JPH0155118B2 - - Google Patents

Info

Publication number
JPH0155118B2
JPH0155118B2 JP55158131A JP15813180A JPH0155118B2 JP H0155118 B2 JPH0155118 B2 JP H0155118B2 JP 55158131 A JP55158131 A JP 55158131A JP 15813180 A JP15813180 A JP 15813180A JP H0155118 B2 JPH0155118 B2 JP H0155118B2
Authority
JP
Japan
Prior art keywords
recording
thin film
layer
laser beam
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55158131A
Other languages
Japanese (ja)
Other versions
JPS5782093A (en
Inventor
Kyoshi Tanigawa
Michiharu Abe
Hideo Inuzuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP55158131A priority Critical patent/JPS5782093A/en
Publication of JPS5782093A publication Critical patent/JPS5782093A/en
Publication of JPH0155118B2 publication Critical patent/JPH0155118B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、レーザー光線の如き高密度エネルギ
ビームによつて情報を記録したり読取つたりする
ことが可能である光学的情報記録媒体に関する。 [従来の技術] 従来、レーザー光線の如き高密度の光ビームを
用いて記録する記録媒体には、可逆性のもの非可
逆性のものといろいろあるが、その一つに記録層
に高エネルギ密度の光ビームが照射されると、そ
のエネルギを吸収して、その照射部分が局部的に
加熱され、融解、蒸発あるいは凝集等の物理的変
化を起して、非照射部分と光学的な差異が生じて
情報を記録するものがある。 その中に、集光レーザーによつて金属薄膜を局
部的に加熱蒸発させ情報を記録するものがある。
この場合、金属としてはPb,Bi,Te,Se,Rh,
Tiなどが用いられる。これらのものは、一般に
安定な膜を作成でき、大きな記録面を容易に作成
できて、高解像力、高コントラストの画像の記録
が可能で、半導体レーザーが使用できる等の長所
があるものの、反面、融点が低い、熱伝導率が低
い、比熱が低い、反射率が大きいなどの問題点が
あり、特に反射率は、レーザー光線に対する反射
率が50%以上のものが多く、レーザー光線のエネ
ルギを有効に利用することができないため、記録
に要する光エネルギが大きく、したがつて、高速
走査で記録するには大出力のレーザー光線が必要
となり、そのため記録装置が大型かつ高価なもの
となる。 又、染料の薄膜を用い、集光レーザーによつ
て、色素を高分子中へ分散せしめて記録するもの
もあり、代表的なものとして、フルオレセインの
蒸着あるいは色素を含むニトロセルロースの塗布
などが知られているが、長期的安定性がなく、波
長の選択性も小さく、半導体レーザーが使用でき
ない等の欠点があり、さらに塗布法の場合、膜の
均一性に疑問が残る。 さらに、主としてカルコゲナイト系のアモルフ
アス半導体の薄膜を用いるものもあり、As2S3
As−Se−Ge,As−Se−S−Ge,As−Te−Ge
などが主として用いられるが、これらは、可視か
らIR光に対して1〜10mJ/cm2の感度が予想さ
れること、金属薄膜よりS/Nがよいこと、加熱
による孔あけ法のみでなく、透過率の変化、屈折
率の変化などによる記録もできること、アナログ
記録ができること、As−Se−Geのような書き替
え可能な記録モードもあることなどの長所がある
反面、透過率がIR光に対して大きく、感度が
6330Å波長に対して100mJ/cm2やや低い欠点が
ある。 以上のような各長所、短所に鑑み、従来も種々
の改良提案がなされている。例えば、特開昭50−
151151号並びに特開昭51−74632号公報には、反
射防止層の設置が開示されており、又、特開昭55
−22961号公報には記録層上に特定の有機物質よ
りなる保護層を設けることが記載されている。
又、低エネルギで記録でき、大きな再生効率を有
するようTeOxを主成分とし、これにTiOx,
BiOx,InOxのうち少くとも1つの成分を含む薄
膜を基板上に形成してなる記録媒体も知られてい
る。 さらに、記録層を金属、金属酸化物またはハロ
ゲン化金属と、VO,Sn,Cu,Cl,Cu,Ni,
Co,Al,ClAl,Pt,Mg,Zn,Moのフタロシア
ニン化合物をもつて構成したものも知られてい
る。 [発明が解決しようとする課題] 本発明は、以上の従来技術の問題点並びに開発
技術を参酌してなされたもので、He−Ne、半導
体レーザー等非常にコンパクトなレーザー光線で
も記録ができ、しかも長期にわたつて安定で、均
一大面積化できる光学的情報非可逆性有機記録材
料を提供するものである。 [課題を解決するための手段] すなわち、本発明は、レーザー光線の如き高密
度エネルギビームにより記録層に状態変化を生じ
させることによつて記録、再生を行う情報記録媒
体において、透明基板上に記録層としての鉛フタ
ロシアニン化合物を含む厚さ1500〜500Åの膜の
単層を有し、別個に反射層を設けないことを特徴
とする光学的情報記録媒体を要旨とするものであ
る。 すなわち、金属フタロシアニンを用いて記録層
を形成することについて種々研究した結果、鉛フ
タロシアニンが最も有効であることを確認し、特
にその1500〜5000Åの範囲の薄膜が感度が最も高
く上記目的に合致するものであることが判つた。
鉛フタロシアニン化合物は真空蒸着法、スパツタ
法、イオンプレート法、気相成長法等の物理的方
法や、ドクターブレード法、キヤスト法、スピナ
ー法等化学的方法など一般的に行われている薄膜
形成法によつて形成することができる。特に好ま
しいのは真空蒸着法で、化学的方法の場合には必
要に応じてバインダと混合することができる。 本発明の記録媒体は反射光を読み取る型のいわ
ゆる“反射型”であるので、基板としては、記録
層から書き込みを行う場合には書き込みレーザー
光線に対して透明である必要はないが、基板側か
らレーザー書き込みを行うことを目的としている
ため、書込みレーザー光線に対して透明であるこ
とが必要である。 これらのことを勘案して、ガラス、塩化ビニル
樹脂、酢酸ビニル樹脂、アクリル樹脂、メタクリ
ル樹脂、プリエステル樹脂、ニトロセルローズ、
ポリエチレン、ポリプロピレン、ポリアミド、ポ
リカーボネート、ポリエチレンテレフタレート、
エポキシ樹脂など一般に知られている支持体が用
いられる。 保護層は特に設けなくても鉛フタロシアニン記
録層であれば使用に耐えるが、必要に応じて設け
てもよい。無機質の保護層としては、Al2O3
SiO2,SiO,MgO,ZnO,MgF2,CuF2等の50〜
2000Åより好ましくは、100〜1000Åの膜厚を有
するものが用いられる。又、有機質の保護層とし
ては、使用する孔エネルギ密度の光ビームに対し
て透過性であり、機械的強度が大で、記録層とは
反応しにくく、皮膜性が良く、さらに製造が容易
な有機高分子化合物であれば良く、アクリル樹
脂、メタクリル樹脂、酢酸ビニル樹脂、ポリエス
テル樹脂、ポリキシレン樹脂、ポリカーボネート
樹脂、エポキシ樹脂、ポリエチレン、ポリスチレ
ン、ポリプロピレン、塩化ビニル樹脂、ポリブチ
ラール等の単独重合体及びこれらの共重合体など
の0.1〜5μmより好ましくは0.5〜2μmの膜厚を有
するものが用いられる。 本発明では記録層に鉛フタロシアニンを用いた
ことにより、他の金属フタロシアニンに比し感度
が格段に向上し、長期安定性で均一大面積化で
き、しかも、必ずしも記録層と熱絶縁層とを積層
する必要がなく、記録層単層でも十分に実用に耐
えるものが得られる。 かかる記録層は1500Åより薄いと十分にその機
能を発揮せず、又、500Åを越えると膜厚が厚く
なりすぎ、低エネルギでは熱伝導の関係からレー
ザーが照射されている部分の物質の状態変化に時
間がかかり、したがつて感度低下が起りまた、出
来た空孔の形状が不安定となり好ましくない。 [実施例] 以下実施例について説明する。 実施例 1 厚さ1mmのガラス板上に、真空度10-6Torrの
条件で鉛フタロシアニンを真空蒸着法で蒸着し
て、厚さ2000Åの薄膜を形成した。この薄膜に薄
膜面から、2.3μmのビーム径を有するHe−Neレ
ーザー光線を一定時間照射し、照射光強度を順次
変化させ、鉛フタロシアニン薄膜がレーザー光線
の熱で蒸発するときの照射光強度を測定したとこ
ろ、1.4mWであつた。 実施例 2 厚さ3mmのアクリル樹脂板うえに、真空度
10-6Torrの条件で鉛フタロシアニンを真空蒸着
法で蒸着して、厚さ2600Åの薄膜を形成した。こ
の薄膜に薄膜面から2.3μmのビーム型を有する
He−Neレーザー光線をTeの場合(比較例9)
と同一時間照射し、照射光強度を順次変化させ、
鉛フタロシアニン薄膜がレーザー光線の熱で蒸発
するときの照射光強度を測定したところ0.2mW
であつた。 実施例 3 He−Neレーザー光線をガラス面から照射した
ほかは実施例1と同様に行なつても照射光強度は
実施例1とほとんど変らなかつた。 比較例 1〜8 各種フタロシアニンを使用して、実施例1と同
様に行なつてレーザー光線の熱で蒸発するときの
照射光強度を測定したところ下記表の如くであつ
た。
