JPH03233374A - Abnormality searching device for overhead transmission line and equipment thereof - Google Patents

Abnormality searching device for overhead transmission line and equipment thereof

Info

Publication number
JPH03233374A
JPH03233374A JP2981090A JP2981090A JPH03233374A JP H03233374 A JPH03233374 A JP H03233374A JP 2981090 A JP2981090 A JP 2981090A JP 2981090 A JP2981090 A JP 2981090A JP H03233374 A JPH03233374 A JP H03233374A
Authority
JP
Japan
Prior art keywords
distance
power transmission
equipment
overhead power
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2981090A
Other languages
Japanese (ja)
Other versions
JP2969727B2 (en
Inventor
Toru Inoue
徹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aero Asahi Corp
Original Assignee
Aero Asahi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aero Asahi Corp filed Critical Aero Asahi Corp
Priority to JP2981090A priority Critical patent/JP2969727B2/en
Publication of JPH03233374A publication Critical patent/JPH03233374A/en
Application granted granted Critical
Publication of JP2969727B2 publication Critical patent/JP2969727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To distinctly search an abnormality of overhead transmission line, etc., by measuring a radio wave from the overhead transmission line, etc., with a measuring antenna and analyz ing the frequency in a low frequency band after a distance correction is made on the measured radio wave according to the distance measured by a distance measuring means. CONSTITUTION:A helicopter mounted with a searching device is made to fly, and the radio waves (50Hz - approximately 10kHz) emitted from the overhead transmission line and the equipment thereof are received by the measuring antenna 10, and the distance to a measuring object is measured by a radio wave distance meter 12. The measured radio wave signal and distance signal are amplified 16, 18 and subjected to an A/D conversion 20, 22 then impressed on a distance correcting and analyzing circuit 24. The output of a position fixing marker 14 settled on the ground is also impressed on the circuit 24. In the circuit 24, the distance correction is made on the measured radio wave signal by the measured distance, and the analysis is made by dividing the signal to frequency components (indicating the defective grounding resistance of a steel tower) of the fundamental wave (50/60Hz) and fre quency components indicating a breaking of element wire or a corrosion, then the result is outputted as numerical values. Plural outputs 24a-24e of the circuit 24 are subjected to the A/D conversion respectively and impressed in a chart recorder 29 and plotted on paper with individual pens.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、架空送電線及びその設備の異常箇所探査装置
に関し、より具体的にはコロナ放電により架空送電線及
びその設備の異常箇所を探査する装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for detecting abnormalities in overhead power transmission lines and their equipment, and more specifically, a device for detecting abnormalities in overhead power transmission lines and their equipment using corona discharge. related to a device for

[従来の技術] コロナ放電により架空送電線及びその設備の異常箇所を
探査する方法及び装置は、昭和63年特許出願公表第5
03324号(PCT/CH36100066)に開示
されている。この公表公報に開示された方法は、空中架
線に沿ってヘリコプタを飛行させ、当該ヘリコプタに搭
載したコロナ放電検出用のアンテナにより20MH2乃
至200MHzの帯域の電波を受信し、オシロスコープ
上の波形(同公報第5図〜第9図)により、不具合箇所
を判定・検出しようとするものである。
[Prior art] A method and device for detecting abnormalities in overhead power transmission lines and their equipment by corona discharge is disclosed in Patent Application Publication No. 5 in 1988.
No. 03324 (PCT/CH36100066). The method disclosed in this publication involves flying a helicopter along an aerial overhead wire, receiving radio waves in the band of 20 MHz to 200 MHz using an antenna for detecting corona discharge mounted on the helicopter, and measuring the waveform on an oscilloscope (the same publication). 5 to 9) to determine and detect the defective location.

[発明が解決しようとする課題] しかし、上記従来例は、測定周波数帯域が主に20MH
zから200MHzと非常に高く、従って、各部の回路
素子も高速で高価なものを使用しなければならないとい
う欠点がある。
[Problem to be solved by the invention] However, in the above conventional example, the measurement frequency band is mainly 20MHz.
z to 200 MHz, which is extremely high, and therefore has the drawback that high-speed and expensive circuit elements must be used in each part.

また上記従来例では、オシロスコープの波形の乱れから
異常の有無及び内容を判定するが、このような判定方法
では、異常内容を定量的且つ客観的に判定することは困
難であり、また、異常の位置を特定するのも困難である
。例えば、送電線鉄塔の碍子部分の近くで架空送電線の
素線が一部破断している場合には、異常箇所が碍子か架
空送電線かを判断し、特定するのは困難である。
In addition, in the conventional example described above, the presence or absence and content of an abnormality are determined from the disturbance of the waveform of the oscilloscope, but with such a determination method, it is difficult to quantitatively and objectively determine the content of the abnormality. It is also difficult to locate. For example, if a part of the wire of an overhead power transmission line is broken near the insulator part of a transmission line tower, it is difficult to determine and identify whether the abnormality is the insulator or the overhead power transmission line.

従来例では更に、現在の測定値と、それに先行する測定
値とを比較対照できず、測定値の変化の様子をグラフ化
することもできないので、ある程度広い範囲にわたる異
常(例えば腐食)、又は緩やかに変化している部分を探
知できないという欠点がある。
Furthermore, in the conventional example, it is not possible to compare and contrast the current measured value with the preceding measured value, and it is also not possible to graph changes in the measured value. The disadvantage is that it is not possible to detect parts that are changing.

そこで本発明は、これらの問題点を解決し、架空送電線
及びその設備の異常を明確に探知できる異常探査装置を
提示することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide an abnormality detection device that can clearly detect abnormalities in overhead power transmission lines and their equipment.

[課題を解決するための手段] 本発明に係る探査装置は、架空送電線及びその設備から
の電波を受信する測定アンテナと、探査しようとする架
空送電線及びその設備までの距離を測定する距離測定手
段と、当該測定アンテナによる測定電波を、当該距離測
定手段により測定された距離により距離補正する距離補
正手段と、当該距離補正手段により距離補正された電波
信号を低周波帯で周波数分析する分析手段とからなるこ
とを特徴とする。
[Means for Solving the Problems] An exploration device according to the present invention includes a measuring antenna that receives radio waves from an overhead power transmission line and its equipment, and a distance measuring antenna that measures the distance to the overhead power transmission line and its equipment to be explored. a measuring means, a distance correcting means for correcting the distance of the radio wave measured by the measuring antenna, based on the distance measured by the distance measuring means, and an analysis for frequency-analyzing the radio signal whose distance has been corrected by the distance correcting means in a low frequency band. It is characterized by consisting of means.

本発明はまた、架空送電線及びその設備からの電波を受
信する測定アンテナと、当該測定アンテナによる測定電
波のレベルを、基本波成分のレベルが一定になるように
制御するレベル制御手段と、当該レベル制御手段により
レベル制御された測定電波信号を低周波帯で周波数分析
する分析手段とからなることを特徴とする。
The present invention also provides a measurement antenna that receives radio waves from overhead power transmission lines and their equipment, a level control means that controls the level of the radio waves measured by the measurement antenna so that the level of the fundamental wave component is constant, and It is characterized by comprising an analysis means for frequency-analyzing the measurement radio wave signal whose level has been controlled by the level control means in a low frequency band.

[作用] 低周波帯、例えばせいぜい10KHzまでの低周波の電
波により異常の有無及び内容を判別できるので、各処理
回路には安価に製造でき、従って、非常に安い費用で異
常を探査できる。また、測定した距離値による距離補正
又は基本波のレベルを一定に保つようにするレベル制御
により、測定時に、架空送電線との距離を精密に一定に
保つ必要がなくなり、データ収拾も容易になる。これも
また費用の低減に役立つ。
[Operation] Since the existence and content of an abnormality can be determined using radio waves in a low frequency band, for example, a low frequency of up to 10 KHz, each processing circuit can be manufactured at low cost, and therefore an abnormality can be detected at a very low cost. In addition, distance correction based on the measured distance value or level control that keeps the fundamental wave level constant eliminates the need to maintain a precisely constant distance to the overhead power line during measurement, making data collection easier. . This also helps reduce costs.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

架空送電線及びその設備(鉄塔、碍子、スリーブ、ダン
パなと)では、素線の腐食や汚れ、素線切れなどの欠陥
や異常に起因してコロナ放電が発生し、このコロナ放電
による電波及び伝搬する電力による電波が周囲に放射さ
れる。この点は上記公表公報に記載されているが、発明
者による幾つかの実験により、架空送電線及びその設備
からの比較的低い周波数(せいぜいl0KH2程度まで
)の電波により、上記欠陥又は異常を検出できることが
判明した。。
In overhead power transmission lines and their equipment (steel towers, insulators, sleeves, dampers, etc.), corona discharge occurs due to defects or abnormalities such as corrosion, dirt, or breakage of the wires, and radio waves and Radio waves due to the propagating power are radiated to the surroundings. This point is stated in the above-mentioned publication, but through several experiments conducted by the inventor, the above defects or abnormalities were detected using relatively low frequency radio waves (up to about 10KH2 at most) from overhead power transmission lines and their equipment. It turns out it can be done. .

即ち、架空送電線及びその設備には、架空送電線の腐食
や老朽化により成る程度の長い距離にわたって存在する
不具合と、鉄塔の絶縁不良、素線切れや碍子の絶縁不良
などといった、特定の部位で生じる故障や異常がある。
In other words, overhead power transmission lines and their equipment have defects that exist over long distances due to corrosion or aging of the overhead power transmission lines, as well as defects in specific parts such as poor insulation in steel towers, broken wires, and poor insulation in insulators. There are malfunctions and abnormalities that occur.

前者は、測定電波信号において、50又は60Hzの基
本波に、架空送電線に沿っである程度の長さにわたって
重畳する低周波のノイズ成分となって現われ、後者は、
故障や異常の箇所に対応する位置で重畳する突発波又は
短い区間での変動成分となって現われる。観測の結果、
このようなノイズ成分は架空送電線の腐食や老朽化を暗
示しており、4 KHz近辺や5〜6KHzの周波数帯
域を持ち、せいぜいl0KH2までを測定すればよいこ
とが判明した。
The former appears as a low-frequency noise component that is superimposed on the 50 or 60 Hz fundamental wave over a certain length along the overhead power transmission line in the measured radio signal, and the latter
It appears as a sudden wave that is superimposed at a position corresponding to a failure or abnormality, or as a fluctuation component over a short period. As a result of the observation,
Such noise components imply corrosion or deterioration of overhead power transmission lines, and it has been found that they have a frequency band around 4 KHz or 5 to 6 KHz, and it is sufficient to measure up to 10 KH2 at most.

また、架空送電線を伝搬する電力による電波の周波数は
、当該電力の周波数(50Hz又は60Hzであり、以
下基本波という)に一致し、受信電波電力の振幅は一般
に伝搬する電力に比例する。観測の結果、伝搬電力によ
る放射電波の振幅が鉄塔の接地不具合に影響されること
が判明した。これにより、架空送電線及びその設備から
の電波の基本波成分の振幅から、鉄塔の不具合の有無及
びその程度を判定できることが分かった。
Further, the frequency of radio waves caused by electric power propagating through overhead power transmission lines matches the frequency of the electric power (50 Hz or 60 Hz, hereinafter referred to as fundamental wave), and the amplitude of received radio wave power is generally proportional to the propagating power. As a result of observation, it was found that the amplitude of radiated radio waves due to propagating power is affected by grounding failure of the steel tower. As a result, it was found that it is possible to determine the presence or absence of a malfunction in a steel tower and its degree from the amplitude of the fundamental wave component of radio waves from overhead power transmission lines and their equipment.

第3図は、本実施例により実際に測定した出力例を示す
。第3図において、基本波のA、Hの部分は鉄塔の接地
抵抗の不良を示し、ノイズのC1Dの部分は素線の腐食
又は汚れを示す。突発波検出結果での突発波は、その位
置にスリーブやスペーサがあるか、又は素線切れがある
ことを暗示している。なお、基準位置とは、鉄塔などの
地上位置が既知の物の存在位置を示す線である。
FIG. 3 shows an example of output actually measured by this example. In FIG. 3, the A and H portions of the fundamental wave indicate poor grounding resistance of the tower, and the noise portion C1D indicates corrosion or staining of the wire. A sudden wave in the sudden wave detection results suggests that there is a sleeve or spacer at that position, or that there is a wire breakage. Note that the reference position is a line indicating the location of an object whose ground position is known, such as a steel tower.

第1図は本発明の一実施例の基本構成の概略ブロック図
を示す。第1図に図示した機器をヘリコプタに搭載し、
ヘリコプタを架空送電線に沿って飛行させ、異常箇所を
探知する。第1図において、10は架空送電線及びその
設備から放射される上記電波を受信する測定アンテナで
ある。本実施例では測定アンテナ10は、50乃至60
Hzの基本波からせいぜいl0KH2程度までの電波を
受信できるアンテナであればよい。
FIG. 1 shows a schematic block diagram of the basic configuration of an embodiment of the present invention. The equipment shown in Figure 1 is mounted on a helicopter,
A helicopter is flown along overhead power lines to detect abnormalities. In FIG. 1, reference numeral 10 denotes a measurement antenna that receives the radio waves radiated from overhead power transmission lines and their equipment. In this embodiment, the measurement antenna 10 has 50 to 60
Any antenna can be used as long as it can receive radio waves from the fundamental wave of Hz to about 10KH2 at most.

12は測定対象(架空送電線及びその設備)までの距離
を電波方式で測定する電波距離計である。
12 is a radio distance meter that measures the distance to the measurement target (overhead power transmission line and its equipment) using a radio wave method.

本実施例では、この電波距離計12として、日本航空電
子工業株式会社製造の距離計JRA−100を使用した
。この距離計JRA−100は送信周波数4 、3GH
zのパルス電波を対象物に放射し、対象物による反射電
波を受信するまでの時間により、対象物までの距離を測
定する。この距離計JRA−100は、本実施例の目的
とする距離範囲では、±2フィートの精度で距離を測定
できる。
In this embodiment, a rangefinder JRA-100 manufactured by Japan Aviation Electronics Industry, Ltd. was used as the radio rangefinder 12. This rangefinder JRA-100 has a transmission frequency of 4, 3GH.
The distance to the object is measured based on the time it takes to emit a pulsed radio wave of z to the object and receive the reflected radio wave from the object. This distance meter JRA-100 can measure distance with an accuracy of ±2 feet within the distance range targeted by this embodiment.

14は、地上位置が判明している固定点(例えば、架空
送電線を支持する鉄塔、スリーブ、スペーサ、ダンパな
と)の固定マーク信号を発生する位置固定マーカである
。位置固定マーカ14は、複数の固定点を後で区別でき
るように、個別に異なる電圧を発生する複数のスイッチ
を具備する。
Reference numeral 14 denotes a position fixed marker that generates a fixed mark signal for a fixed point whose ground position is known (for example, a steel tower supporting an overhead power transmission line, a sleeve, a spacer, a damper, etc.). The position fixing marker 14 is equipped with a plurality of switches that individually generate different voltages so that the plurality of fixation points can be later distinguished.

位置固定マーカ16により、測定データの分析用グラフ
において異常箇所の地上位置を確認するのが容易になる
The position fixed marker 16 makes it easy to confirm the ground position of the abnormal location in the graph for analyzing the measured data.

測定アンテナ10から出力される測定電波信号及び距離
計12から出力される送電線までの距離信号は、それぞ
れ、アンチエリアシング・フィルタ付の増幅器16.1
8により増幅され、A/D変換器20.22によりディ
ジタル信号に変換されて距離補正・分析回路24に印加
される。距離補正・分析回路24はDSPと呼ばれるデ
ィジタル信号処理回路からなるが、汎用マイクロコンピ
ュータをプログラム動作させるものであってもよい。位
置固定マーカ14の出力も、距離補正・分析回路24に
印加される。
The measurement radio wave signal output from the measurement antenna 10 and the distance signal to the power transmission line output from the distance meter 12 are each transmitted through an amplifier 16.1 with an anti-aliasing filter.
8, converted into a digital signal by A/D converters 20 and 22, and applied to the distance correction/analysis circuit 24. The distance correction/analysis circuit 24 is composed of a digital signal processing circuit called a DSP, but it may also be one that operates a general-purpose microcomputer with a program. The output of the fixed position marker 14 is also applied to a distance correction and analysis circuit 24 .

測定アンテナ10.距離計12及び位置固定マーカ14
の出力は、事後的な解析のためにも、データ・レコーダ
26により磁気テープなどの記録媒体に記録しておくの
が好ましい。
Measuring antenna 10. Distance meter 12 and position fixed marker 14
It is preferable that the output is recorded on a recording medium such as a magnetic tape by the data recorder 26 for later analysis.

詳細は第2図を参照して後述するが、距離補正・分析回
路24は、測定電波信号を測定距離(送電線までの距離
)により距離補正し、基本波の周波数成分と、素線の破
断や腐食を示す周波数成分とに分けて分析し、その分析
結果を数値として出力する。第1図のD/A変換器28
は、距離補正・分析回路24の複数の出力24a〜24
eを個別にアナログ信号に変換するD/A変換回路を具
備し、その各出力はチャート・レコーダ29に印加され
る。チャート・レコーダ29は各入力信号を個別のペン
により紙上に描画していく。
Although details will be described later with reference to FIG. 2, the distance correction/analysis circuit 24 corrects the measured radio wave signal by the measured distance (distance to the power transmission line), and detects the frequency component of the fundamental wave and the breakage of the wire. and frequency components that indicate corrosion, and output the analysis results as numerical values. D/A converter 28 in FIG.
is a plurality of outputs 24a to 24 of the distance correction/analysis circuit 24.
It is equipped with a D/A conversion circuit that individually converts the signals e into analog signals, and each output thereof is applied to the chart recorder 29. The chart recorder 29 draws each input signal on paper using a separate pen.

その他、図示しないが、ヘリコプタの飛行位置を確認で
きる周知のGPS (グローバル・ポジショニング・シ
ステム)装置を搭載するのが好ましい。
In addition, although not shown, it is preferable to mount a well-known GPS (Global Positioning System) device that can confirm the flight position of the helicopter.

第1図に図示した機器を搭載したヘリコプタを、異常探
査しようとする架空送電線に沿って、できるだけ一定速
度で飛行させ、ヘリコプタと架空送電線との距離を電波
距離計12により測定しながら、測定アンテナIOによ
り架空送電線及びその設備からの電波を測定する。測定
者が、鉄塔などの位置で位置固定マーカ14を操作し、
相応するマーク信号を発生させる。これらの信号は距離
補正・分析回路24で分析され、その分析結果がチャー
ト・レコーダ29により紙上に描画されることになる。
A helicopter equipped with the equipment shown in FIG. 1 is flown at a constant speed as much as possible along the overhead power transmission line on which an abnormality is to be detected, and the distance between the helicopter and the overhead power transmission line is measured using the radio distance meter 12. Measurement antenna IO measures radio waves from overhead power transmission lines and their equipment. The measurer operates the fixed position marker 14 at the position of the steel tower, etc.
A corresponding mark signal is generated. These signals are analyzed by a distance correction/analysis circuit 24, and the analysis results are drawn on paper by a chart recorder 29.

なお、ヘリコプタと架空送電線との距離は、定であるの
が望ましいが、後述するように、本実施例では距離によ
る電波減衰を補正するので、ヘリコプタと架空送電線と
の距離に変動があっても、適切に異常を判定・探査でき
る。
Although it is desirable that the distance between the helicopter and the overhead power transmission line be constant, as will be described later, in this embodiment, radio wave attenuation due to distance is corrected, so the distance between the helicopter and the overhead power transmission line may vary. It is possible to appropriately determine and detect abnormalities even when

第2図は距離補正・分析回路24の回路構成ブロック図
を示す。第2図において、30は、測定アンテナ10に
よる測定電波強度(具体的にはA/D変換器20の出力
)を、距離計12により測定した架空送電線までの距離
値(具体的にはA/D変換器22の出力)により、一定
距離値での値に補正する回路である。ヘリコプタを架空
送電線に平行に飛行させるといっても、架空送電線まで
の距離を一定に保つことは現実上は不可能に近い。
FIG. 2 shows a block diagram of the circuit configuration of the distance correction/analysis circuit 24. In FIG. 2, 30 is a distance value (specifically, A /D converter 22 output) to correct the value to a constant distance value. Even if a helicopter were to fly parallel to overhead power lines, it is practically impossible to maintain a constant distance to the overhead power lines.

架空送電線及びその設備から放射される電波は理論的に
は距離の二乗に反比例する。そこで、同時に測定した距
離データにより、測定電波データを一定距離での値に補
正する。また、このような理論式による補正を行なわず
に、距離による減衰特性を実際に測定し、測定により得
た減衰特性関数に測定電波データをあてはめて、一定距
離での値に補正するようにしてもよい。何れの補正方式
でも、距離補正回路30は実際上ディジタル演算回路で
構成されるので、実現は容易である。
The radio waves emitted from overhead power lines and their equipment are theoretically inversely proportional to the square of the distance. Therefore, the measured radio wave data is corrected to a value at a certain distance using distance data measured at the same time. In addition, instead of performing correction using such a theoretical formula, the attenuation characteristics due to distance are actually measured, and the measured radio wave data is applied to the attenuation characteristic function obtained through measurement to correct the value at a certain distance. Good too. Regardless of the correction method, the distance correction circuit 30 is actually constituted by a digital arithmetic circuit, so it is easy to implement.

