group, a condensate of an aromatic hydrocarbon compound having no phenolic water M group, and an aldehyde; (c) selected from furan resins, and the atomic ratio of hydrogen atoms/carbon atoms of the heat-treated product is 0.50 to 0.
.. When molding an insoluble and infusible substrate containing a polyacene skeleton structure of 05 using a thermoplastic resin binder,
Or add 3% lithium in mole percentage to an insoluble and infusible base molded body that has been heat-treated above the melting point of the thermoplastic resin after the bottom shape.
An organic electrolyte battery characterized by using the above supported material.

Claims (1)

【特許請求の範囲】[Claims] (1)正極、負極、並びにリチウム塩を非プロトン性有
機溶媒に溶解した溶液を含む電解液を備えた有機電解質
電池において、負極活物質をリチウムとし、負極として
炭素、水素および酸素から成る芳香族系縮合ポリマーの
熱処理物であって、該芳香族系縮合ポリマーは(a)フ
ェノール性水酸基を有する芳香族炭化水素化合物とアル
デヒドの縮合物、(b)フェノール性水酸基を有する芳
香族炭化水素化合物、フェノール性水酸基を有さない芳
香族炭化水素化合物およびアルデヒドの縮合物及び(c
)フラン樹脂から選ばれ、そして該熱処理物の水素原子
/炭素原子の原子比が0.50〜0.05であるポリア
セン系骨格構造を含有する不溶不融性基体を熱可塑性樹
脂バインダーを用いて成形する際、もしくは成形後該熱
可塑性樹脂の融点以上で加熱処理した不溶不融性基体成
形体にリチウムをモル百分率で3%以上担持させたもの
を用いることを特徴とする有機電解質電池。
(1) In an organic electrolyte battery equipped with a positive electrode, a negative electrode, and an electrolytic solution containing a solution of a lithium salt dissolved in an aprotic organic solvent, the negative electrode active material is lithium, and the negative electrode is an aromatic compound consisting of carbon, hydrogen, and oxygen. A heat-treated product of an aromatic condensation polymer, the aromatic condensation polymer comprises (a) a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, (b) an aromatic hydrocarbon compound having a phenolic hydroxyl group, Aromatic hydrocarbon compounds having no phenolic hydroxyl groups and condensates of aldehydes and (c
) A thermoplastic resin binder is used to prepare an insoluble and infusible substrate containing a polyacene skeleton structure selected from furan resins and having an atomic ratio of hydrogen atoms/carbon atoms of the heat-treated product of 0.50 to 0.05. An organic electrolyte battery characterized by using an insoluble and infusible base molded body which is heat-treated at a temperature higher than the melting point of the thermoplastic resin during molding or after molding and supports lithium in a molar percentage of 3% or more.
JP2029889A 1990-02-08 1990-02-08 Organic electrolyte battery Expired - Fee Related JP2574731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029889A JP2574731B2 (en) 1990-02-08 1990-02-08 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029889A JP2574731B2 (en) 1990-02-08 1990-02-08 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH03233861A true JPH03233861A (en) 1991-10-17
JP2574731B2 JP2574731B2 (en) 1997-01-22

Family

ID=12288537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029889A Expired - Fee Related JP2574731B2 (en) 1990-02-08 1990-02-08 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2574731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601832A1 (en) * 1992-12-07 1994-06-15 Honda Giken Kogyo Kabushiki Kaisha Alkaline ion-absorbing/desorbing carbon material, electrode material for secondary battery using the carbon material and lithium battery using the electrode material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601832A1 (en) * 1992-12-07 1994-06-15 Honda Giken Kogyo Kabushiki Kaisha Alkaline ion-absorbing/desorbing carbon material, electrode material for secondary battery using the carbon material and lithium battery using the electrode material
US5725968A (en) * 1992-12-07 1998-03-10 Honda Giken Kogyo Kabushiki Kaisha Alkaline ion-absorbing/desorbing carbon material electrode material for secondary battery using the carbon material and lithium secondary battery using the electron material

Also Published As

Publication number Publication date
JP2574731B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JP2532878B2 (en) Organic electrolyte battery with activated carbon metal oxide composite as positive electrode
JP2574730B2 (en) Organic electrolyte battery
JP3218285B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JP3403856B2 (en) Organic electrolyte battery
JP2968097B2 (en) Organic electrolyte battery
JPH03233861A (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JP2632427B2 (en) Organic electrolyte battery
JP2646461B2 (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JP2869355B2 (en) Organic electrolyte battery
JP2869354B2 (en) Organic electrolyte battery
JP2912517B2 (en) Organic electrolyte battery
JP2646462B2 (en) Organic electrolyte battery
JP2619842B2 (en) Organic electrolyte battery
JP2920070B2 (en) Organic electrolyte battery
JP3403894B2 (en) Organic electrolyte battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JP2601784B2 (en) Organic electrolyte battery
JP2869191B2 (en) Organic electrolyte battery
JP2588404B2 (en) Organic electrolyte battery
JP2781725B2 (en) Organic electrolyte battery
JPH0624160B2 (en) Organic electrolyte battery
JPH05325972A (en) Organic electrolyte battery

Legal Events

Date Code Title Description
S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees