JPH0323353B2 - - Google Patents

Info

Publication number
JPH0323353B2
JPH0323353B2 JP56107896A JP10789681A JPH0323353B2 JP H0323353 B2 JPH0323353 B2 JP H0323353B2 JP 56107896 A JP56107896 A JP 56107896A JP 10789681 A JP10789681 A JP 10789681A JP H0323353 B2 JPH0323353 B2 JP H0323353B2
Authority
JP
Japan
Prior art keywords
thin film
reflectance
recording
laser
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56107896A
Other languages
Japanese (ja)
Other versions
JPS588695A (en
Inventor
Akira Morinaka
Hironori Yamazaki
Yoshihiro Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56107896A priority Critical patent/JPS588695A/en
Publication of JPS588695A publication Critical patent/JPS588695A/en
Publication of JPH0323353B2 publication Critical patent/JPH0323353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 本発明は基板上に形成された薄膜層にレーザ・
ビームを照射してその反射率或いは透過率を変化
させることにより、光学的信号を記録再生するレ
ーザ記録媒体材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides laser radiation to a thin film layer formed on a substrate.
The present invention relates to a laser recording medium material that records and reproduces optical signals by irradiating a beam and changing its reflectance or transmittance.

レーザ・ビームによる熱的効果を記録に利用す
るヒート・モード記録方式は、(1)経年変化がなく
記録保存性が良い、(2)実時間で追加記録及び再生
ができる、(3)記録密度が磁気記録等に比べ高密度
であるという特徴のため、ビデオ・デイスク等へ
の応用が注目されている。
The heat mode recording method, which utilizes the thermal effect of a laser beam for recording, has the following advantages: (1) good storage performance with no aging, (2) ability to perform additional recording and playback in real time, and (3) recording density. Because of its characteristic of higher density than magnetic recording, its application to video disks and the like is attracting attention.

従来、ヒート・モード形の記録媒体としては、
基板上に染料及びバインダで記録層が形成された
もの(米国特許第1117419号)や金属薄膜、金属
酸化物、カルコゲナイトガラス層を記録層として
用いるレーザ記録媒体材料が知られている。(例
えばM.L.Vevene
“ElectronIonandLaserBeamTechnology”第11
回シンポジウム記録(1969),Electronics誌
(1968)3.18.P.50、特開昭50−46317号公報) しかし、上述したレーザ記録媒体材料では記録
閾値エネルギが高いため、Arレーザ、He−Ne
レーザ等高出力レーザ光源を必要とし変調偏光器
も大型のものを使用せねばならなかつた。また感
度は使用するレーザで最大となるように工夫され
ていた。近年光源の小型化、変調の高速化に対応
すべく半導体レーザがレーザ記録に用いられるよ
うになつたが、レーザ出力(パワー)が小さく、
発振波長が近赤外域(≒800nm)であるため従来
の記録媒体では感度が低く使用が困難であつた。
Conventionally, heat mode recording media include:
Laser recording media materials are known in which a recording layer is formed on a substrate using a dye and a binder (US Pat. No. 1,117,419), and in which a metal thin film, a metal oxide, or a chalcogenite glass layer is used as the recording layer. (e.g. MLVevene
“ElectronIonandLaserBeamTechnology” No. 11
(1969), Electronics magazine (1968) 3.18.P.50, Japanese Patent Application Laid-Open No. 50-46317) However, since the recording threshold energy of the above-mentioned laser recording medium materials is high, Ar laser, He-Ne
A high-output laser light source such as a laser is required, and a large modulation polarizer must be used. The sensitivity was also designed to be maximized by the laser used. In recent years, semiconductor lasers have been used for laser recording in response to miniaturization of light sources and faster modulation, but the laser output (power) is small and
Since the oscillation wavelength is in the near-infrared region (≈800 nm), conventional recording media have low sensitivity and are difficult to use.

一方、記録媒体として多量の情報を記録するた
め記録面は広面積化を促しており、均一化が望ま
れるレーザ記録媒体材料はバインダ塗布などの工
程の省略及び製造法の簡便さも材料に対して要求
されるようになつた。
On the other hand, in order to record a large amount of information as a recording medium, the recording surface area is becoming larger, and laser recording media materials, which are desired to be uniform, can be manufactured by omitting processes such as binder coating and by simplifying the manufacturing method. It has become required.

本発明は、半導体レーザの発振波長に適合する
ような近赤外域の光エネルギーを用いて物質の状
態変化を利用したレーザ記録媒体材料に関するも
ので、特定の有機物中に特定の金属を微粒子で分
散させた薄膜を用いることを特徴とし、その目的
は従来の材料に比べて高感度かつ製造の容易なレ
ーザ記録媒体材料を堤供することにある。
The present invention relates to a laser recording medium material that utilizes a change in the state of a substance using light energy in the near-infrared region that matches the oscillation wavelength of a semiconductor laser, in which a specific metal is dispersed as fine particles in a specific organic substance. The objective is to provide a laser recording medium material that is more sensitive and easier to manufacture than conventional materials.

即ち、本発明はフルオロセイン、デイスポーズ
イエロー51、スクアリリウム色素及びポリパラキ
シリレンから選ばれる有機物とTe,Bi,Agから
選ばれる金属とを同時に真空蒸着することによ
り、透明な有機物膜中に金属微粒子を分散させた
金属光沢を呈する薄膜からなることを特徴とする
レーザ記録媒体材料である。
That is, the present invention provides metals in a transparent organic film by simultaneously vacuum-depositing an organic material selected from fluorescein, Dispose Yellow 51, squarylium dye, and polyparaxylylene and a metal selected from Te, Bi, and Ag. This is a laser recording medium material characterized by being composed of a thin film exhibiting metallic luster in which fine particles are dispersed.

上記金属微粒子は、粒径100Å以下のものを用
いることが望ましい。
It is desirable to use the metal fine particles with a particle size of 100 Å or less.

なお、上記有機物に対する金属微粒子の分散量
は80Vol%以上にすることが望ましい。金属微粒
子の分散量は、形成する薄膜の厚さを考慮するこ
とが必要で、該薄膜を薄くする場合は金属微粒子
の分散量を上記範囲内でも多い側に設定すること
が好ましい。
Note that it is desirable that the amount of metal fine particles dispersed in the organic substance be 80 Vol% or more. The amount of metal fine particles dispersed needs to take into consideration the thickness of the thin film to be formed, and when the thin film is to be made thin, it is preferable to set the amount of metal fine particles dispersed on the larger side within the above range.

次に、本発明の実施例を説明する。 Next, examples of the present invention will be described.

第1図は以下の実施例1〜7で用いるレーザ記
録媒体材料の製造装置である。図中11は真空容
器であり、この真空容器11の上部内壁には基板
ホルダ12が懸下されている。この基板ホルダ1
2の下方にはシヤツタ13が配設されている。前
記真空容器11の下部には高融点金属からなる2
つの蒸着ボート141,142が設けられ、かつこ
れらボート141,142には加熱電源151,1
2が夫々接続されている。また、前記真空容器
11には該容器11内のガスを排気するための真
空ポンプ16が連結されている。
FIG. 1 shows an apparatus for manufacturing laser recording medium materials used in Examples 1 to 7 below. In the figure, 11 is a vacuum container, and a substrate holder 12 is suspended from the upper inner wall of this vacuum container 11. This board holder 1
A shutter 13 is provided below the shutter 2. In the lower part of the vacuum container 11, there is a metal 2 made of high melting point metal.
Two vapor deposition boats 14 1 , 14 2 are provided, and these boats 14 1 , 14 2 are provided with heating power sources 15 1 , 1
5 2 are connected respectively. Further, a vacuum pump 16 is connected to the vacuum container 11 for exhausting gas within the container 11.

上述した製造装置を用いてレーザ記録媒体材料
を作製するには、まず基板ホルダ12に所望の基
板17を保持させ、真空ポンプ16を作動して真
空容器11内を真空した後、有機物を一方の蒸着
ボート141に収容し、該ボート141に加熱電源
151から通電して加熱し、真空容器11を有機
物の蒸気で満たし、一定圧に保つ。つづいて、他
方の蒸着ボート142に金属を収容し、同様に加
熱して金属を蒸発させる。蒸着ボード142から
蒸発した金属は真空容器11内の有機物蒸気と衝
突して微粒子を形成する。この状態でシヤツタ1
3を開くことにより基板17上に有機物層に金属
微粒子が分散した薄膜18が形成される。こうし
た薄膜18の形成に際し、有機物蒸気の圧力調整
によつて金属微粒子の径及び薄膜中の金属微粒子
の含有量を制御することができる。
To produce a laser recording medium material using the above-mentioned manufacturing apparatus, first, a desired substrate 17 is held in the substrate holder 12, the vacuum pump 16 is activated to evacuate the vacuum container 11, and then organic matter is removed from one side. It is housed in a vapor deposition boat 14 1 , and the boat 14 1 is heated by being supplied with electricity from a heating power source 15 1 , and the vacuum container 11 is filled with organic vapor and maintained at a constant pressure. Subsequently, metal is placed in the other vapor deposition boat 14 2 and similarly heated to evaporate the metal. The metal evaporated from the deposition board 14 2 collides with the organic vapor in the vacuum container 11 to form fine particles. In this state, shutter 1
By opening 3, a thin film 18 in which fine metal particles are dispersed in an organic layer is formed on the substrate 17. When forming such a thin film 18, the diameter of the metal fine particles and the content of the metal fine particles in the thin film can be controlled by adjusting the pressure of the organic vapor.

以下にこの装置を用いて作製したレーザ記録媒
体の実施例を示す。
Examples of laser recording media produced using this apparatus are shown below.

