JPH0323295A - Method for synthesizing semiconductor diamond - Google Patents

Method for synthesizing semiconductor diamond

Info

Publication number
JPH0323295A
JPH0323295A JP15464389A JP15464389A JPH0323295A JP H0323295 A JPH0323295 A JP H0323295A JP 15464389 A JP15464389 A JP 15464389A JP 15464389 A JP15464389 A JP 15464389A JP H0323295 A JPH0323295 A JP H0323295A
Authority
JP
Japan
Prior art keywords
gas
gaseous
diamond
doping
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15464389A
Other languages
Japanese (ja)
Inventor
Toru Mitomo
三友 亨
Tomohiro Oota
与洋 太田
Hidekazu Kondo
英一 近藤
Kenichi Otsuka
大塚 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15464389A priority Critical patent/JPH0323295A/en
Publication of JPH0323295A publication Critical patent/JPH0323295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize semiconductor diamond having satisfactory crystallinity and superior characteristics by a vapor phase method by using a gaseous mixture of a gaseous carbon-contg. compd. with gaseous hydrogen and a gaseous org. phosphorus or boron compd. as a doping gas. CONSTITUTION:When semiconductor diamond is synthesized by a vapor phase method with microwave plasma, etc., a gaseous carbon-contg. compd. such as methane, acetylene or ethanol is mixed with gaseous hydrogen in 0.001-0.2 molar ratio and further mixed with a doping gas and the resulting gaseous mixture is led to the surface of a substrate kept at 600-1,200 deg.C preferably under 10-100Torr pressure. In the case of a p-type semiconductor, a gaseous org. boron compd. such as B(CH3)3 or BH(CH3)2 is used as the doping gas. In the case of an n-type semiconductor, a gaseous org. phosphorus compd. such as P(CH3)3 or PH(CH3)2 is used.