距離補正回路30により距離補正された測定電波データ
は、ローパス・フィルタ(LPF)32及びバンドパス
・フィルタ(BPF)、34に印加される。LPF32
は、約80Hzのカットオフ周波数を持ち、基本波(5
0Hz又は60Hz)成分を抽出するディジタル・フィ
ルタであり、BPF34は80Hz乃至10KHzの通
過帯域を持つディジタル・フィルタである。BPF34
としてはまた、より狭い、3 、5KHz 〜4 、5
KHzや5〜6KHzの通過帯域を持ツBPFであって
もよく、更には、この通過帯域を調節値化され、BPF
34の出力も、絶対値化回路38により絶対値化される
。絶対値化回路36の出力は基本波の振幅を示し、絶対
値化回路38の出力は基本波以外の周波数成分(即ち、
基本波に乗ったノイズと突発波)の振幅を示す。絶対値
化回路36の出力は平滑化回路40により平滑化され、
出力信号線24aを介してD/A変換器28に印加され
る。
The measured radio wave data whose distance has been corrected by the distance correction circuit 30 is applied to a low pass filter (LPF) 32 and a band pass filter (BPF) 34. LPF32
has a cutoff frequency of about 80Hz, and the fundamental wave (5
The BPF 34 is a digital filter that extracts the 0 Hz or 60 Hz) component, and the BPF 34 is a digital filter with a passband of 80 Hz to 10 KHz. BPF34
Also narrower, 3,5KHz~4,5
The BPF may have a pass band of KHz or 5 to 6 KHz.
The output of 34 is also converted into an absolute value by an absolute value conversion circuit 38. The output of the absolute value conversion circuit 36 indicates the amplitude of the fundamental wave, and the output of the absolute value conversion circuit 38 indicates frequency components other than the fundamental wave (i.e.,
Indicates the amplitude of noise (on the fundamental wave and sudden waves). The output of the absolute value conversion circuit 36 is smoothed by a smoothing circuit 40,
The signal is applied to the D/A converter 28 via the output signal line 24a.

平滑化回路40の出力はまた、除算回路42の除数人力
に印加され、除算回路42の被除数入力には絶対値化回
路38の出力が印加される。即ち、除算回路42の出力
は、基本波に対するノイズ成分の割合を示す。指数化回
路44は、除算回路42の除算結果を例えば1. 2.
 3. 4の4段階の区分にあてはめ、該当する区分を
示す数値を異常度の評価指数として出力する。この指数
値により、緊急に実地調査すべきか、継続監視すべきか
、当面監視不要かなどを客観的に判断できる。指数化回
路44の出力は遅延回路45により時間調整され、出力
信号線24bを介してD/A変換器28に印加される。
The output of the smoothing circuit 40 is also applied to the divisor input of the division circuit 42, and the output of the absolute value circuit 38 is applied to the dividend input of the division circuit 42. That is, the output of the division circuit 42 indicates the ratio of the noise component to the fundamental wave. The index conversion circuit 44 converts the division result of the division circuit 42 into, for example, 1. 2.
3. 4, and a numerical value indicating the corresponding classification is output as an evaluation index of the degree of abnormality. Based on this index value, it is possible to objectively judge whether an emergency field investigation is required, whether continuous monitoring is required, or whether monitoring is unnecessary for the time being. The output of the indexing circuit 44 is time-adjusted by the delay circuit 45 and applied to the D/A converter 28 via the output signal line 24b.

絶対値化回路38の出力はまた、基本波以外の周波数成
分、即ちノイズ成分の強度をグラフ表示する目的で、平
滑化回路46で平滑化され、信号線24cを介してD/
A変換器28に印加される。
The output of the absolute value converting circuit 38 is also smoothed by a smoothing circuit 46 for the purpose of graphically displaying the intensity of frequency components other than the fundamental wave, that is, noise components, and is output to the D/D via the signal line 24c.
is applied to the A converter 28.

当該ノイズ成分の強さにより、素線の腐食の程度、老朽
化の程度を判別できる。
The degree of corrosion and deterioration of the wire can be determined based on the strength of the noise component.

突発波検出回路48は、平滑化回路46の出力を基に、
絶対値化回路38の出力から突発波を検出する。遅延回
路50は突発波検出回路48の出力を時間調整し、信号
線24dを介してD/A変換器28に供給する。突発波
検出回路48の出力が、第3図に図示したように、チャ
ート・レコーダ29により描画されることになる。
The sudden wave detection circuit 48, based on the output of the smoothing circuit 46,
A sudden wave is detected from the output of the absolute value conversion circuit 38. The delay circuit 50 adjusts the time of the output of the sudden wave detection circuit 48 and supplies it to the D/A converter 28 via the signal line 24d. The output of the sudden wave detection circuit 48 is drawn by the chart recorder 29 as shown in FIG.