実施例 1 有機物としてフルオレセインを用い金属として
Teを用い、ガラス基板上で蒸着速度が体積比2
対1になる様に各蒸着ボート141,142への電
流を制御したのちシヤツター13を開くと基板1
7上にTe金属微粒子が分散したフルオレセイン
膜が生成する。フルオレセイン蒸気圧が1×
10-5Torr程度でTe微粒子は約100Åの大きさとな
る。全体の膜厚を0.3μmにした時点で蒸着を終え
る。生成した膜はオレンジ色透明のフルオレセイ
ン膜に分散Teが混ざり、表面は金属光沢を呈し
た灰オレンジ色の膜となる。
Example 1 Using fluorescein as an organic substance and as a metal
Using Te, the deposition rate was 2 by volume on a glass substrate.
When the shutter 13 is opened after controlling the current to each vapor deposition boat 14 1 , 14 2 so that it becomes a pair, the substrate 1
A fluorescein film in which Te metal fine particles are dispersed is formed on 7. Fluorescein vapor pressure is 1×
At about 10 -5 Torr, the Te particles have a size of about 100 Å. Vapor deposition is finished when the total film thickness is 0.3 μm. The resulting film is a transparent orange fluorescein film mixed with dispersed Te, resulting in a gray-orange film with a metallic luster on the surface.

得られたレーザ記録媒体材料は、分散させた
Te微粒子の吸収のため半導体レーザ発振領域
(800nm)で105cm-1以上の吸収係数を持つ。こ
の媒体に光ビーム径1.5×1.8μm、媒体面でのパワ
ー6.0mWの半導体レーザパルス(830nm)で書
き込みを行なつたところ、第2図に示す如く、入
射レーザ光が基板21上の薄膜22に吸収され、
熱でTe微粒子及びフルオレセインが蒸発昇華し
薄膜22に記録ピツト23が形成された。この
時、ピツト形成に必要なパルス幅は100nsecが閾
値となり約30mJ/cm2の感度に相当する値を示し
た。ピツト形成により薄膜表面反射率が減少し、
パワーを弱めたレーザ光で走査することにより第
3図に示す如く薄膜表面での反射率が変化し、信
号記録の有無を知ることができた。なお、第3図
中の31は未記録部の反射率、32は記録ピツト
の反射率で31に比べて低下している。
The obtained laser recording medium material is dispersed
Due to the absorption of Te fine particles, it has an absorption coefficient of 10 5 cm -1 or more in the semiconductor laser oscillation region (800 nm). Writing was performed on this medium using a semiconductor laser pulse (830 nm) with a light beam diameter of 1.5 x 1.8 μm and a power of 6.0 mW on the medium surface. As shown in FIG. absorbed into
The Te fine particles and fluorescein were evaporated and sublimated by the heat, and recording pits 23 were formed in the thin film 22. At this time, the threshold pulse width required for pit formation was 100 nsec, which corresponded to a sensitivity of approximately 30 mJ/cm 2 . The pit formation reduces the thin film surface reflectance,
By scanning with a laser beam of weakened power, the reflectance on the thin film surface changed as shown in FIG. 3, and it was possible to determine whether a signal was recorded. Note that 31 in FIG. 3 is the reflectance of the unrecorded area, and 32 is the reflectance of the recorded pits, which are lower than 31.

実施例 2 実施例1と同様にガラス基板上にフルオレセイ
ン層中にBi微粒子を体積比で2対1の割合にて
分散させた薄膜を作製した。得られた薄膜に前記
実施例1と同条件の半導体レーザパルスで書き込
みを行なつたところ、第4図に示す如く入射レー
ザ光が基板41上の薄膜42に吸収され、フルオ
レセイン及びBi微粒子の一部が蒸発昇華し、薄
膜42に記録ピツト43が形成されると共に、残
りのBi微粒子が融解してピツト43の周辺にフ
リンジ部44が形成された。この時、ピツト形成
に必要なパルス幅は120nsecで約35mJ/cm2の感度
に相当する値を示した。ピツト形成により薄膜表
面の反射率が減少し、パワーを弱めたレーザ光で
走査することにより第5図に示す如く薄膜表面で
の反射率が変化し、信号記録の有無を知ることが
できた。なお、第5図中の51は未記録部の反射
率、52はフリンジ部の反射率、53は記録ピツ
トの反射率を示す。
Example 2 In the same manner as in Example 1, a thin film was prepared on a glass substrate in which Bi particles were dispersed in a fluorescein layer at a volume ratio of 2:1. When writing was performed on the obtained thin film using a semiconductor laser pulse under the same conditions as in Example 1, the incident laser light was absorbed by the thin film 42 on the substrate 41 as shown in FIG. The remaining Bi particles were evaporated and sublimated to form recording pits 43 in the thin film 42, and the remaining Bi particles were melted to form fringe parts 44 around the pits 43. At this time, the pulse width required for pit formation was 120 nsec, which corresponded to a sensitivity of approximately 35 mJ/cm 2 . The reflectance of the thin film surface decreased due to pit formation, and by scanning with a laser beam of weakened power, the reflectance of the thin film surface changed as shown in FIG. 5, and it was possible to determine whether a signal was recorded. In FIG. 5, numeral 51 indicates the reflectance of the unrecorded portion, 52 the reflectance of the fringe portion, and 53 the reflectance of the recorded pit.

実施例 3 まず、ガラス基板上に0.20μmのフルオレセイ
ン膜を形成し、更にTe微粒子とフルオレセイン
を体積比で9:1の割合にて含む厚さ200Åの薄
膜を前記フルオレセイン膜上に形成した。得られ
た二層構造膜は反射率が40%以上となる。この二
層構造膜に前記実施例1と同条件の半導体レーザ
パルスで書き込みを行なつたところ、第6図に示
す如く入射レーザ光が基板61のフルオレセイン
膜62上の薄膜63にほとんど吸収され、この薄
膜63のレーザ入射部が蒸発昇華して記録ピツト
64が形成された。この時、記録閾値は80nsecで
約25mJ/cm2感度に相当する値を示した。また、
前記実施例1と同様にレーザ光で走査することに
より第7図に示す如く薄膜表面での反射率が変化
し、信号記録の有無を知ることができた。なお、
第7図中の71は未記録部の反射率、72は基板
上のフルオレセイン膜の反射率、73は記録ピツ
トの反射率を示す。
Example 3 First, a 0.20 μm fluorescein film was formed on a glass substrate, and a 200 Å thick thin film containing Te fine particles and fluorescein at a volume ratio of 9:1 was further formed on the fluorescein film. The resulting two-layer structure film has a reflectance of 40% or more. When this two-layer structure film was written with a semiconductor laser pulse under the same conditions as in Example 1, most of the incident laser light was absorbed by the thin film 63 on the fluorescein film 62 of the substrate 61, as shown in FIG. The laser incident portion of this thin film 63 was evaporated and sublimated to form recording pits 64. At this time, the recording threshold was 80 nsec, which corresponded to a sensitivity of about 25 mJ/cm 2 . Also,
By scanning with a laser beam in the same manner as in Example 1, the reflectance on the thin film surface changed as shown in FIG. 7, and it was possible to determine whether a signal was recorded. In addition,
In FIG. 7, 71 indicates the reflectance of the unrecorded area, 72 indicates the reflectance of the fluorescein film on the substrate, and 73 indicates the reflectance of the recording pit.

実施例 4 ガラス基板上に実施例1と同様な方法でAg微
粒子とデイスパースイエロー51を体積比で2:1
の割合にて含む厚さ200Åの薄膜を形成した。得
られた薄膜にパルス幅500nsec以下の半導体レー
ザパルスで書き込みを行なつたところ、第8図に
示す如く基板81上の薄膜82に色素層の結晶化
による反射率が増加した記録ピツト83と昇華に
よる記録ピツト84が形成された。この時、記録
閾値は80nsecで約25mJ/cm2の感度に相当する値
を示した。こうした薄膜をレーザ光で走査するこ
とにより第9図に示す如く薄膜表面での反射率が
変化し、信号記録の有無を知ることができた。な
お、第9図中の91は未記録部の反射率、92は
結晶化による記録ピツトの反射率、93は昇華に
よる記録ピツトの反射率を示す。
Example 4 Ag fine particles and Disperse Yellow 51 were placed on a glass substrate in a volume ratio of 2:1 in the same manner as in Example 1.
A thin film with a thickness of 200 Å was formed. When writing was performed on the obtained thin film using a semiconductor laser pulse with a pulse width of 500 nsec or less, as shown in FIG. Recording pits 84 were formed. At this time, the recording threshold was 80 nsec, which corresponded to a sensitivity of about 25 mJ/cm 2 . By scanning such a thin film with a laser beam, the reflectance on the surface of the thin film changes as shown in FIG. 9, making it possible to determine the presence or absence of signal recording. In FIG. 9, 91 indicates the reflectance of the unrecorded area, 92 indicates the reflectance of the recorded pits due to crystallization, and 93 indicates the reflectance of the recorded pits due to sublimation.

また、パルス幅500nsec以上の半導体レーザで
書き込みを行なつたところ、Ag微粒子の融解と
染料の昇華によつて反射率の低下した記録ピツト
が形成された。この記録閾値は500nsecで約
300mJ/cm2の感度に相当する値を示した。
Furthermore, when writing was performed using a semiconductor laser with a pulse width of 500 nsec or more, recording pits with reduced reflectance were formed due to melting of the Ag particles and sublimation of the dye. This recording threshold is approximately 500nsec.
A value corresponding to a sensitivity of 300 mJ/cm 2 was shown.