Description

【発明の詳細な説明】 [産業上のfり用分野1 本発明は半導体ダイヤモンドの合成法に関し、特にドー
ピングによる膜實の劣化がなく、良好な特性を示す半導
体ダイヤモンドの合成法に関するものである, 〔従来の技術』 ダイヤモンドは、高硬度,高熱伝導度であり絶縁性に1
量れ化学的にも安定であるなど、挿々の優れた物性を持
つことから広範囲の応用が団待されている。そのなかで
も特にダイヤモンドを半導体として用いると、バンドギ
ャップが大きいため高温での使用が可能であり、また熱
伝導度が大きいことから発熱量の多い素子の特性が向上
するなどの111点があり,今後大きな市場に発展する
と考えられている. ダイヤモンドの半導体化の方法には次の3方法がある. (1)高編高圧合成法において硼素、窒素などをドーピ
ングする. (2)ダイヤモンド結晶にR素,鱗などのイオンを打ち
込む. (3)気相法においてB2H6、P113ガスを混入さ
せる. この中で(1)の方法は高圧装置が必要でありコストが
かかる.また、不純物の混入やドビング元素が均一にド
ーブされないなどの欠点かある. (2)の方法においても高価な装置を必要とするためコ
ストがかかる.また、イオンを数十keV以上のエネル
ギーで打ち込むため,ダイヤモンド自体に損傷を与えて
しまう欠点がある.上記のような欠点の無いものとして
(3)の方法が提案された(例えば特開昭59−137
396).この方法によれば確かに半導体ダイヤモンド
は合成されるが,ドーピング量を増加させると膜質が劣
化するという問題がある.またこの方法ではp”Rの半
導体は比較的容易に合成でき特性も良いが、n型半導体
の合成は困難で特性が悪いという問題もある. [発明が解決しようとする課題J 本発明の目的は、上記課題を解決し、気相法により結晶
性が良く、特性も優れている半導体ダイヤモンドを合成
する方法を提供するものである.【課題を解決するため
の千1’Q J 本発明は上記課題を解決するために、気相法により、含
炭素化合物ガス,水素ガスおよびドーピングガスよりな
る混合ガスから基体上に半導体ダイヤモンドを合成する
際に、前記ドーピングガ又として有機硼素化合物ガスま
たは有磯燐化合物ガスを用いることを特徴とする半導体
ダイヤモンドの合成法を提供するもので、有機硼素化合
物ガスとして.B ((,f{3)3、BH (CH3
)2、BH2  (CI{a )  .  B  (C
2  Hs ) 3BH (C2 Hs ) 2 . 
 BH2  (Cz Hs )より選ばれたl種または
2種以上が好ましく,有機燐化合物ガスとして、P(C
H3)3.P}l (CH3 ) 2 .  PH2 
 (CF{3 )P  (C2H5)2、PH2(C2
H5)3.  PH  (C2H5)2PF{2(C2
H5)より選ばれた1種または2種以上が好ましい.〔
作用1 本発明の作用にー〕いて更に具体的に説明する. 本発明古らは、気相法を用いた半導体ダイヤモンドの合
成の際.ドーピングガスとしてB2 1{6またはP1
13ガスを用いると,ドーピング量を増加させた場合膜
質が劣化するという現象や,p型半導体は比較的容易に
合成できるがn型半導体の合成は困難で特性が悪いとい
う現象に遭遇した.そこでこの現象について研究を重ね
た結果、ダイヤモンド中に硼素や燐を取り込む際、同時
に水素も多く取り込んでしまうために結晶性が劣化し特
性も悪くなることが判った. また、B2HGをドーピングガスとした場合,未分解ガ
スに由来するB−B結合がそのまま膜中に取り込まれる
ことがあり、この時には炭素原子のサイトで硼素原子と
の効率的な,あるいは整合性のある置換が起こらず,そ
のため結晶性、特性が劣化することを見出した, P 
I−{ :!をドーピングガスとした場合、ドーピング
濃度を上げると燐が偏析し、このため硼素の時と同様に
結晶性,特性の低下が起こることを見出した.このこと
は気相中でP−P結合が生成し、それが膜中に取り込ま
れるためと考えられる. そこでドーピングガスをB(CH3)3やP(CH3)
3などの有機化合物に変えたところ,ドーピング量をあ
る程度上げても結晶性の劣化かなく、しかも特性のよい
ダイヤモンドが合成できることを発見した.これは、こ
れらのドーピングガスを用いることにより、結晶性や特
性の劣化を引き起こすB−B.B−HあるいはP−P.
P−H間の結合をなくシ,半導体ダイヤモンドの合成反
応にとって好ましいB−CあるいはP−C間の結合をよ
り多く供給できるためと考えられる. 本発明はこの知見に基づいて完成したものである. 以下第l図、第2図により本発明を更に詳し《説明する
. 第l図はマイクロ波プラズマCVD法により本発明を実
施する際に用いられるダイヤモンド合成装置の一例の説
明図である.ここで、lは含炭素化合物ガス、2は水素
ガス、3はドーピングガス、4はストップバルブ、5は
マスフローコントローラ、6は反応容器,7はマイクロ
波発生装置、8は導波管、9は基体、10は基体ホルダ
である, 第1図において,含炭素化合物ガスlと水素ガス2とド
ーピングガス3は,マスフローコントローラ5により流
量をIII限され、混合されて反応容器6に導入される
.マイクロ波発生装置7を作動ずることにより反応容器
6中にマイクロ波プラズマを発生させる.基体9は基体
ボルダ10上に置かれプラズマ中に保持される.プラズ
マにより含炭素化合物ガス、ドーピングガスは励起分解
され基体上に半導体ダイヤモンドが生成する。
[Detailed Description of the Invention] [Industrial Application Field 1] The present invention relates to a method for synthesizing semiconductor diamond, and in particular to a method for synthesizing semiconductor diamond that exhibits good properties without deterioration of film quality due to doping. , [Conventional technology] Diamond has high hardness, high thermal conductivity, and has excellent insulation properties.
Due to its excellent physical properties, such as being quantitatively and chemically stable, it is expected to be used in a wide range of applications. Among them, diamond has 111 points in particular when used as a semiconductor, such as its large band gap, which allows it to be used at high temperatures, and its high thermal conductivity, which improves the characteristics of elements that generate a large amount of heat. It is believed that this market will develop into a large market in the future. There are three methods for converting diamond into a semiconductor: (1) Doping with boron, nitrogen, etc. in the high-pressure high-knitting synthesis method. (2) Injecting ions such as R elements and scales into the diamond crystal. (3) B2H6 and P113 gases are mixed in the gas phase method. Among these methods, method (1) requires high-pressure equipment and is costly. In addition, there are drawbacks such as contamination of impurities and doping elements not being doped uniformly. Method (2) is also costly because it requires expensive equipment. In addition, since ions are implanted with an energy of several tens of keV or more, there is a drawback that the diamond itself may be damaged. Method (3) was proposed as one that does not have the above drawbacks (for example, Japanese Patent Application Laid-Open No. 59-137
396). Semiconductor diamond can indeed be synthesized using this method, but there is a problem that increasing the doping amount deteriorates the film quality. In addition, with this method, p''R semiconductors can be synthesized relatively easily and have good characteristics, but there is a problem that synthesis of n-type semiconductors is difficult and has poor characteristics. [Problems to be Solved by the Invention J Purpose of the Invention The present invention solves the above problems and provides a method of synthesizing semiconductor diamond with good crystallinity and excellent properties by a vapor phase method. In order to solve the above problems, when a semiconductor diamond is synthesized on a substrate from a mixed gas consisting of a carbon-containing compound gas, hydrogen gas and a doping gas by a gas phase method, an organic boron compound gas or an organic compound gas is used as the doping gas. This provides a method for synthesizing semiconductor diamond characterized by using an isophosphorus compound gas, in which .B ((,f{3)3,BH (CH3
)2, BH2 (CI{a) . B (C
2 Hs ) 3BH (C2 Hs ) 2 .
One or more types selected from BH2 (Cz Hs) are preferable, and as the organic phosphorus compound gas, P(C
H3)3. P}l (CH3) 2. PH2
(CF{3)P (C2H5)2, PH2(C2
H5)3. PH (C2H5)2PF{2(C2
One or more selected from H5) is preferred. [
Effect 1 The effect of the present invention will be explained in more detail. The present invention relates to the synthesis of semiconductor diamond using a vapor phase method. B2 1{6 or P1 as doping gas
When using No. 13 gas, we encountered the phenomenon that film quality deteriorates when the doping amount is increased, and that p-type semiconductors can be synthesized relatively easily, but n-type semiconductors are difficult to synthesize and have poor characteristics. As a result of repeated research into this phenomenon, it was found that when boron and phosphorus are incorporated into diamond, a large amount of hydrogen is also incorporated at the same time, resulting in deterioration of crystallinity and deterioration of properties. In addition, when B2HG is used as a doping gas, B-B bonds originating from undecomposed gas may be incorporated into the film as is, and in this case, efficient or consistent bonding with boron atoms at carbon atom sites may occur. It was discovered that certain substitutions did not occur, resulting in deterioration of crystallinity and properties.
I-{:! We found that when boron is used as a doping gas, phosphorus segregates as the doping concentration increases, resulting in a decrease in crystallinity and properties, similar to the case with boron. This is thought to be due to the formation of P-P bonds in the gas phase and their incorporation into the membrane. Therefore, the doping gas is B(CH3)3 or P(CH3).
By changing to an organic compound such as 3, they discovered that even if the amount of doping was increased to a certain extent, there was no deterioration in crystallinity, and diamond with good properties could be synthesized. This is because the use of these doping gases causes B-B. B-H or P-P.
This is thought to be because it eliminates the bond between P-H and can supply more bonds between B-C or P-C, which are preferable for the synthesis reaction of semiconductor diamond. The present invention was completed based on this knowledge. The present invention will be explained in more detail with reference to Figures 1 and 2 below. FIG. 1 is an explanatory diagram of an example of a diamond synthesis apparatus used when carrying out the present invention using the microwave plasma CVD method. Here, l is carbon-containing compound gas, 2 is hydrogen gas, 3 is doping gas, 4 is a stop valve, 5 is a mass flow controller, 6 is a reaction vessel, 7 is a microwave generator, 8 is a waveguide, and 9 is a 10 is a substrate holder. In FIG. 1, carbon-containing compound gas 1, hydrogen gas 2, and doping gas 3 are mixed and introduced into a reaction vessel 6, with their flow rates being limited by a mass flow controller 5. Microwave plasma is generated in the reaction vessel 6 by operating the microwave generator 7. The base 9 is placed on a base boulder 10 and held in plasma. The carbon-containing compound gas and doping gas are excited and decomposed by the plasma, and semiconductor diamond is produced on the substrate.

第2図は熱フィラメントCVD法により本発明を実施す
る際に用いられるダイヤモンド合成装置の一例の説明図
である.ここで、lは含炭素化合物ガス、2は水素ガス
、3はドーピングガス,4はストップバルブ、5はマス
フローコントローラ,6は反応容器,9は基体、10は
ヒータを内蔵した基体ホルダ.11は原料供給ノズル,
l2は熱電子放射材.13は熱雷子tli肘材加熱用電
源,14は基体ホルダ加熱用電源である.第2図におい
て,含炭素化合物ガスlと水素ガス2とドーピングガ又
3は,マスフローコントローラ5によりMlを制御され
,混合されて反応容器6に原科供給ノズル11を通して
導入される.含炭素化合物ガスとドーピングガスは,熱
電子放射材加熱用電源l3により加熱された熱電子放射
材■2により熱分解され,基体ホルダlO上で加熱され
た基体9上に半導体ダイヤモンドが生成する. このようにして、半4体ダイヤモンドを合成する際にド
ーピングガスとして有機化合物を用いることにより、ド
ーピング量をある程度上げても結品性の劣化がなくしか
も特性のよいダイヤモンドが合成できる. 本発明に用いるドーピングガスは,p型半導体を合成す
る場合は有機&lI素化合物を用いる.有機&1l素化
合物としては.B(CHa)a、BH  (CH3 )
2 、BH2  (CH3 )13(C  2  14
5  冫 ミr  .   BH   (C  2  
H5  )  28H2  (C2 H5).B ((
,387 )a13 (C4 Hg ) 3などが用い
られるが,取扱の容易さや膜形成反応を考慮すると,B
 (CH3 ) 3 .  13H (CH3 ) 2
BH2  (CH3).B (C2 H5)3B tl
  ( C 2 H 5 )  2 .  B H 2
  ( C 2 H 5 )が望ましい. 一方、n型半導体を合成する場合は有機燐化合物を用い
る. 有磯燐化合物としては、P(CH3)3Pli  (C
}{3 ) 2 .  PH2  (CH3 )P (
C2 Hs I 3.  PH (C2 H5 ) 2
PH2  (C2 Hs ) .  P (C3 87
 )3P(C4H5)2、PH2(C2H5)3などが
用いられるが、取扱の容易さや膿形成反応を考慮すると P   (CH3   )   3  .   PH 
  (CH3   1   2PH2  (CH3 )
 .  P (C2 Hs ) 3P H ( C 2
 H s ) 2 .  P t{ 2  ( C 2
 115 )が望ましい. なお、ドーピングガスの添加徹により′+導体ダイヤモ
ンドの比抵抗は変化する. 含炭素化合物ガスとしては炭素を含んでいるものならば
特に限定されない.例えば、メタン、エタン、ブロバン
、エヂレン、アセチレンなどの炭化水素,メタノール,
エタノール,アセトン酸化炭素などの含#素炭素化合物
、四塩化炭素,塩化メチルなどの含#A素炭素化合物等
である.これらの中でも取扱の容易さ,分解しやすいこ
となどから,メタン,アセチレン、エタノールなどが好
ましい。
FIG. 2 is an explanatory diagram of an example of a diamond synthesis apparatus used when carrying out the present invention using the hot filament CVD method. Here, 1 is a carbon-containing compound gas, 2 is a hydrogen gas, 3 is a doping gas, 4 is a stop valve, 5 is a mass flow controller, 6 is a reaction vessel, 9 is a substrate, and 10 is a substrate holder with a built-in heater. 11 is a raw material supply nozzle;
l2 is thermionic emitting material. 13 is a power supply for heating the thermal lightning tli elbow material, and 14 is a power supply for heating the base holder. In FIG. 2, a carbon-containing compound gas 1, a hydrogen gas 2, and a doping gas 3 are mixed and introduced into a reaction vessel 6 through a raw material supply nozzle 11, with Ml being controlled by a mass flow controller 5. The carbon-containing compound gas and the doping gas are thermally decomposed by the thermionic emitting material (2) heated by the thermionic emitting material heating power source (13), and semiconductor diamond is generated on the substrate 9 heated on the substrate holder (10). In this way, by using an organic compound as a doping gas when synthesizing semi-quadramid diamond, diamond with good properties can be synthesized without deterioration of crystallinity even if the amount of doping is increased to a certain extent. The doping gas used in the present invention is an organic compound when a p-type semiconductor is synthesized. As an organic & 1L compound. B(CHa)a, BH (CH3)
2, BH2 (CH3)13(C214
5.Mir. BH (C 2
H5) 28H2 (C2 H5). B ((
, 387) a13 (C4 Hg) 3, etc., but considering ease of handling and film-forming reaction, B
(CH3) 3. 13H (CH3) 2
BH2 (CH3). B (C2 H5)3B tl
(C2H5)2. B H 2
(C 2 H 5 ) is desirable. On the other hand, when synthesizing an n-type semiconductor, an organic phosphorus compound is used. As an isophosphorus compound, P(CH3)3Pli (C
}{3) 2. PH2 (CH3)P (
C2 Hs I 3. PH (C2 H5) 2
PH2 (C2 Hs). P (C3 87
)3P(C4H5)2, PH2(C2H5)3, etc. are used, but considering ease of handling and pus-forming reaction, P(CH3)3. P.H.
(CH3 1 2PH2 (CH3)
.. P (C2 Hs) 3P H (C2
Hs) 2. P t{ 2 ( C 2
115) is desirable. Note that the resistivity of the ′+ conductor diamond changes depending on the addition of doping gas. The carbon-containing compound gas is not particularly limited as long as it contains carbon. For example, hydrocarbons such as methane, ethane, broban, ethylene, acetylene, methanol,
These include #-containing carbon compounds such as ethanol and acetone carbon oxide, and #A-containing carbon compounds such as carbon tetrachloride and methyl chloride. Among these, methane, acetylene, ethanol, etc. are preferred because they are easy to handle and decompose.

含炭素化合物ガスと水素ガスとの混合比(容積比)は特
に限定されないが、含炭素化合物/水素=0.001〜
0.2の範囲が好ましい.o.ooi未溝では膜は形成
せず、0.2を越えるとグラファイト的H4造を示すよ
うになる. 基体としてはダイヤモンドの合成温度である600℃以
−Eで損傷しないものか好ましい.例えば、モリブデン
,タングステンなどの金属、シリコン等の半導体、石英
2アルミナなどのセラミックである.また,ダイヤモン
ドを用いてもよい.基体温度は600℃〜1200℃と
する.600℃未満や1200℃を越えてはダイヤモン
ドは生成しない. 圧力はO. 1〜760Torrの範囲で可能だが、成
膜速度、膜質を考慮すると10〜100Torrが好ま
しい. [実施例1 実施例1 第1図に示すマイクロ波プラズマCVD法による装置を
用いp型半導体ダイヤモンドの合成を行った.含炭素化
合物としてメタンIsccM、水素ガス995CCM、
ドーピングガスとしてB(Cf{a)3をメタンと水素
とB (CH3)3との混合ガス中でのB/C比が1.
00ppmになるよう混合して用いた。基体としてシリ
コンを用い基体ホルダ上に設置した.圧力は30Tor
rとして,マイクロ波発生装置を作動させ300Wの出
力に調整して反応容器内にマイクロ波プラズマを発生さ
せた.プラズマ中に基体を置き3時間反応させたところ
,厚さ3μmのp聖半導体ダイヤモンドが得られた。こ
の膜の比抵抗は室温でlOΩ・cmであった。
The mixing ratio (volume ratio) of carbon-containing compound gas and hydrogen gas is not particularly limited, but carbon-containing compound/hydrogen = 0.001 to
A range of 0.2 is preferred. o. No film is formed when the ooi groove is not present, and when the value exceeds 0.2, a graphite-like H4 structure appears. The substrate is preferably one that will not be damaged at -E above 600°C, which is the synthesis temperature of diamond. Examples include metals such as molybdenum and tungsten, semiconductors such as silicon, and ceramics such as quartz di-alumina. Also, diamond may be used. The substrate temperature is 600°C to 1200°C. Diamonds do not form at temperatures below 600°C or above 1200°C. The pressure is O. Although it is possible in the range of 1 to 760 Torr, 10 to 100 Torr is preferable in consideration of the film formation rate and film quality. [Example 1 Example 1 A p-type semiconductor diamond was synthesized using a microwave plasma CVD apparatus shown in Fig. 1. Methane IsccM, hydrogen gas 995CCM as carbon-containing compounds,
B(Cf{a)3 is used as a doping gas, and the B/C ratio in a mixed gas of methane, hydrogen, and B(CH3)3 is 1.
00 ppm and used. Silicon was used as the substrate and it was placed on a substrate holder. Pressure is 30 Torr
As r, the microwave generator was activated and the output was adjusted to 300 W to generate microwave plasma in the reaction vessel. When the substrate was placed in plasma and reacted for 3 hours, p-silicon semiconductor diamond with a thickness of 3 μm was obtained. The specific resistance of this film was 10Ω·cm at room temperature.