[Industrial Field of Application] The present invention relates to an optical information recording medium on which information can be recorded and read using a high-density energy beam such as a laser beam. [Prior Art] Conventionally, there are various types of recording media that record using high-density light beams such as laser beams, including reversible and irreversible types. When a light beam is irradiated, the irradiated area absorbs its energy and is locally heated, causing physical changes such as melting, evaporation, or aggregation, resulting in an optical difference from the non-irradiated area. There are devices that record information. Among them, there is one that records information by locally heating and evaporating a thin metal film using a focused laser.
In this case, the metals include Pb, Bi, Te, Se, Rh,
Ti etc. are used. Although these materials generally have advantages such as being able to create stable films, easily creating large recording surfaces, recording high-resolution and high-contrast images, and being able to use semiconductor lasers, on the other hand, There are problems such as low melting point, low thermal conductivity, low specific heat, and high reflectance.In particular, many have a reflectance of 50% or more for laser beams, making effective use of the energy of laser beams. Therefore, the optical energy required for recording is large, and therefore a high-output laser beam is required to record with high-speed scanning, which makes the recording apparatus large and expensive. There are also methods that use a thin film of dye and disperse the dye into a polymer using a focused laser to record the data. Typical examples include vapor deposition of fluorescein or coating of nitrocellulose containing a dye. However, there are drawbacks such as lack of long-term stability, low wavelength selectivity, and the inability to use semiconductor lasers.Furthermore, in the case of coating methods, questions remain about the uniformity of the film. Furthermore, there are some that use thin films of amorphous semiconductors, mainly chalcogenite, such as As 2 S 3 ,
As-Se-Ge, As-Se-S-Ge, As-Te-Ge
These methods are mainly used because they are expected to have a sensitivity of 1 to 10 mJ/cm 2 from visible to IR light, have a better S/N ratio than metal thin films, and are not limited to the heating-based drilling method. Although there are advantages such as being able to record by changes in transmittance and changes in refractive index, being able to perform analog recording, and having rewritable recording modes such as As-Se-Ge, the transmittance is lower than that of IR light. The sensitivity is large compared to
There is a drawback that it is slightly lower than 100 mJ/cm 2 for the 6330 Å wavelength. In view of the above advantages and disadvantages, various improvement proposals have been made in the past. For example, JP-A-1987-
No. 151151 and JP-A-51-74632 disclose the installation of an anti-reflection layer, and JP-A No. 55-74
Publication No. 22961 describes that a protective layer made of a specific organic substance is provided on the recording layer.
In addition, in order to record with low energy and have high playback efficiency, TeOx is the main component, and TiOx,
A recording medium is also known in which a thin film containing at least one of BiOx and InOx is formed on a substrate. Furthermore, the recording layer may be made of metal, metal oxide or metal halide, such as VO, Sn, Cu, Cl, Cu, Ni,
Products composed of phthalocyanine compounds of Co, Al, ClAl, Pt, Mg, Zn, and Mo are also known. [Problems to be Solved by the Invention] The present invention has been made by taking into consideration the problems of the prior art and the developed technology described above. The object of the present invention is to provide an irreversible organic recording material for optical information that is stable over a long period of time and can be formed into a uniform large area. [Means for Solving the Problems] That is, the present invention provides an information recording medium in which recording and reproduction are performed by causing a state change in a recording layer using a high-density energy beam such as a laser beam, in which recording is performed on a transparent substrate. The gist of the present invention is an optical information recording medium characterized by having a single layer of a film with a thickness of 1500 to 500 Å containing a lead phthalocyanine compound as a layer, and not having a separate reflective layer. That is, as a result of various studies on forming a recording layer using metal phthalocyanine, it was confirmed that lead phthalocyanine is the most effective, and in particular, a thin film in the range of 1500 to 5000 Å has the highest sensitivity and meets the above objectives. It turned out to be something.