実施例 5 ポリパラキシリレン(パリレン)を有機物と
する場合、以下の方法を用いる。蒸発炉で蒸発さ
れたパラキシリレン・ダイマーは650℃前後に加
熱された分解炉を通りモノマーに分解された後、
25℃の低温ガスとし蒸着室へ導入される。蒸着室
は第1図に示した蒸着ボート141,142があり
それからTeが蒸着される。この方法で基板17
にTe微粒子を体積比2:1で分散させたTe分散
ポリパラキシリレン薄膜を作製した。この薄膜に
半導体レーザパルスの書き込みを行なつたとこ
ろ、分散されたTe微粒子の結晶化が起こり、第
10図に示す如く基板101上の薄膜102に反
射率が増加した記録ピツト103が形成された。
この記録閾値は200nsecで約60mJ/cm2の感度に相
当した。こうした薄膜をレーザ光で走査すること
により、第11図に示す如く薄膜表面での反射率
が変化し、信号記録の有無を知ることができた。
なお、第11図中の111は未記録部の反射率、
112は記録ピツトの反射率を示す。
Example 5 When polyparaxylylene (parylene) is used as an organic substance, the following method is used. The paraxylylene dimer evaporated in the evaporation furnace passes through a decomposition furnace heated to around 650℃ and is decomposed into monomers.
It is introduced into the deposition chamber as a low-temperature gas at 25℃. The deposition chamber has deposition boats 14 1 and 14 2 shown in FIG. 1, and Te is deposited from them. In this way, the substrate 17
A Te-dispersed polyparaxylylene thin film was prepared by dispersing Te fine particles at a volume ratio of 2:1. When a semiconductor laser pulse was written on this thin film, the dispersed Te fine particles crystallized, and recording pits 103 with increased reflectance were formed in the thin film 102 on the substrate 101 as shown in FIG. .
This recording threshold corresponded to a sensitivity of about 60 mJ/cm 2 at 200 nsec. By scanning such a thin film with a laser beam, the reflectance on the surface of the thin film changes as shown in FIG. 11, making it possible to determine whether a signal has been recorded.
Note that 111 in FIG. 11 is the reflectance of the unrecorded area;
112 indicates the reflectance of the recording pit.

実施例 6 基板に鏡面を作る金属、例えばAを蒸着して
反射層とし、更にこの反射層上に厚さ0.25μmの
フルオレセイン膜を蒸着した後、Te微粒子をフ
ルオレセイン層に体積比9:1で分散させた厚さ
200Åの薄膜を積層した。こうした積層構造にす
ることによつて書き込みレーザ光は反射層と薄膜
との間で干渉を起こし、反射率は5%以下に減少
する。このままでレーザ記録媒体として用いるこ
とが可能であるが、更に表面にポリパラキシリレ
ン層を0.5μm積層し、保護層を形成した。
Example 6 A metal that creates a mirror surface, such as A, is vapor-deposited on the substrate to form a reflective layer. A fluorescein film with a thickness of 0.25 μm is further vapor-deposited on the reflective layer, and then Te fine particles are added to the fluorescein layer at a volume ratio of 9:1. dispersed thickness
A thin film of 200 Å was laminated. With such a laminated structure, the writing laser beam causes interference between the reflective layer and the thin film, and the reflectance decreases to 5% or less. Although it can be used as a laser recording medium as it is, a 0.5 μm thick polyparaxylylene layer was further laminated on the surface to form a protective layer.

得られた積層膜に半導体レーザパルスで書き込
みを行なつたところ、第12図に示す如くレーザ
光が基板121に積層された反射膜122及びフ
ルオレセイン膜123上の薄膜124に吸収さ
れ、昇華及び融解して露出した薄膜124に記録
ピツト125が形成されると共に保護層127下
の薄膜124にも記録ピツト126が形成され
た。この時の記録閾値は保護層のない箇所では
20nsec、保護層の存在する箇所では30nsecで、各
約6mJ/cm2、約10mJ/cm2の感度に相当する値を
示した。また、かかる積層膜をレーザ光で走査す
ることにより第13図に示す如く積層膜表面での
反射率が変化し、信号記録の有無を知ることがで
きた。なお、第13図中の131は保護層のない
箇所での未記録部の反射率、132は保護層の存
在する箇所での未記録部の反射率、133は保護
層のない箇所での記録ピツトの反射率、134は
保護層の存在する箇所での記録ピツトの反射率、
を示す。
When writing was performed on the obtained laminated film using a semiconductor laser pulse, the laser light was absorbed by the thin film 124 on the reflective film 122 and fluorescein film 123 laminated on the substrate 121, sublimated and melted, as shown in FIG. Recording pits 125 were formed in the exposed thin film 124, and recording pits 126 were also formed in the thin film 124 under the protective layer 127. The recording threshold at this time is
At 20 nsec, and at 30 nsec at the location where the protective layer was present, values corresponding to sensitivities of approximately 6 mJ/cm 2 and approximately 10 mJ/cm 2 were shown, respectively. Furthermore, by scanning such a laminated film with a laser beam, the reflectance on the surface of the laminated film changed as shown in FIG. 13, and it was possible to determine the presence or absence of signal recording. In addition, 131 in FIG. 13 is the reflectance of the unrecorded area where there is no protective layer, 132 is the reflectance of the unrecorded area where the protective layer is present, and 133 is the recorded area where there is no protective layer. The reflectance of the pit, 134 is the reflectance of the recording pit at the location where the protective layer is present.
shows.