実施例2 第2図に示す熱フィラメントCVD法による装置を用い
、基体として用いたシリコンを900℃に加熱した基体
ホルダ上に設置し,熱電子放射材加熱用電源により熱電
子放射材を2000℃に加熱し、混合ガス供給ノズルか
ら上記混合ガスを吹き付けた.その他の条件は実施例l
と同様とした.その結果,厚さ3umのp型半導体ダイ
ヤモンドが得られ、この膜の比抵抗も室温で10Ω・c
mであった, 実施例3 ドーピングガスとしてB }{ ( C I−1 3 
) 2を用いたほかは実施例lと同様とした.その結果
厚さ3umのp型半導体が得られた.このIIIの比抵
抗は室?品で10Ωcmであった. 実施例4 ドーピングガスとしてB(Ct{3)3とB}I ( 
C H 3 ) 2をl:lの割合で混合したものを用
い,そのほかは実施例lと同様とした.その結東厚さ3
umのp型半導体が得られた.この膜の比抵抗は室温で
IOΩcmであった.実施例5 ドーピングガスとしてP(C}{3)3を用いたほかは
実施例lと同様とした.その結果厚さ3umのn型半導
体ダイヤモンドが得られ、この膜の比抵抗は室温で10
4Ω・cmであった.実施例6 ドーピングガスとしてP(Ct−+3)3を用いたほか
は実bmfIA2と同様とした.その結果厚さ3μmの
n型半導体ダイヤモンドが得られた.この膜の比抵抗は
室温で104Ω・cmであった。
Example 2 Using an apparatus using the hot filament CVD method shown in Fig. 2, silicon used as a substrate was placed on a substrate holder heated to 900°C, and the thermionic emissive material was heated to 2000°C using a power source for heating the thermionic emissive material. The mixture was heated to 100°C and the above mixed gas was sprayed from the mixed gas supply nozzle. Other conditions are Example 1
The same is true. As a result, a p-type semiconductor diamond with a thickness of 3 um was obtained, and the specific resistance of this film was 10 Ω・c at room temperature.
Example 3 B as the doping gas { (C I-1 3
) The procedure was the same as in Example 1 except that 2 was used. As a result, a p-type semiconductor with a thickness of 3 um was obtained. Is the resistivity of this III room? The resistance was 10Ωcm. Example 4 B(Ct{3)3 and B}I (
A mixture of C H 3 ) 2 at a ratio of 1:1 was used, and the other conditions were the same as in Example 1. The thickness of the joint is 3
A p-type semiconductor of um was obtained. The specific resistance of this film was IOΩcm at room temperature. Example 5 The same procedure as Example 1 was carried out except that P(C}{3)3 was used as the doping gas. As a result, an n-type semiconductor diamond with a thickness of 3 um was obtained, and the resistivity of this film was 10 at room temperature.
It was 4Ω・cm. Example 6 The procedure was the same as that of actual bmfIA2 except that P(Ct-+3)3 was used as the doping gas. As a result, an n-type semiconductor diamond with a thickness of 3 μm was obtained. The specific resistance of this film was 104 Ω·cm at room temperature.