Lead phthalocyanine compounds can be formed using commonly used thin film forming methods such as physical methods such as vacuum evaporation method, sputtering method, ion plate method, and vapor phase growth method, and chemical methods such as doctor blade method, cast method, and spinner method. It can be formed by Particular preference is given to vacuum evaporation methods; in the case of chemical methods, they can optionally be mixed with a binder. Since the recording medium of the present invention is a so-called "reflective type" that reads reflected light, the substrate does not need to be transparent to the writing laser beam when writing from the recording layer, but from the substrate side. Since it is intended for laser writing, it needs to be transparent to the writing laser beam. Taking these things into consideration, we have developed glass, vinyl chloride resin, vinyl acetate resin, acrylic resin, methacrylic resin, preester resin, nitrocellulose,
polyethylene, polypropylene, polyamide, polycarbonate, polyethylene terephthalate,
A commonly known support such as an epoxy resin is used. A lead phthalocyanine recording layer can withstand use even if no protective layer is provided, but it may be provided if necessary. As the inorganic protective layer, Al 2 O 3 ,
50 ~ SiO 2 , SiO, MgO, ZnO, MgF 2 , CuF 2 etc.
A film having a thickness of 100 to 1000 Å is more preferably used than 2000 Å. In addition, the organic protective layer should be transparent to the light beam having the pore energy density used, have high mechanical strength, be difficult to react with the recording layer, have good film properties, and be easy to manufacture. Any organic polymer compound may be used, including homopolymers such as acrylic resin, methacrylic resin, vinyl acetate resin, polyester resin, polyxylene resin, polycarbonate resin, epoxy resin, polyethylene, polystyrene, polypropylene, vinyl chloride resin, polybutyral, etc. Those having a film thickness of 0.1 to 5 μm, preferably 0.5 to 2 μm, such as these copolymers, are used. In the present invention, by using lead phthalocyanine in the recording layer, the sensitivity is significantly improved compared to other metal phthalocyanines, and it is possible to achieve a uniform large area with long-term stability. There is no need to do this, and even a single recording layer can be used for practical purposes. If the recording layer is thinner than 1500 Å, it will not function properly, and if it exceeds 500 Å, it will become too thick, and at low energies, the state of the material in the area irradiated by the laser will change due to heat conduction. This is undesirable because it takes a long time to process, resulting in a decrease in sensitivity and the shape of the formed pores becomes unstable. [Example] Examples will be described below. Example 1 Lead phthalocyanine was deposited on a glass plate with a thickness of 1 mm by vacuum evaporation at a vacuum degree of 10 -6 Torr to form a thin film with a thickness of 2000 Å. This thin film was irradiated from the thin film surface with a He-Ne laser beam with a beam diameter of 2.3 μm for a certain period of time, the irradiation light intensity was changed sequentially, and the irradiation light intensity was measured when the lead phthalocyanine thin film was evaporated by the heat of the laser beam. However, it was 1.4mW. Example 2 On an acrylic resin plate with a thickness of 3 mm, the degree of vacuum was
Lead phthalocyanine was deposited by vacuum evaporation under conditions of 10 -6 Torr to form a thin film with a thickness of 2600 Å. This thin film has a beam shape of 2.3 μm from the thin film surface.
When He-Ne laser beam is Te (Comparative Example 9)
irradiate for the same amount of time, and sequentially change the irradiation light intensity.
When the lead phthalocyanine thin film was evaporated by the heat of the laser beam, the intensity of the irradiated light was measured and was 0.2 mW.
It was hot. Example 3 The same procedure as in Example 1 was performed except that the He--Ne laser beam was irradiated from the glass surface, but the intensity of the irradiated light was almost the same as in Example 1. Comparative Examples 1 to 8 Various phthalocyanines were used in the same manner as in Example 1, and the intensity of the irradiated light when evaporated by the heat of the laser beam was measured, and the results were as shown in the table below.