参照例 実施例1と同様にアクリル基板上にBiの微粒
子を銅フタロシアニン膜中に体積比1対2の割合
で分散させた薄膜を作製した。この薄膜に半導体
レーザパルスで書き込みを行なつたところ、第1
4図に示す如く基板141上の薄膜142の銅フ
タロシアニン及びBi微粒子の一部が蒸発昇華し
て記録ピツト143が形成されると共に残りの
Bi微粒子が融解してピツト143の周近にフリ
ンジ144が形成された。この記録ピツト形成に
必要なレーザのパルス幅は140nsecで約40mJ/cm2
の記録感度に相当した。また、こうした薄膜をレ
ーザ光で走査することにより第15図に示す如く
薄膜表面での反射率が変化し、信号記録の有無を
知ることができた。なお、第15図中の151は
未記録部の反射率、152は記録ピツトの反射率
を示している。
Reference Example As in Example 1, a thin film was prepared on an acrylic substrate in which Bi particles were dispersed in a copper phthalocyanine film at a volume ratio of 1:2. When writing was performed on this thin film using semiconductor laser pulses, the first
As shown in FIG. 4, part of the copper phthalocyanine and Bi fine particles in the thin film 142 on the substrate 141 evaporate and sublimate to form recording pits 143, and the remaining part evaporates and sublimates.
The Bi particles were melted and a fringe 144 was formed near the periphery of the pit 143. The laser pulse width required to form this recording pit is 140 nsec and approximately 40 mJ/cm 2
This corresponded to a recording sensitivity of Furthermore, by scanning such a thin film with a laser beam, the reflectance on the surface of the thin film changed as shown in FIG. 15, and it was possible to determine whether a signal was recorded. Note that 151 in FIG. 15 indicates the reflectance of the unrecorded portion, and 152 indicates the reflectance of the recorded pit.

実施例 7 実施例1と同様にガラス基板上にTeの微粒子
をジメチルアミノスクアリリウム膜中に体積比1
対3の割合で分散させた薄膜を作製した。得られ
た薄膜に半導体レーザパルスで書き込みを行なつ
たところ、第16図に示す如く基板161上の薄
膜162中のジメチルアミノスクアリリウム及び
Te微粒子の一部が蒸発昇華して、薄膜162に
は記録ピツト163が形成された。ピツト形成に
必要なレーザのパルス幅は100nsecで約30mJ/cm2
の記録感度に対応している。また、こうした薄膜
をレーザ光で走査することにより第17図に示す
如く薄膜表面での反射率が変化し、信号記録の有
無を知ることができた。なお、第17図中の17
1は未記録部の反射率、172は記録ピツトの反
射率を示す。
Example 7 As in Example 1, Te fine particles were placed on a glass substrate at a volume ratio of 1 in a dimethylaminosquarylium film.
A thin film was prepared in which the mixture was dispersed at a ratio of 3:3. When writing was performed on the obtained thin film using semiconductor laser pulses, dimethylaminosquarylium and
A portion of the Te fine particles evaporated and sublimated, forming recording pits 163 in the thin film 162. The laser pulse width required for pit formation is 100nsec and approximately 30mJ/cm 2
Compatible with recording sensitivity. Furthermore, by scanning such a thin film with a laser beam, the reflectance on the surface of the thin film changed as shown in FIG. 17, and it was possible to determine whether or not a signal was recorded. Note that 17 in Figure 17
1 indicates the reflectance of the unrecorded area, and 172 indicates the reflectance of the recorded pit.

上記実施例1〜7より明らかな如く本発明で得
られたレーザ記録媒体材料は基板上への2種類の
物質の蒸着といつた方法で基板加熱などを用いず
に簡便かつ均一なレーザ記録媒体を得ることがで
きる。このため基板材質はプラスチツクス等熱に
よつて変形する物質も用いることができる。
As is clear from the above Examples 1 to 7, the laser recording medium material obtained by the present invention can be easily and uniformly produced by a method such as vapor deposition of two types of substances on a substrate without using substrate heating or the like. can be obtained. For this reason, materials that are deformed by heat, such as plastics, can also be used as the substrate material.

また半導体レーザ光を吸収するTe,Bi,Ag等
金属、半金属の物質(吸収係数大)が微粒子状と
なり、熱伝導率が金属類と比べ非常に小さな昇華
性有機物マトリツクス(吸収係数小)に分散され
ているため、レーザ光照射により以下の作用でピ
ツトが形成される。
In addition, metals and metalloids such as Te, Bi, and Ag that absorb semiconductor laser light (with large absorption coefficients) become fine particles, forming a sublimable organic material matrix (with small absorption coefficients) whose thermal conductivity is much lower than that of metals. Since it is dispersed, pits are formed by laser beam irradiation through the following actions.

(1) 照射レーザ光は分散された金属微粒子に吸収
される。微粒子状のため表面積は同一体積の連
続した蒸着膜に比べ非常に大きくて有効に吸収
され、内部で熱に変換される。
(1) The irradiated laser beam is absorbed by the dispersed metal particles. Because it is in the form of fine particles, the surface area is much larger than that of a continuous vapor-deposited film of the same volume, so it is effectively absorbed and converted into heat internally.