また、位置固定マーカ14の出力はパルス発生回路52
に印加される。パルス発生回路52は位置固定マーカ1
4からのマーク信号の種類に応じた電圧の短いパルスを
発生する。パルス発生回路52の出力は遅延回路54で
時間調整され、信号線24eを介してD/A変換器28
に印加される。
Further, the output of the position fixed marker 14 is output from the pulse generation circuit 52.
is applied to The pulse generation circuit 52 is the position fixed marker 1
A short pulse of voltage corresponding to the type of mark signal from 4 is generated. The output of the pulse generation circuit 52 is time-adjusted by a delay circuit 54 and sent to the D/A converter 28 via a signal line 24e.
is applied to

これが、チャート・レコーダ29によるグラフにおいて
、固定線、即ち位置が判明している基準位置を示すこと
になる。パルス発生回路52は例えば、鉄塔に対するマ
ーク信号に対してのみパルス信号を発生する回路であっ
てもよく、そのような場合には、遅延回路54の出力を
、D/A変換器28を介することなしに直接、チャート
・レコーダ29に印加すればよい。
This indicates a fixed line, that is, a reference position whose position is known, on the graph produced by the chart recorder 29. For example, the pulse generation circuit 52 may be a circuit that generates a pulse signal only in response to a mark signal for a steel tower, and in such a case, the output of the delay circuit 54 may be passed through the D/A converter 28. It is sufficient to apply the signal directly to the chart recorder 29 without any need.

距離補正回路30による距離補正に関わらず、基本波成
分の振幅が大きく変動するのは、先に第3図で説明した
ように、架空送電線の鉄塔の接地抵抗が不適切であると
推測される。本実施例によれば、これが、信号線24a
の信号(第3図のA。
Regardless of the distance correction by the distance correction circuit 30, the reason why the amplitude of the fundamental wave component fluctuates greatly is because the grounding resistance of the tower of the overhead power transmission line is inappropriate, as explained earlier in FIG. Ru. According to this embodiment, this is the signal line 24a.
signal (A in Figure 3).

B)から一目瞭然になる。It is obvious from B).

実地観測の結果、架空送電線及びその設備の異常又は不
具合と、測定電波の分析結果との関係をまとめると、以
下の通りである。即ち、送電線の素線に腐食又は汚れが
あると、その程度によりノイズ成分が大きくなる。素線
切れがあると、程度によりシャープな突発波が発生する
。また、鉄塔の接地抵抗が不良の場合には、基本波のレ
ベルが変化し、基本波以外の周波数成分のレベルも変化
する。従って、チャート・レコーダ29の出力グラフを
見れば、架空送電線及びその設備の異常の場所及びその
程度をその場で判定できる。
As a result of field observation, the relationship between abnormalities or defects in overhead power transmission lines and their equipment and the analysis results of measured radio waves is summarized as follows. That is, if the wires of the power transmission line are corroded or dirty, the noise component increases depending on the degree of corrosion or dirt. If there is a break in the wire, a sharp sudden wave will be generated depending on the degree of breakage. Furthermore, if the ground resistance of the steel tower is poor, the level of the fundamental wave changes, and the levels of frequency components other than the fundamental wave also change. Therefore, by looking at the output graph of the chart recorder 29, the location and degree of abnormality in the overhead power transmission line and its equipment can be determined on the spot.

第1図及び第2図に図示した実施例では、距離計12に
より測定した測定距離値により、測定アンテナによる受
信電波の強度を補正した。しかし、鉄塔の絶縁不良は鉄
塔の設置時や老朽化した時点などに、限定的に発生する
現象であり、このような現象の無い領域又は少ない領域
での異常探査用には、基本波の振幅が一定になるように
測定アンテナによる受信電波の強度を帰還制御してもよ
い。
In the embodiment shown in FIGS. 1 and 2, the intensity of the radio waves received by the measurement antenna was corrected based on the measured distance value measured by the distance meter 12. However, poor insulation in steel towers is a phenomenon that occurs in a limited manner when towers are installed or when they become obsolete. The intensity of the radio waves received by the measurement antenna may be feedback-controlled so that the

即ち、第2図において、A/D変換器22の出力の代わ
りに平滑化回路40の出力を距離補正回路30の距離補
正制御入力に人力し、平滑化回路40の出力が一定にな
るように帰還制御する。このようにすると、電波距離計
12を装備しなくても済む。この場合、仮に鉄塔の絶縁
不良があっても、基本波以外の成分、即ちノイズ成分の
振幅が相当の距離にわたって別の値にシフトすることに
なるので、それにより鉄塔の絶縁不良を知ることができ
る。
That is, in FIG. 2, the output of the smoothing circuit 40 is input to the distance correction control input of the distance correction circuit 30 instead of the output of the A/D converter 22, so that the output of the smoothing circuit 40 is kept constant. Feedback control. In this way, it is not necessary to equip the radio range finder 12. In this case, even if there is a defect in the insulation of the steel tower, the amplitude of the components other than the fundamental wave, that is, the noise component, will shift to a different value over a considerable distance, so it will not be possible to determine the defective insulation of the steel tower. can.

また、距離補正・分析回路24(第2図)の出力信号線
24aの信号だけを利用して、送電線鉄塔の接地抵抗の
良不良を判定することができる。
Furthermore, it is possible to determine whether the grounding resistance of the power transmission line tower is good or bad by using only the signal on the output signal line 24a of the distance correction/analysis circuit 24 (FIG. 2).

距離補正・分析回路24をディジタル演算回路により構
成した例を説明したが、その一部又は全部をプログラム
処理により実現できることはいうまでもなく、また、本
発明の一部又は全部をアナログ回路により構成してもよ
い。
Although an example has been described in which the distance correction/analysis circuit 24 is configured with a digital arithmetic circuit, it goes without saying that part or all of it can be realized by program processing, and further, part or all of the present invention can be configured with an analog circuit. You may.