【表】 比較例 9 厚さ1mmのガラス板上に、真空度10-6Torrの
条件で金属Teを真空蒸着法で蒸着して厚さ800Å
の薄膜を形成した。この薄膜に薄膜面から2.3μm
のビーム形を有するHe−Neレーザー光線を一定
時間照射し、照射光強度を順次変化させ、Te薄
膜がレーザー光線の熱で蒸発するときの照射光強
度を測定したところ、2.5mWであつた。 [発明の効果] 以上述べた如く、本発明の記録媒体は感度が高
く、情報検索、高速度書込み、レーザー光通信分
野に適用して有用である。
[Table] Comparative Example 9 Metallic Te was deposited on a glass plate with a thickness of 1 mm using a vacuum evaporation method at a degree of vacuum of 10 -6 Torr to a thickness of 800 Å.
A thin film was formed. 2.3 μm from the thin film surface to this thin film.
We irradiated a He--Ne laser beam with a beam shape for a certain period of time, changed the irradiation light intensity sequentially, and measured the irradiation light intensity when the Te thin film was evaporated by the heat of the laser beam, and it was 2.5 mW. [Effects of the Invention] As described above, the recording medium of the present invention has high sensitivity and is useful in the fields of information retrieval, high-speed writing, and laser optical communication.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザー光線の如き高密度エネルギビームに
より記録層に状態変化を生じさせることによつて
記録、再生を行う情報記録媒体において、透明基
板上に記録層としての鉛フタロシアニン化合物を
含む厚さ1500〜5000Åの膜の単層を有し、別個に
反射層を設けないことを特徴とする光学的情報記
録媒体。
1 In an information recording medium in which recording and reproduction are performed by causing a state change in the recording layer with a high-density energy beam such as a laser beam, a transparent substrate with a thickness of 1500 to 5000 Å containing a lead phthalocyanine compound as a recording layer is used. An optical information recording medium characterized by having a single layer of film and not having a separate reflective layer.
JP55158131A 1980-11-12 1980-11-12 Optical information recording medium Granted JPS5782093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55158131A JPS5782093A (en) 1980-11-12 1980-11-12 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55158131A JPS5782093A (en) 1980-11-12 1980-11-12 Optical information recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1078112A Division JPH02204090A (en) 1989-03-31 1989-03-31 Recording and reproduction of optical information

Publications (2)

Publication Number Publication Date
JPS5782093A JPS5782093A (en) 1982-05-22
JPH0155118B2 true JPH0155118B2 (en) 1989-11-22

Family

ID=15664952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55158131A Granted JPS5782093A (en) 1980-11-12 1980-11-12 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS5782093A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749231B2 (en) * 1985-08-13 1995-05-31 三菱化学株式会社 Optical recording body
DE3829851A1 (en) * 1988-09-02 1990-03-08 Basf Ag TETRAAZAPORPHYRINE AND RADIATION-SENSITIVE COATING FILMS
US6737143B2 (en) 2001-06-14 2004-05-18 Ricoh Company Ltd. Optical recording medium, optical recording method and optical recording device
JP4137691B2 (en) 2003-04-30 2008-08-20 株式会社リコー Optical recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597033A (en) * 1979-01-15 1980-07-23 Philips Nv Optical recording element and method of recording optical information
JPS5686795A (en) * 1979-11-29 1981-07-14 Rca Corp Melting removing type optical recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597033A (en) * 1979-01-15 1980-07-23 Philips Nv Optical recording element and method of recording optical information
JPS5686795A (en) * 1979-11-29 1981-07-14 Rca Corp Melting removing type optical recording medium

Also Published As

Publication number Publication date
JPS5782093A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
US4298975A (en) Optical recording medium and method of optically recording information thereon
US4651172A (en) Information recording medium
JP3566743B2 (en) Optical recording medium
EP0195532A1 (en) An information recording medium
EP0046413B1 (en) Recording medium
JPH01277338A (en) Optical recording medium
JPH0155118B2 (en)
JPS59113534A (en) Optical recording medium
JPS63132090A (en) Write-erasing method on optical recording element
JP2679995B2 (en) Thin film for information recording
JP3163302B2 (en) Optical information recording medium and information recording / reproducing method
JPS59104996A (en) Optical recording medium
US5055331A (en) Phase-change optical recording media
JP3066088B2 (en) Optical information recording medium and information recording / reproducing method
JPS60157894A (en) Optical information recording medium
JPH0582838B2 (en)
JPS60151850A (en) Optical recording medium
JPH0526668B2 (en)
JPS59113535A (en) Optical recording medium
JPH0139916B2 (en)
JPS634166B2 (en)
JPH02204090A (en) Recording and reproduction of optical information
JPH0530193B2 (en)
JP2937296B2 (en) Method for manufacturing rewritable phase-change optical memory medium
JPH0327975B2 (en)