(2) 発生した熱によつて微粒子状Te,Bi,Agは
各々それ自身昇華、融解するが、同時に熱拡散
によつて周囲に熱を伝える。ところが有機物マ
トリツクスは熱伝導率が非常に小さいため、発
生した熱は金属・半金属膜と比べて拡散が少な
く局部に集中するため極めて高温となる。
(2) The generated heat causes the fine particles of Te, Bi, and Ag to sublimate and melt themselves, but at the same time, they transfer heat to the surroundings through thermal diffusion. However, since the organic matrix has extremely low thermal conductivity, the generated heat diffuses less than in metal/semimetal films and is concentrated locally, resulting in extremely high temperatures.

(3) 有機物マトリツクス自身も金属に比べ同等か
それ以下の温度で昇華性を持つているため、有
機物マトリツクスは昇華蒸発すると同時に吸収
体である金属微粒子も昇華・融解を始める。こ
の結果、レーザ記録媒体はレーザ光照射によつ
て昇華・融解による記録ピツトを生じることに
なる。
(3) Since the organic matrix itself has sublimation properties at temperatures equal to or lower than those of metals, the organic matrix sublimates and evaporates, and at the same time the metal fine particles that serve as absorbers also begin to sublimate and melt. As a result, recording pits are generated in the laser recording medium due to sublimation and melting due to laser beam irradiation.

以上詳述した如く、本発明によつて得られたレ
ーザ記録媒体は、金属・半金属のみの蒸着膜、或
いは有機物マトリツクスのみの膜(例えばTe膜、
フルオレセイン膜)に比べて有効な光吸収と熱の
集中を持たらすため高い半導体レーザ記録感度を
持ち、更に分散させる金属微粒子に濃度勾配を持
たせることによつて実施例6の如く薄膜干渉効果
を用いて、記録ピツトの読み出し時のコントラス
トを高めることができ、もつて高感度かつ高コン
トラストの読み出し性を持ち、大面積均一媒体も
容易に達成できる等顕著な効果を有する。
As described in detail above, the laser recording medium obtained by the present invention is a vapor-deposited film made only of metals or semimetals, or a film made only of an organic matrix (for example, a Te film,
It has a high semiconductor laser recording sensitivity due to its effective light absorption and heat concentration compared to the fluorescein film (fluorescein film), and it also has a thin film interference effect as in Example 6 by giving a concentration gradient to the metal particles to be dispersed. Using this method, the contrast during readout of the recording pits can be increased, and it has remarkable effects such as high sensitivity and high contrast readability, and large area uniform media can be easily achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザ記録媒体材料を得るた
めの製造装置の一形態を示す概略図、第2図は本
発明の実施例1で得られたレーザ記録媒体の書き
込み後の状態を示す概略図、第3図は第2図の記
録媒体の反射率を示す特性図、第4図は本発明の
実施例2で得られたレーザ記録媒体の書き込み後
の状態を示す概略図、第5図は第4図の同媒体の
反射率を示す特性図、第6図は本発明の実施例3
で得られたレーザ記録媒体の書き込み後の状態を
示す概略図、第7図は第6図の同媒体の反射率を
示す特性図、第8図は本発明の実施例4で得られ
たレーザ記録媒体の書き込み後の状態を示す概略
図、第9図は第8図の同媒体の反射率を示す特性
図、第10図は本発明の実施例5により得られた
レーザ記録媒体の書き込み後の状態を示す概略
図、第11図は第10図の同媒体の反射率を示す
特性図、第12図は本発明の実施例6により得ら
れたレーザ記録媒体の書き込み後の状態を示す概
略図、第13図は第12図の同媒体の反射率を示
す特性図、第14図は本発明の実施例7により得
られたレーザ記録媒体の書き込み後の状態を示す
概略図、第15図は第14図の同媒体の反射率を
示す特性図、第16図は本発明の実施例8により
得られたレーザ記録媒体の書き込み後の状態を示
す概略図、第7図は第16図の同媒体の反射率を
示す特性図である。 11……真空容器、13……シヤツタ、141
142……吸着ボート、151,152……加熱電
源、16……真空ポンプ、17,21,41,6
1,81,101,121,141,161……
基板、22,42,63,82,102,12
4,142,162………薄膜(媒体)、23,
43,64,84,103,125,126,1
43,163……記録ピツト。
FIG. 1 is a schematic diagram showing one embodiment of a manufacturing apparatus for obtaining the laser recording medium material of the present invention, and FIG. 2 is a schematic diagram showing the state of the laser recording medium obtained in Example 1 of the present invention after writing. 3 is a characteristic diagram showing the reflectance of the recording medium in FIG. 2, FIG. 4 is a schematic diagram showing the state of the laser recording medium obtained in Example 2 of the present invention after writing, and FIG. is a characteristic diagram showing the reflectance of the same medium shown in FIG. 4, and FIG. 6 is a characteristic diagram showing the reflectance of the same medium as shown in FIG.
7 is a characteristic diagram showing the reflectance of the same medium in FIG. 6, and FIG. 8 is a schematic diagram showing the state of the laser recording medium obtained in Example 4 of the present invention after writing. A schematic diagram showing the state of the recording medium after writing, FIG. 9 is a characteristic diagram showing the reflectance of the same medium in FIG. 8, and FIG. 10 is a diagram showing the state of the laser recording medium obtained in Example 5 of the present invention after writing. FIG. 11 is a characteristic diagram showing the reflectance of the same medium in FIG. 10, and FIG. 12 is a schematic diagram showing the state of the laser recording medium obtained in Example 6 of the present invention after writing. 13 is a characteristic diagram showing the reflectance of the same medium in FIG. 12, FIG. 14 is a schematic diagram showing the state of the laser recording medium obtained in Example 7 of the present invention after writing, and FIG. 15 is a characteristic diagram showing the reflectance of the same medium in FIG. is a characteristic diagram showing the reflectance of the same medium in FIG. 14, FIG. 16 is a schematic diagram showing the state of the laser recording medium obtained in Example 8 of the present invention after writing, and FIG. 7 is a characteristic diagram showing the reflectance of the same medium in FIG. It is a characteristic diagram showing the reflectance of the same medium. 11...vacuum container, 13...shutter, 14 1 ,
14 2 ... Adsorption boat, 15 1 , 15 2 ... Heating power supply, 16 ... Vacuum pump, 17, 21, 41, 6
1,81,101,121,141,161...
Substrate, 22, 42, 63, 82, 102, 12
4,142,162... Thin film (medium), 23,
43,64,84,103,125,126,1
43,163...Record pit.