[発明の効果] 以上の説明から容易に理解できるように、本発明によれ
ば、架空送電線及びその設備の不具合並びにその内容及
び位置をリアルタイムで精密に探知することができる。
[Effects of the Invention] As can be easily understood from the above description, according to the present invention, it is possible to precisely detect defects in overhead power transmission lines and their equipment, as well as their contents and locations in real time.

測定対象までの測定距離により測定値を距離補正するの
で、測定機器を測定対象の架空送電線及びその設備から
一定の距離に厳密に保たなくてもよくなり、不具合の内
容及び程度をより正確に且つ客観的に判定できるように
なる。また、全体の回路は、せいぜい1OKHz程度の
信号を処理できればよいので、非常に安価に製造でき、
用意できる。
Since the measured value is distance-corrected based on the measurement distance to the measurement target, there is no need to keep the measuring device at a strict distance from the overhead power transmission line and its equipment to be measured, making it possible to more accurately determine the nature and extent of the problem. It becomes possible to judge objectively. In addition, the entire circuit only needs to be able to process signals of about 1 kHz at most, so it can be manufactured at a very low cost.
I can prepare it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成ブロック図、第2図は
第1図の距離補正・分析回路24の回路構成ブロック図
、第3図は実際の測定結果の出力例である。 10:測定アンテナ 12:電波距離計 14:位置固
定マーカ 16,18:増幅回路 20゜22 : A
/D変換器 24:距離補正・分析回路26:データ・
レコーダ 28 : D/A変換器29:チャート・レ
コーダ 30:距離補正回路  32:LPF   3
4:BPF   36,38:絶対値化回路 40:平
滑化回路 42:除算回路 44:遅延回路 46:平
滑化回路 48:突発波検出回路 50:遅延回路 5
2:パルス発生回路 54:遅延回路
FIG. 1 is a block diagram of the configuration of an embodiment of the present invention, FIG. 2 is a block diagram of the circuit configuration of the distance correction/analysis circuit 24 shown in FIG. 1, and FIG. 3 is an example of output of actual measurement results. 10: Measurement antenna 12: Radio distance meter 14: Fixed position marker 16, 18: Amplification circuit 20° 22: A
/D converter 24: Distance correction/analysis circuit 26: Data/
Recorder 28: D/A converter 29: Chart recorder 30: Distance correction circuit 32: LPF 3
4: BPF 36, 38: Absolute value circuit 40: Smoothing circuit 42: Division circuit 44: Delay circuit 46: Smoothing circuit 48: Sudden wave detection circuit 50: Delay circuit 5
2: Pulse generation circuit 54: Delay circuit

Claims (8)

【特許請求の範囲】[Claims] (1)架空送電線及びその設備の異常箇所を探査する装
置であって、 架空送電線及びその設備からの電波を受信する測定アン
テナと、 探査しようとする架空送電線及びその設備までの距離を
測定する距離測定手段と、 当該測定アンテナによる測定電波を、当該距離測定手段
により測定された距離により距離補正する距離補正手段
と、 当該距離補正手段により距離補正された電波信号を低周
波帯で周波数分析する分析手段とからなることを特徴と
する架空送電線及びその設備の異常箇所探査装置。
(1) A device for detecting abnormalities in overhead power transmission lines and their equipment, which includes a measurement antenna that receives radio waves from the overhead power transmission lines and their equipment, and the distance to the overhead power transmission lines and equipment to be investigated. A distance measuring means for measuring a distance, a distance correcting means for correcting the distance of a measured radio wave by the measuring antenna by the distance measured by the distance measuring means, and a radio wave signal whose distance has been corrected by the distance correcting means in a low frequency band. An apparatus for detecting abnormalities in overhead power transmission lines and their equipment, characterized by comprising an analysis means for analyzing.
(2)前記分析手段が、基本波及び基本波を含まない周
波数帯に分離する周波数分離手段と、当該基本波及び当
該基本波を含まない周波数帯域を強度比較し、当該基本
波に対する、当該基本波を含まない周波数帯域の割合を
示す指数値を出力する指数出力手段とを具備することを
特徴とする特許請求の範囲第(1)項に記載の架空送電
線及びその設備の異常箇所探査装置。
(2) The analysis means compares the intensity of the fundamental wave and the frequency band not including the fundamental wave with the frequency separation means that separates the frequency band into a fundamental wave and a frequency band that does not include the fundamental wave, and An apparatus for detecting an abnormality in an overhead power transmission line and its equipment according to claim (1), characterized in that it is equipped with an index output means for outputting an index value indicating the proportion of a frequency band that does not contain waves. .
(3)前記分析手段が、突発波を検出する手段を具備す
ることを特徴とする特許請求の範囲第(1)項又は第(
2)項に記載の架空送電線及びその設備の異常箇所探査
装置。
(3) The analysis means includes means for detecting sudden waves.
An abnormality detection device for overhead power transmission lines and their equipment as described in item 2).
(4)前記分析手段が、基本波を絶対値化及び平滑化し
た信号を出力する手段からなることを特徴とする特許請
求の範囲第(1)項に記載の架空送電線及びその設備の
異常箇所探査装置。
(4) An abnormality in the overhead power transmission line and its equipment as set forth in claim (1), wherein the analysis means comprises means for outputting a signal obtained by converting the fundamental wave into an absolute value and smoothing it. Location detection device.
(5)前記分析手段の分析結果をグラフ出力する出力手
段を具備することを特徴とする特許請求の範囲第(1)
項乃至第(4)項の何れか1項に記載の架空送電線及び
その設備の異常箇所探査装置。
(5) Claim (1) further comprising an output means for outputting the analysis result of the analysis means in a graph.
An apparatus for detecting abnormalities in an overhead power transmission line and its equipment according to any one of paragraphs to (4).
(6)架空送電線及びその設備の異常箇所を探査する装
置であって、 架空送電線及びその設備からの電波を受信する測定アン
テナと、 当該測定アンテナによる測定電波のレベルを、基本波成
分のレベルが一定になるように制御するレベル制御手段
と、 当該レベル制御手段によりレベル制御された測定電波信
号を低周波帯で周波数分析する分析手段 とからなることを特徴とする架空送電線及びその設備の
異常箇所探査装置。
(6) A device for detecting abnormalities in overhead power transmission lines and their equipment, which includes a measurement antenna that receives radio waves from the overhead power transmission lines and their equipment, and a measurement antenna that measures the level of the radio waves measured by the measurement antenna, including the fundamental wave component. An overhead power transmission line and its equipment characterized by comprising a level control means for controlling the level to be constant, and an analysis means for frequency-analyzing the measured radio wave signal level-controlled by the level control means in a low frequency band. Abnormal location detection device.
(7)前記分析手段が、基本波を絶対値化及び平滑化し
た信号を出力する手段からなることを特徴とする特許請
求の範囲第(6)項に記載の架空送電線及びその設備の
異常箇所探査装置。
(7) An abnormality in the overhead power transmission line and its equipment as set forth in claim (6), wherein the analysis means comprises means for outputting a signal obtained by converting the fundamental wave into an absolute value and smoothing it. Location detection device.
(8)前記分析手段の分析結果をグラフ出力する出力手
段を具備することを特徴とする特許請求の範囲第(6)
項又は第(7)項に記載の架空送電線及びその設備の異
常箇所探査装置。
(8) Claim (6) characterized by comprising an output means for outputting the analysis result of the analysis means in a graph.
An abnormality location detection device for overhead power transmission lines and their equipment as described in paragraph (7).
JP2981090A 1990-02-09 1990-02-09 Abnormal location detector for overhead transmission lines and their equipment Expired - Fee Related JP2969727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2981090A JP2969727B2 (en) 1990-02-09 1990-02-09 Abnormal location detector for overhead transmission lines and their equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2981090A JP2969727B2 (en) 1990-02-09 1990-02-09 Abnormal location detector for overhead transmission lines and their equipment