実施例7 ドーピングガスとしてP F{ ( C [{ 3 )
 2を用いたほかは実施例1と同様とした.その結果厚
さ3umのn型半導体が得られた6この膜の比抵抗は室
温で104Ωcmであった。
Example 7 P F{ ( C [{ 3 )] as doping gas
The procedure was the same as in Example 1 except that 2 was used. As a result, an n-type semiconductor with a thickness of 3 um was obtained.6 The specific resistance of this film was 104 Ωcm at room temperature.

実施例8 ドーピングガスとしてP(CH3)3とP H ( C
 H 3 ) 2を1=1の割合で混合したものを用い
、そのは75)は実施例1と同様とした.その結果厚さ
3amのn梨半導体が得られた.この模の比抵抗は室温
で104Ωcmであった.実施例9 ドーピングガスの濃度のみ変えて、実施例!,2および
実施例5.6と同様に行い、それぞれp聖およびn型の
半導体ダイヤモンドを合成し,その特性値を測定した. なお、比較例としてB(CH3)3にかえてB2H6を
、P (CF{3)3にかえてPH3を使用した. このときマイクロ波プラズマC V D法と執フィラメ
ントCVD法との間には特性値の差はなかった.測定結
果を第1表に示した。
Example 8 P(CH3)3 and P H (C
A mixture of H 3 ) 2 at a ratio of 1=1 was used, and its 75) was the same as in Example 1. As a result, an n-pear semiconductor with a thickness of 3 am was obtained. The specific resistance of this model was 104 Ωcm at room temperature. Example 9 Example with only the doping gas concentration changed! , 2 and Example 5.6, p-type and n-type semiconductor diamonds were synthesized, respectively, and their characteristic values were measured. As a comparative example, B2H6 was used instead of B(CH3)3, and PH3 was used instead of P(CF{3)3. At this time, there was no difference in characteristic values between the microwave plasma CVD method and the filament CVD method. The measurement results are shown in Table 1.

第l表から,本発明によりドーピング時の膜質劣化もな
く,特性の良い膜が合成できることがわかる. 〔発明の効渠1 本発明によれば気相法による半導体ダイヤモンドの合成
法において、ドーピングにより結晶性が劣化せず,特性
ら優れている半導体ダイヤモンドの合成が可能になった
From Table 1, it can be seen that the present invention allows synthesis of films with good properties without deterioration of film quality during doping. [Advantages of the invention 1] According to the present invention, in a method for synthesizing semiconductor diamond using a vapor phase method, it has become possible to synthesize semiconductor diamond with excellent properties without deterioration of crystallinity due to doping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマイクロ波プラズマCVD法により本発明を実
施する際に用いられる装置の一例の説明図、第2図は熱
フィラメントCvD法により本発明を実施する際に用い
られる装置の一例の説明図である. l・・・含炭素化合物 2・・・水素ガス 3・・・ドーピングガス 4・・・ストップバルブ 5・・・マスフローコントローラ 6・・・反応容器 T・・・マイクロ波発生装置 8・・一導波管 9・・・基体 0・・・基体ホルダ 1・・一混合ガス供給ノズル 2・・・熱電子放射材 3・・・熱雷子放射材加熱用電源 4・・・基体ホルダ加熱用電源
Fig. 1 is an explanatory diagram of an example of an apparatus used when carrying out the present invention by microwave plasma CVD method, and Fig. 2 is an explanatory diagram of an example of an apparatus used when carrying out the present invention by hot filament CVD method. It is. l... Carbon-containing compound 2... Hydrogen gas 3... Doping gas 4... Stop valve 5... Mass flow controller 6... Reaction vessel T... Microwave generator 8... First conductor Wave tube 9...Substrate 0...Substrate holder 1...Mixed gas supply nozzle 2...Thermionic radiation material 3...Power source for heating the thermal lightning radiation material 4...Power source for heating the substrate holder

Claims (1)

【特許請求の範囲】 1 気相法により、含炭素化合物ガス、水素ガスおよび
ドーピングガスよりなる混合ガスから基体上に半導体ダ
イヤモンドを合成する際に、前記ドーピングガスとして
有機硼素化合物ガスまたは有機燐化合物ガスを用いるこ
とを特徴とする半導体ダイヤモンドの合成法。 2 請求項1記載の有機硼素化合物ガスが、B(CH_
3)_3、BH(CH_3)_2、BH_2(CH_3
)、B(C_2H_5)_3、BH(C_2H_5)_
2、BH_2(C_2H_5)より選ばれた1種または
2種以上である半導体ダイヤモンドの合成法。 3 請求項1記載の有機燐化合物ガスが、 P(CH_3)_3、PH(CH_3)_2、PH_2
(CH_3)、P(C_2H_5)_3、PH(C_2
H_5)_2、PH_2(C_2H_5)より選ばれた
1種または2種以上である半導体ダイヤモンドの合成法
[Claims] 1. When a semiconductor diamond is synthesized on a substrate from a mixed gas consisting of a carbon-containing compound gas, hydrogen gas, and a doping gas by a gas phase method, an organic boron compound gas or an organic phosphorus compound gas is used as the doping gas. A method for synthesizing semiconductor diamond characterized by the use of gas. 2. The organic boron compound gas according to claim 1 is B(CH_
3)_3, BH(CH_3)_2, BH_2(CH_3
), B(C_2H_5)_3, BH(C_2H_5)_
2. A method for synthesizing a semiconductor diamond which is one or more selected from BH_2 (C_2H_5). 3. The organic phosphorus compound gas according to claim 1 is P(CH_3)_3, PH(CH_3)_2, PH_2
(CH_3), P(C_2H_5)_3, PH(C_2
H_5)_2, PH_2 (C_2H_5) A method for synthesizing one or more semiconductor diamonds selected from PH_2 (C_2H_5).
JP15464389A 1989-06-19 1989-06-19 Method for synthesizing semiconductor diamond Pending JPH0323295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15464389A JPH0323295A (en) 1989-06-19 1989-06-19 Method for synthesizing semiconductor diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15464389A JPH0323295A (en) 1989-06-19 1989-06-19 Method for synthesizing semiconductor diamond

Publications (1)

Publication Number Publication Date
JPH0323295A true JPH0323295A (en) 1991-01-31

Family

ID=15588704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15464389A Pending JPH0323295A (en) 1989-06-19 1989-06-19 Method for synthesizing semiconductor diamond

Country Status (1)

Country Link
JP (1) JPH0323295A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095958A (en) * 2002-09-02 2004-03-25 National Institute For Materials Science Deep ultraviolet sensor
DE19653124B4 (en) * 1996-09-03 2009-02-05 National Institute For Research In Inorganic Materials, Tsukuba Synthesis of phosphorus-doped diamond
JP2013028493A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Graphite and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19653124B4 (en) * 1996-09-03 2009-02-05 National Institute For Research In Inorganic Materials, Tsukuba Synthesis of phosphorus-doped diamond
JP2004095958A (en) * 2002-09-02 2004-03-25 National Institute For Materials Science Deep ultraviolet sensor
JP2013028493A (en) * 2011-07-28 2013-02-07 Sumitomo Electric Ind Ltd Graphite and method for producing the same

Similar Documents

Publication Publication Date Title
JPS59128281A (en) Manufacture of silicon carbide coated matter
JPS5930709A (en) Method for synthesizing carbon film and carbon granule in vapor phase
JPH02233591A (en) Method for forming single crystal diamond layer
JPH01162326A (en) Manufacture of beta-silicon carbide layer
Reinberg Plasma deposition of inorganic thin films
JP2019530975A (en) Trichlorodisilane
JPH08225395A (en) Production of diamond doped with boron
JPS60103098A (en) Manufacture of diamond film
JPH0323295A (en) Method for synthesizing semiconductor diamond
JPS6270295A (en) Production of n-type semiconductive diamond film
JPH01103993A (en) Method for growing diamond single crystal
JPS62171993A (en) Production of diamond semiconductor
JPS62180073A (en) Amorphous carbon film and its production
WO2002034960A2 (en) Method for synthesizing diamond
JPH02262324A (en) X-ray transmitting film and its manufacture
JPS6115150B2 (en)
JPS61149478A (en) Production of boron nitride film of hexagonal or cubic crystal
JP3219832B2 (en) Manufacturing method of silicon carbide thin film
JPH0341435B2 (en)
JPH0769792A (en) Method for epitaxial growth of diamond crystal and method for selective epitacial growth
JPS63185894A (en) Production of diamond thin film or diamond-like thin film
Ohshita et al. Reaction of Si2H2 molecule on a silicon surface
JPS63185891A (en) Production of diamond thin film or diamond-like thin film
JPH06158323A (en) Method for synthesizing hard carbon coating film in vapor phase
JPS6355196A (en) Production of diamond having high heat-conductivity