Claims (1)

【特許請求の範囲】 1 フルオレセイン、デイスポーズイエロー51、
スクアリリウム色素及びポリパラキシリレンから
選ばれる有機物とTe,Bi,Agから選ばれる金属
とを同時に真空蒸着することにより、透明な有機
物膜中に金属微粒子を分散させた金属光沢を呈す
る薄膜からなることを特徴とするレーザ記録媒体
材料。 2 薄膜の上面に保護膜層を、同薄膜の下面に反
射層を被覆したことを特徴とする特許請求の範囲
第1項記載のレーザ記録媒体材料。
[Claims] 1. Fluorescein, Dispose Yellow 51,
By simultaneously vacuum-depositing an organic material selected from squarylium dye and polyparaxylylene and a metal selected from Te, Bi, and Ag, a thin film exhibiting metallic luster with fine metal particles dispersed in a transparent organic material film is formed. A laser recording medium material characterized by: 2. The laser recording medium material according to claim 1, wherein the upper surface of the thin film is coated with a protective film layer, and the lower surface of the thin film is coated with a reflective layer.
JP56107896A 1981-07-10 1981-07-10 Material for laser recording medium Granted JPS588695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56107896A JPS588695A (en) 1981-07-10 1981-07-10 Material for laser recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56107896A JPS588695A (en) 1981-07-10 1981-07-10 Material for laser recording medium

Publications (2)

Publication Number Publication Date
JPS588695A JPS588695A (en) 1983-01-18
JPH0323353B2 true JPH0323353B2 (en) 1991-03-28

Family

ID=14470811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56107896A Granted JPS588695A (en) 1981-07-10 1981-07-10 Material for laser recording medium

Country Status (1)

Country Link
JP (1) JPS588695A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231750A (en) * 1983-06-13 1984-12-26 Fuji Photo Film Co Ltd Information recording medium
NL8701176A (en) * 1987-05-15 1988-12-01 Stork Screens Bv PATTERN COATING FOR A METAL SILK PRINT TEMPLATE; SCREEN-PRINTING TEMPLATE PROVIDED WITH A PATTERNING COATING AND METHOD FOR APPLYING A PATTERNING PATTERN TO A COATING COATING ON A METAL SCREEN-PRINTING TEMPLATE.
JP2003178419A (en) * 2001-12-12 2003-06-27 Fuji Photo Film Co Ltd Recording medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154086A (en) * 1980-04-30 1981-11-28 Fujitsu Ltd Medium for optical recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56154086A (en) * 1980-04-30 1981-11-28 Fujitsu Ltd Medium for optical recording

Also Published As

Publication number Publication date
JPS588695A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
US4650742A (en) Recording media with recording layer of two metal layers sandwiching sublimable organic substance layer
US5252370A (en) Optical recording medium and method for making
US4772897A (en) Optical recording medium
JPS6034897A (en) Rewritable optical recording medium
JPH0323353B2 (en)
JPS59113534A (en) Optical recording medium
JPS59104996A (en) Optical recording medium
JPS6119749A (en) Spectral reflectance variable alloy and recording material
JPH04298389A (en) Optical recording medium and manufacture thereof
JPH0123858B2 (en)
JPH0447909B2 (en)
JPS6048397A (en) Optical recording medium and preparation thereof
JPS58219090A (en) Optical recording medium
JPS6326466B2 (en)
JPS61130089A (en) Optical recording medium
JPH0155118B2 (en)
JPS60208290A (en) Recording material
JPH0327975B2 (en)
JPS6252368B2 (en)
JPS6048396A (en) Optical recording method
JPS6398493A (en) Optical recording medium
Santucci et al. Discontinuous Ag/Au films as non-erasable media for laser writing
JPH01148588A (en) Information recording medium and information recording system
JPS6256583B2 (en)
Assa et al. Sensitivity And Resolution Of Digital Laser Recording Medium Based On Silver Halide Layers