Publications (2)

Publication Number Publication Date
JPH03233374A true JPH03233374A (en) 1991-10-17
JP2969727B2 JP2969727B2 (en) 1999-11-02

Family

ID=12286380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2981090A Expired - Fee Related JP2969727B2 (en) 1990-02-09 1990-02-09 Abnormal location detector for overhead transmission lines and their equipment

Country Status (1)

Country Link
JP (1) JP2969727B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289900A (en) * 2000-04-11 2001-10-19 Tempearl Ind Co Ltd Insulation deterioration detecting circuit and device using it
CN100454030C (en) * 2006-12-07 2009-01-21 王宝根 Repair method of high-voltage transmission line and failure testing device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289900A (en) * 2000-04-11 2001-10-19 Tempearl Ind Co Ltd Insulation deterioration detecting circuit and device using it
CN100454030C (en) * 2006-12-07 2009-01-21 王宝根 Repair method of high-voltage transmission line and failure testing device thereof

Also Published As

Publication number Publication date
JP2969727B2 (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US7162384B1 (en) System and method for temperature compensation of eddy current sensor waveform parameters
US8421471B2 (en) Device and method for inductive measurements—self test
RU2562911C1 (en) Device and method of registration of conducting particles in liquid
US7335851B2 (en) Gap measurement apparatus
EP3223025A1 (en) Partial discharge position location device
JPH09101289A (en) Method for measuring flexural rigidity and tension of tensioned cable
US7079961B2 (en) Method and apparatus for measuring impedance of electrical component under high interference conditions
JP2969727B2 (en) Abnormal location detector for overhead transmission lines and their equipment
US5397983A (en) Vibration based deenergized cable detector and method
US5400297A (en) Method and a system for testing capacitive, acoustic transducers
JP2987864B2 (en) Method and apparatus for detecting abnormal locations in overhead transmission lines and their equipment
US20180372789A1 (en) A method of locating a fault in a power transmission medium
JP3104711B2 (en) Method and apparatus for detecting defective insulator
GB2161936A (en) Alternating current potential drop crack detection
KR102052849B1 (en) APPARATUS FOR DETECTING RAIL DEFECT BY USING MULTI-CHANNEL EDDY CURRENT SENSOR AND Sensor calibrating METHOD THEREOF AND RAIL DEFECT DETECTING METHOD
JPS6156979A (en) Insulation measurement of power cable
JP3236770B2 (en) Partial discharge measurement method for CV cable line
JP2654793B2 (en) Partial discharge detection device
SU1534296A1 (en) Eddy current thickness gauge
JPH07159457A (en) Spectrum analyzer, and frequency spectrum measuring method
JPH01169378A (en) Data collector for partial discharge measuring apparatus
JPH05196608A (en) Separated eddy current flaw detecting method
JP2001033508A (en) Method for locating partial discharge position of power cable
SU1093962A1 (en) Method of checking eddy-current thickness gauges
Miyazaki et al. Development of partial discharge automated locating system for power cable

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees