JPH03232755A - Production of piezoelectric porcelain - Google Patents

Production of piezoelectric porcelain

Info

Publication number
JPH03232755A
JPH03232755A JP2029012A JP2901290A JPH03232755A JP H03232755 A JPH03232755 A JP H03232755A JP 2029012 A JP2029012 A JP 2029012A JP 2901290 A JP2901290 A JP 2901290A JP H03232755 A JPH03232755 A JP H03232755A
Authority
JP
Japan
Prior art keywords
calcined
powder
sheet
raw material
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2029012A
Other languages
Japanese (ja)
Inventor
Yuji Fujinaka
藤中 祐司
Tomokazu Yamaguchi
朋一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2029012A priority Critical patent/JPH03232755A/en
Publication of JPH03232755A publication Critical patent/JPH03232755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To easily obtain the title porcelain with the component of the formula by calcination of wet-ground raw material powder at low temperatures into a calcined product with the solid phase reaction completed, which is then pulverized to enhance the activity and formed into a sheet which is then calcined at specified low temperatures. CONSTITUTION:Using a medium-agitating mill, raw material powder is put to wet-grinding and mixing, drying and then calcination at 700-1000 deg.C to effect completion of the solid phase reaction. The resulting calcined product powder is put to wet-grinding using a medium-agitating mill to enhance the activity with an average size of <=0.6mum and made into a sheet form. This sheet is then calcined at 1000-1400 deg.C, thus easily obtaining the objective piezoelectric porcelain with the component of the general formula [x, y and z represent each mol%, x+y+z=100; a and b represent each mol% based on (x+y+z=100), a is 0.01-5 and b is 0-40].

Description

【発明の詳細な説明】 産業上の利用分野 本発明は七ラミックフィルタ、圧電音響素子。[Detailed description of the invention] Industrial applications The present invention is a seven ramic filter and a piezoelectric acoustic element.

アクチュエータ、共振子等に用いられる圧電磁器の製造
方法に関するものである。
The present invention relates to a method of manufacturing piezoelectric ceramics used for actuators, resonators, etc.

従来の技術 従来、圧電原料粉末の製造方法としては共沈法および固
相法が知られている。
BACKGROUND OF THE INVENTION Conventionally, coprecipitation methods and solid phase methods have been known as methods for producing piezoelectric raw material powder.

共沈法はその構成成分の全てを一緒にした混合溶液を作
シ、これにアルカリ等の沈殿形成液を添加して共沈物を
乾燥、仮焼させる方法である。この共沈法によると均一
性の優れた易焼結性の微粉末が得られるが、製造設備が
大がかりなものとなり高コストとなること、また各成分
の沈殿形成液に対する沈殿形成能が同じでない場合には
、例えば酸成分は実質的に1oo%沈殿を生ずるが、他
の成分は実質的に全部沈殿を生成し得ないことが起こり
、所望組成となし得ないことがあり、特にMq成分、N
i成分、Mn成分を実質的に100係沈殿させるのは困
難であった。
The coprecipitation method is a method in which a mixed solution of all the constituent components is prepared, a precipitate forming liquid such as an alkali is added to this solution, and the coprecipitate is dried and calcined. This coprecipitation method yields a fine powder with excellent uniformity and easy sinterability, but it requires large-scale manufacturing equipment and high costs, and the precipitate forming ability of each component is not the same in the precipitate forming liquid. In some cases, for example, the acid component causes substantially 10% precipitation, but the other components may not produce substantially all of the precipitation, and the desired composition may not be obtained. In particular, the Mq component, N
It was difficult to substantially precipitate the i component and the Mn component by 100%.

固相法は構成原料成分の化合物を乾式あるいは湿式で混
合し、仮焼する方法であるが、従来のボールミルを中心
とする混合では原料の粉砕効率が悪く、一般の市販原料
を用いた場合は粒度が粗く、焼結性は良好でなかった。
The solid-phase method is a method in which the constituent raw material compounds are mixed dry or wet and then calcined. However, when conventional mixing using a ball mill is used, the grinding efficiency of the raw materials is poor, and when using general commercially available raw materials, The grain size was coarse and the sinterability was not good.

また、均一組成の原料粉末が得にくいため高度な特性が
得られなかったり、製品の特性ばらつきが大きいという
問題があった。
Furthermore, since it is difficult to obtain a raw material powder with a uniform composition, there are problems in that advanced properties cannot be obtained and that the properties of the product vary widely.

発明が解決しようとする課題 本発明は前記固相法を改良し、媒本撹拌ミルによる素原
料の微粉化とシート成形による微粉原料の高密度、高均
質性成形により、高密度、高均一性、低コスト、高性能
圧電特性の4つの要件を満たした圧電磁器を効率よく製
造する方法を提供することを目的とするものである。
Problems to be Solved by the Invention The present invention improves the solid-phase method described above, and achieves high density and high uniformity by pulverizing the raw material using a medium stirring mill and molding the fine powder raw material with high density and high homogeneity by sheet forming. The present invention aims to provide a method for efficiently manufacturing a piezoelectric ceramic that satisfies four requirements: low cost, and high performance piezoelectric properties.

課題を解決するための手段 本発明の製造方法は、一般式x CPb (Mg 、1
<イNb%)03二y(PbTiO)−z(PbZrO
3−a(MnO2)  b (N 10 )(ただし、
x、yおよび2はモルチを表わし、z + y 十z 
= 100であり、aおよびbはz + y +2=1
oOに対するモル比であり、a = 0.01〜6゜b
=o〜4oである)で表わされる圧電磁器の製造に際し
、市販の固相原料を直径の小さい玉石と分散媒体となる
液体をスラリー形成が可能な最少量に抑えた媒体撹拌ミ
ルによりサブミクロンオーダーまで微粉砕・混合した後
に仮焼し、ついでこれを再度媒体撹拌ミルにより微粉砕
し、有機バインダー、解こう剤、消泡剤等を加えてスラ
リーとし、さらにこれをドクターブレード法によりグリ
ーンシートとし必要とする厚み分の枚数を熱圧着積層、
必要な形状への打ち抜き加工を行なった後に焼成するこ
とを特徴とするものである。
Means for Solving the Problems The manufacturing method of the present invention is based on the general formula x CPb (Mg, 1
<INb%)032y(PbTiO)-z(PbZrO
3-a (MnO2) b (N 10 ) (However,
x, y and 2 represent mortise, z + y + z
= 100, and a and b are z + y + 2 = 1
molar ratio to oO, a = 0.01~6゜b
When manufacturing piezoelectric ceramics represented by =o to 4o, commercially available solid phase raw materials are processed into submicron order by using small-diameter boulders and a medium agitation mill in which the amount of liquid serving as a dispersion medium is kept to the minimum amount possible to form a slurry. After finely pulverizing and mixing the product, it is calcined, then finely pulverized again using a media stirring mill, an organic binder, a deflocculating agent, an antifoaming agent, etc. are added to form a slurry, and this is further made into a green sheet using a doctor blade method. The number of sheets for the required thickness is laminated by thermocompression,
It is characterized in that it is fired after being punched into the required shape.

作  用 本発明において、一般式中の” e Vおよび2は圧電
材料の用途に応じ種々の数値をとりうるが、通常Iは5
〜9o、yは6−’−80、Zは6〜80モルチの範囲
から選択するのが好ましい。この範囲から外れると圧電
特性または焼結性が低下ブ°るので好ましくない。aお
よびbはx + y +2=1oOに対するモル比であ
り、aば0.01〜6.bは0.01〜4oの範囲から
選択するのが望ましい。MnおよびNiはいずれも機械
的品質定数Qmを向上させる効果があるが、上記範囲よ
り過剰に加えると焼結性が低下したり誘電率が低下した
りするので好ましくない。
Function In the present invention, "e" and "2" in the general formula can take various values depending on the use of the piezoelectric material, but usually I is 5.
~9o, y is preferably selected from the range of 6-'-80, and Z is preferably selected from the range of 6 to 80 mol. If it deviates from this range, the piezoelectric properties or sinterability may deteriorate, which is not preferable. a and b are molar ratios to x + y + 2 = 1oO, and a is 0.01 to 6. It is desirable to select b from the range of 0.01 to 4o. Both Mn and Ni have the effect of improving the mechanical quality constant Qm, but if added in excess of the above range, the sinterability will deteriorate and the dielectric constant will decrease, which is not preferable.

セラミック粉体を粉砕する方法としてはボールミル、振
動ミル等があるが、微粉砕するのに長時間かかったり、
粉砕媒体である玉石からの不純物混入が多いなどの問題
があった。媒体撹拌ミルでの湿式粉砕において液体の体
積をセラミック粉体の4倍以下とし、かつ分散剤を添加
し、さらに直径が1ff以下の玉石を用いてセラミック
粉体を効率よく微粉砕する方法がある(特公昭64−9
0045号公報)。この方法によると、セラミック粉体
を短時間でサブミクロン以下の微粒子に粉砕することが
可能で、素原料の混合においては反応性と分散性を向上
させることができ、仮焼粉の粉砕においては粒子の活性
度を上げ、焼結温度の低下、焼結密度の向上等の全体的
な焼結性を上げることができる。従って、この方法によ
り微粉砕した固相原料を仮焼すればより低い温度での均
一な固相反応が実現する。ここで、仮焼温度としては固
相ff応が完結し、粒子間の焼結が生じない温度範囲と
すべきであり、700〜1000℃の範囲が好ましい。
There are ball mills, vibration mills, etc. for pulverizing ceramic powder, but they take a long time to pulverize,
There were problems such as a large amount of impurities mixed in from the cobblestones used as the grinding medium. There is a method of efficiently finely pulverizing the ceramic powder in wet pulverization using a media agitation mill by reducing the volume of the liquid to four times or less than that of the ceramic powder, adding a dispersant, and using cobblestones with a diameter of 1FF or less. (Tokuko Showa 64-9
Publication No. 0045). According to this method, it is possible to grind ceramic powder into fine particles of submicron size or less in a short time, and it is possible to improve reactivity and dispersibility when mixing raw materials, and when grinding calcined powder, it is possible to It is possible to increase the activity of the particles, lower the sintering temperature, improve the sintered density, and improve the overall sinterability. Therefore, if the finely ground solid phase raw material is calcined by this method, a uniform solid phase reaction can be realized at a lower temperature. Here, the calcination temperature should be in a temperature range where the solid phase ff reaction is completed and sintering between particles does not occur, and a range of 700 to 1000°C is preferable.

このようにして得られた仮焼原料を再度媒体撹拌ミルに
より微粉砕した後に成形するわけであるが、原料のセラ
ミック粉体が微粒子となるため、乾式プレス成形法では
ち密で均一な成形体を得るのが困難で、焼成後の磁器密
度がばらついたり、クラックが入り易いなどの問題があ
った。当然、磁器の圧電特性もそれに伴ってばらついた
り、低下したりした。
The calcined raw material obtained in this way is again finely pulverized using a media stirring mill and then molded. Since the raw ceramic powder becomes fine particles, it is difficult to produce a dense and uniform molded product using the dry press molding method. It is difficult to obtain, and there are problems such as variations in porcelain density after firing and easy cracking. Naturally, the piezoelectric properties of the porcelain also varied or deteriorated accordingly.

本発明者はこの点に鑑み鋭意検討を進めた結果、シート
成形がこのような微粉原料の成形に有効であることを見
いだした。即ち、適当な分散剤を選べば固相造粒粉より
もはるかによく分散したスラリーを得ることが可能で、
これをドクターブレード法により搬送フィルム上に均一
に広げて乾燥させることにより組成的にも、充填密度的
にも均一なシートとすることができ、さらにこれを圧着
積層したものも乾式プレス成形品に比べ、はるかに均一
な成形体となる。従って、このシート成形体を焼成する
ことにより、ち密で、ばらつきの少ない、良好な圧電特
性を有する磁器が得られる。ここで、成形に用いる分散
媒は水でも良いし、有機溶剤であっても良いが、媒体撹
拌ミルによる水を媒体とする湿式粉砕を行なう場合は水
の方が好ましい。これは媒体撹拌ミルによる粉砕を行な
った後に得られたスラリーに直接有機バインダー、消泡
剤等を加え、粉砕されたセラミック原料微粉末を凝集さ
せることなくシート引き可能なスラリとすることができ
るためである。有機溶剤系の分散媒を用いる場合にはス
ラリー中の水を完全に乾燥除去することが必要であり、
粉砕微粒子の再結合が起こり、分散媒を水とする系より
シートの分散性、ち密充填性で劣る。
In view of this point, the inventors of the present invention conducted extensive studies and found that sheet molding is effective for molding such fine powder raw materials. In other words, by selecting an appropriate dispersant, it is possible to obtain a slurry that is much better dispersed than solid phase granulated powder.
By spreading this uniformly on a conveying film using the doctor blade method and drying it, a sheet with uniform composition and packing density can be obtained.Furthermore, this sheet can be laminated by pressure bonding and made into a dry press molded product. The result is a much more uniform molded product. Therefore, by firing this sheet molded body, it is possible to obtain a porcelain that is dense, has little variation, and has good piezoelectric properties. Here, the dispersion medium used for molding may be water or an organic solvent, but water is preferable when performing wet pulverization using water as a medium using a media stirring mill. This is because an organic binder, antifoaming agent, etc. can be added directly to the slurry obtained after pulverization using a media stirring mill, and it is possible to create a slurry that can be drawn into sheets without agglomerating the pulverized ceramic raw material fine powder. It is. When using an organic solvent-based dispersion medium, it is necessary to completely dry and remove the water in the slurry.
Recombination of the crushed fine particles occurs, and the dispersibility and tight packing properties of the sheet are inferior to systems using water as the dispersion medium.

実施例 以下に実施例及び比較例を示し、さらに詳しく本発明に
ついて説明する。
EXAMPLES Below, Examples and Comparative Examples will be shown to explain the present invention in more detail.

実施例1 37 、5(Pb (Mg3ANb2. )03)−3
7、s (PbT l03)25.0(PbZr03)
−1,9(MnO2)−2,2(Nip)純度98 %
 以上(D P b○、 M gO、T iO2,Z 
r○2゜Nb2O6,MnCO3,NtO(これら粉体
の平均粒子径は2.6μmである)を用いて、これらを
上記のモル比になるように秤量した後、これらセラミッ
ク粉体の真の体積の0.75〜7倍の体積の純水および
セラミック粉体の重量の1〜2wt%(固形分換算)の
ポリカルボン酸型の分散剤と共にボールミルで混合しス
ラリーとした後、その約1oo。
Example 1 37,5(Pb(Mg3ANb2.)03)-3
7, s (PbT l03) 25.0 (PbZr03)
-1,9(MnO2)-2,2(Nip) Purity 98%
Above (D P b○, M gO, T iO2, Z
r○2゜Using Nb2O6, MnCO3, and NtO (the average particle size of these powders is 2.6 μm), weigh them to the above molar ratio, and then calculate the true volume of these ceramic powders. After mixing in a ball mill with pure water of 0.75 to 7 times the volume of the ceramic powder and a polycarboxylic acid type dispersant of 1 to 2 wt% (in terms of solid content) of the weight of the ceramic powder to form a slurry, about 100 ml of the slurry was prepared.

CCを内容積600CCの流通管型媒体撹拌ミル(回転
数200Orpm12rO27ジテーターデイヌク96
φ、Z r O2玉石0.6−1.0φ−420CG)
に5〜10CC/分の割合で循環導入し、16分間粉砕
・混合した。これの粒度分布を沈降式粒度分布測定装置
を用いて測定したところ、平均粒径0.48μm、比表
面積3.42om/lであった。ここで、得られたスラ
リーを乾燥後アルミナ磁器製のるつぼに入れ850℃で
2時間仮焼し、はぼ単一相とした。これを、らいかい機
で粗粉砕した。この粉体(平均粒径1.32μm)を素
原料の場合と同様の条件で媒体撹拌ミルによる湿式粉砕
(eooccスラリー、循環導入速度5〜10CCZ分
で20分)を行なった。得られたスラリーの粒度分布は
平均粒度で0.46μm、比表面積で2.430n//
lであった。次に、このスラリーを乾燥後、らいかい機
で粉砕し、アルミナ磁器製のるつぼに入れ600℃で6
時間焼成することにより分散剤を除去し、再度、らいか
い機で解砕した後、仮焼粉100ofに対しバインダー
としてのポリビニールブチラール609とジブチルフタ
レート30り、酢酸n −フfk 350 Fを加え、
2リツターポリポツト中で1oφZr○2ボール900
fとともに24時間ボールミル混合した。ついで、この
スラリーを≠250ナイロンメツシュを通した後真空脱
泡し、ドクターブレードシート成形を行なった。ここで
得られた厚み100μmのグリーンシートを12枚積層
し60℃、1200Kg/cnlで熱圧着した後20φ
の円板形状に打ち抜いた。この成形体をpbo  雰囲
気中1260℃で1時間焼成した。得られた焼結体の密
度をアルキメデス法にょシ測定したところ7.s2r/
〜であり、理論密度に近いものであった。この焼結体を
16φ−0,5tの円板形状に研磨加工した後両面にA
q電極を焼付け、100℃で3Kv/maの電界で分極
処理した後、圧電特性をインピーダンスアナライザーで
測定したところ、以下の結果が得られた。
CC was converted into a flow tube type media stirring mill with an internal volume of 600 CC (rotation speed 200 Orpm, 12 rO27, gitator Deinuk 96
φ, Z r O2 boulder 0.6-1.0φ-420CG)
was circulated at a rate of 5 to 10 CC/min, and ground and mixed for 16 minutes. When the particle size distribution of this was measured using a sedimentation type particle size distribution analyzer, it was found that the average particle size was 0.48 μm and the specific surface area was 3.42 om/l. Here, the obtained slurry was dried and then placed in an alumina porcelain crucible and calcined at 850° C. for 2 hours to form a single phase. This was coarsely ground using a grinder. This powder (average particle size 1.32 μm) was wet-pulverized using a media stirring mill (eoocc slurry, circulation introduction rate 5 to 10 CCZ minutes for 20 minutes) under the same conditions as the raw material. The particle size distribution of the obtained slurry was 0.46μm in average particle size and 2.430n// in specific surface area.
It was l. Next, after drying this slurry, it was pulverized using a grinder and placed in an alumina porcelain crucible at 600°C.
The dispersant was removed by baking for a period of time, and the powder was crushed again using a sieve machine. Polyvinyl butyral 609 as a binder, dibutyl phthalate 30% and acetic acid n-FK 350F were added to 100 of the calcined powder. ,
1oφZr○2 balls 900 in 2 liter polypot
Ball mill mixing was performed for 24 hours with f. Next, this slurry was passed through a ≠250 nylon mesh, degassed under vacuum, and formed into a doctor blade sheet. After laminating 12 green sheets with a thickness of 100 μm obtained here and thermo-compression bonding at 60°C and 1200 Kg/cnl, 20φ
It was punched out into a disc shape. This molded body was fired at 1260° C. for 1 hour in a pbo atmosphere. The density of the obtained sintered body was measured using the Archimedes method.7. s2r/
~, which was close to the theoretical density. After polishing this sintered body into a disk shape of 16φ-0.5t,
After baking the q electrode and polarizing it at 100° C. in an electric field of 3 Kv/ma, piezoelectric properties were measured using an impedance analyzer, and the following results were obtained.

比誘電率 ε33/ε。  1o60 電気機械結合定数 Kp   5B、2機械的品質係数
  Qm   211゜実施例2 実施例1で得た媒体撹拌ミルにより微粉砕した仮焼粉を
含むスラリーに固形物で3wt%の水溶性ポリビニール
ブチラール、 0.1 wt%のポリカルボン酸系分散
剤、0.1 wt %のポリグリコール系消泡剤、純水
(全体の含水率が固形分に対して1゜wt%となるよう
にする)を加え1oφZ r O2玉石とともにポリポ
ット中で24時間混練し、≠250ナイロンメツシュを
通した後真空脱泡し、ドクターブレードシート成形を行
なった。ここで得られた厚み100μmのグリーンシー
トを12枚積層し、60℃、120に9/−で熱圧着し
た後20φの円板形状に打ち抜いた。この成形体をpb
○雰囲気中1160℃で1時間焼成した。得られた焼結
体の密度をアルキメデス法により測定したところ7.8
69/Crdであシ、理論密度に近いものであった。こ
の焼結体を16φ−O,Stの円板形状に研磨加工した
後両面にAq電極を焼付け、100℃で3Kv//++
+1の電界で30分間分極処理した後、圧電特性を測定
したところ、以下の結果が得られた。
Specific dielectric constant ε33/ε. 1o60 Electromechanical coupling constant Kp 5B, 2 Mechanical quality factor Qm 211゜Example 2 3wt% of solid water-soluble polyvinyl butyral was added to the slurry containing the calcined powder finely pulverized by the media stirring mill obtained in Example 1. , 0.1 wt% polycarboxylic acid dispersant, 0.1 wt% polyglycol antifoaming agent, pure water (so that the total water content is 1°wt% based on the solid content) was added and kneaded together with 1oφZ r O2 cobblestones in a polypot for 24 hours, passed through a ≠250 nylon mesh, degassed under vacuum, and formed into a doctor blade sheet. Twelve green sheets with a thickness of 100 μm obtained here were laminated, thermocompression bonded at 60° C. with a ratio of 9/- to 120, and then punched into a disc shape of 20φ. This molded body is pb
○ It was baked at 1160°C in an atmosphere for 1 hour. The density of the obtained sintered body was measured by the Archimedes method and was 7.8.
The density was 69/Crd, which was close to the theoretical density. After polishing this sintered body into a disk shape of 16φ-O, St, Aq electrodes were baked on both sides and 3Kv//++ was heated at 100℃.
After polarization treatment in an electric field of +1 for 30 minutes, piezoelectric properties were measured, and the following results were obtained.

比誘電率 ε33/ε。 1125 電気機械結合定数 K     60.4%機械的品質
係数 Qfn  222゜ 実施例3〜実施例8 実施例1(M機溶剤系シート)および実施例2(水系シ
ート)の製造方法において構成成分元素の比率を第1表
に示すように変えて圧電磁器を製造した。仮焼粉の媒体
撹拌ミルによる粉砕上がりでの平均粒径、焼結体の密度
および圧電特性は第2表のようになった。
Specific dielectric constant ε33/ε. 1125 Electromechanical coupling constant K 60.4% Mechanical quality factor Qfn 222゜Example 3 to Example 8 In the manufacturing method of Example 1 (M solvent based sheet) and Example 2 (water based sheet), the constituent elements Piezoelectric ceramics were manufactured by changing the ratios as shown in Table 1. The average particle size, density and piezoelectric properties of the sintered body after pulverization of the calcined powder using a media stirring mill were as shown in Table 2.

〈第 表〉 x[Pb(M(J3ANb%)03 〕V (PbT 
103 )z(PbZrO3) a(MnO2)−b(NiO) 〈第 表〉 比較例1 37.5[Pb(Mg3.Nb%) 03] 37−5
 (PbT iO3)25.0 (P b Z r O
3)  1.9 (Mn 02 ) 2−2 (NN 
iO)純度98%以上のPbO,MgO,TiO2,Z
rO2゜Nb2052MnCO3,N10(これら粉体
の平均粒子径は2.5μmである)を上記モル比で合計
3 Kgとなるように秤量し、6リツターポツト中で3
Kgのメノウ玉石、ポリカルボン酸系分散40CC,純
水1500CCとともに48時間粉砕・混合した。得ら
れたスラリーの粒度分布は平均粒径で1.46μm。
<Table> x[Pb(M(J3ANb%)03]V(PbT
103)z(PbZrO3) a(MnO2)-b(NiO) <Table> Comparative Example 1 37.5 [Pb(Mg3.Nb%) 03] 37-5
(PbT iO3)25.0 (PbZrO
3) 1.9 (Mn 02 ) 2-2 (NN
iO) PbO, MgO, TiO2, Z with a purity of 98% or more
rO2゜Nb2052MnCO3, N10 (the average particle size of these powders is 2.5 μm) was weighed at the above molar ratio to give a total of 3 kg, and 3 kg was added in a 6-liter pot.
Kg of agate boulder, 40 cc of polycarboxylic acid dispersion, and 1500 cc of pure water were crushed and mixed for 48 hours. The particle size distribution of the obtained slurry was 1.46 μm in average particle size.

比表面積で0.998y//fであった。このスラリを
乾燥の後、らいかい機にて粗粉砕した後アルミナ磁器製
のるつぼに入れ85℃で2時間仮焼した。
The specific surface area was 0.998y//f. After drying, this slurry was roughly pulverized using a grinder, and then placed in an alumina porcelain crucible and calcined at 85° C. for 2 hours.

この粉体を再度らいかい機により粉砕した後6リツター
ポツト中で仮焼粉2Kg、ポリカルボン酸系分散剤27
 CC、純水1500CC,メ/’)玉石3Kgととも
に48時間粉砕した。これによシ得られたスラリーの粒
度分布は平均粒径で1.44μm、比表面積で0.71
077//f!であった。このスラリーを乾燥後、らい
かい機で解砕し固決分に対し6wt%の1o%ポリビニ
ールアルコール水溶液を添加して、造粒し、1 ton
/ciの圧力で20φ−1tの円板試料を成形した。こ
の成形体を1200℃で1時間焼成したところ焼結体の
密度は7.76 ?/cttlであった。実施例1と同
様な方法で分極処理したが、大半のものは分極中に割れ
てしまい、分極できたものでも圧電特性は以下に示した
ように悪かった。
After pulverizing this powder again using a miller, 2 kg of calcined powder and 27 kg of polycarboxylic acid dispersant were added to a 6-liter pot.
CC, 1500 CC of pure water, and 3 kg of boulders were crushed for 48 hours. The particle size distribution of the slurry thus obtained was 1.44 μm in average particle size and 0.71 in specific surface area.
077//f! Met. After drying this slurry, it was crushed using a sieve machine, 6 wt% of the solid content was added to a 10% aqueous polyvinyl alcohol solution, and the slurry was granulated to produce 1 ton.
A 20φ-1t disk sample was molded at a pressure of /ci. When this compact was fired at 1200°C for 1 hour, the density of the sintered compact was 7.76? /cttl. Polarization was performed in the same manner as in Example 1, but most of the samples cracked during polarization, and even those that were polarized had poor piezoelectric properties as shown below.

比誘電率 ε /ε   985 33   0 電気機械結合定数 K     42.1%機械的品質
係数 Q!n   1640比較例2 実施例1において媒体撹拌ミルで微粉砕した仮焼原料を
含むヌラリーに固形分で0.8wt%のポリビニールア
ルコール、0.9wt%のワックスエマルジョンを加え
てボールミル混合した後ヌプレー造粒した。ついで、1
ton/CJの圧力で2oφ−1tの円板試料を成形し
、450℃、10時間の脱バインダー焼成をへて115
0℃で1時間焼成したが、半数以上の試料にクラックが
入っていた。得られた焼結体の密度をアルキメデフ法に
より測定シタトころ7.79f/crdであった。クラ
ックのない試料を16φ−0,5tに研磨した後Aq電
極を両面に焼付け、圧電特性を測定したところ以下のよ
うになった。
Relative dielectric constant ε /ε 985 33 0 Electromechanical coupling constant K 42.1% Mechanical quality factor Q! n 1640 Comparative Example 2 0.8 wt% polyvinyl alcohol and 0.9 wt% wax emulsion in terms of solid content were added to the nullary containing the calcined raw material finely pulverized with a media stirring mill in Example 1, mixed in a ball mill, and then mixed in a ball mill. Granulated. Then, 1
A 2oφ-1t disk sample was molded at a pressure of 115 ton/CJ and subjected to binder removal baking at 450°C for 10 hours.
After firing at 0°C for 1 hour, more than half of the samples had cracks. The density of the obtained sintered body was measured by the Archimedef method and was found to be 7.79 f/crd. After polishing a crack-free sample to 16φ-0.5t, Aq electrodes were baked on both sides, and the piezoelectric properties were measured as shown below.

比誘電率 ε33/ε。 1015 電気機械結合定数 K      46チ機械的品質係
数Q。  1816 発明の効果 本発明は一般式x〔Pb(Mqp、NbB)03〕y(
PbTio3)−z(PbZros)−a(MnO2)
−b (N i○)(ただし、I、yおよび2はモルチ
を表わし、x+y+z=100であり、aおよびbはx
+y+z=100に対するモル比であり、aO,01−
6、b=o−4Ofある)で表わされる圧電磁器の製造
に際し、公知の固相法とは異なり原料となるセラミック
粉体を直径の小さい玉石と分散媒体となる液体をヌラリ
ー形成が可能な最少量に抑えた媒体撹拌ミルを用いて、
短時間で均一混合・微粉砕して原料粉末の活性度および
均一分散性を上げた状態で仮焼することにより、低温で
固相反応を完結させ、さらに再度媒体撹拌ミルにより微
粉砕することにより、活性度の高い易焼結性の粉体原料
とし、これをち密かつ均一充填性に優れたシート成形法
で成形、焼成することにより、低温での焼結が可能で、
ち密かつ優れた圧電特性をゼする磁器を低コスト、かつ
少ないばらつきのもとに製造できるという優れた効果を
有する。
Specific dielectric constant ε33/ε. 1015 Electromechanical coupling constant K 46 Mechanical quality factor Q. 1816 Effects of the Invention The present invention provides the general formula x[Pb(Mqp, NbB)03]y(
PbTio3)-z(PbZros)-a(MnO2)
-b (N i○) (I, y and 2 represent molti, x+y+z=100, a and b are x
+y+z=molar ratio to 100, aO,01-
6, b=o-4Of) When manufacturing piezoelectric ceramics expressed by Using a small amount of media stirring mill,
By uniformly mixing and pulverizing the raw material powder in a short period of time and calcining it in a state that increases the activity and uniform dispersibility of the raw material powder, the solid phase reaction is completed at a low temperature, and then the material is pulverized again using a media stirring mill. By using a powder raw material with high activity and easy sinterability, and molding and firing it using a sheet forming method with excellent dense and uniform filling properties, sintering at low temperatures is possible.
It has the excellent effect of being able to produce porcelain that is dense and has excellent piezoelectric properties at low cost and with little variation.

Claims (1)

【特許請求の範囲】 一般式x(Pb〔Mg_1_/_3Nb_2_/_3)
O_3〕−y(PbTiO_3)−z(PbZrO_3
)−a(MnO_2)−b(NiO)(ただし、x,y
およびzはモル%を表わし、x+y+z=100であり
、aおよびbはx+y+z=100に対するモル比であ
り、a=0.01〜5、b=0〜40である)で表わさ
れる圧電磁器の製造方法であって、原料粉末を媒体撹拌
ミルで湿式粉砕、混合した後に乾燥し、700〜100
0℃で仮焼する第1工程と、得られた仮焼物粉末を媒体
撹拌ミルで湿式粉砕し平均粒径を0.6μm以下とした
後にシート成形して1000〜1400℃で焼成する第
2工程とを備えたことを特徴とする圧電磁器の製造方法
[Claims] General formula x (Pb[Mg_1_/_3Nb_2_/_3)
O_3]-y(PbTiO_3)-z(PbZrO_3
)-a(MnO_2)-b(NiO) (where x, y
and z represents mol%, x+y+z=100, a and b are molar ratios to x+y+z=100, a=0.01-5, b=0-40). The method comprises wet-pulverizing raw material powder in a media agitation mill, mixing it, drying it,
A first step of calcining at 0°C, and a second step of wet-pulverizing the obtained calcined powder with a media stirring mill to reduce the average particle size to 0.6 μm or less, forming it into a sheet, and firing it at 1000 to 1400°C. A method for manufacturing piezoelectric ceramic, comprising:
JP2029012A 1990-02-08 1990-02-08 Production of piezoelectric porcelain Pending JPH03232755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2029012A JPH03232755A (en) 1990-02-08 1990-02-08 Production of piezoelectric porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2029012A JPH03232755A (en) 1990-02-08 1990-02-08 Production of piezoelectric porcelain

Publications (1)

Publication Number Publication Date
JPH03232755A true JPH03232755A (en) 1991-10-16

Family

ID=12264497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2029012A Pending JPH03232755A (en) 1990-02-08 1990-02-08 Production of piezoelectric porcelain

Country Status (1)

Country Link
JP (1) JPH03232755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269728A (en) * 1992-03-27 1993-10-19 Ngk Insulators Ltd Method of controlling slurry for press cast molding
US6097133A (en) * 1995-09-19 2000-08-01 Seiko Epson Corporation Thin piezoelectric film element, process for the preparation thereof and ink jet recording head using thin piezoelectric film element
JP2000319065A (en) * 1999-02-22 2000-11-21 Infrared Integrated Syst Ltd Ferroelectric ceramic, pyroelectric and pyroelectric infrared ray detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269728A (en) * 1992-03-27 1993-10-19 Ngk Insulators Ltd Method of controlling slurry for press cast molding
US6097133A (en) * 1995-09-19 2000-08-01 Seiko Epson Corporation Thin piezoelectric film element, process for the preparation thereof and ink jet recording head using thin piezoelectric film element
US6387225B1 (en) 1995-09-19 2002-05-14 Seiko Epson Corporation Thin piezoelectric film element, process for the preparation thereof and ink jet recording head using thin piezoelectric film element
JP2000319065A (en) * 1999-02-22 2000-11-21 Infrared Integrated Syst Ltd Ferroelectric ceramic, pyroelectric and pyroelectric infrared ray detector

Similar Documents

Publication Publication Date Title
CN102311266B (en) Preparation method of (K05Na05) NbO3 (KNN) lead-free piezoelectric ceramic material
CN107244898B (en) Barium strontium titanate doped barium zirconate titanate calcium-based piezoelectric ceramic material and preparation method thereof
CN101648807A (en) Calcium barium zirconate titanate base piezoceramics and preparation method thereof
CN109180181B (en) Lead-free relaxation antiferroelectric ceramic energy storage material and preparation method thereof
JP2003002739A (en) Method for manufacturing barium titanate powder, barium titanate powder and its evaluation method, dielectric ceramic and laminated ceramic capacitor
CN108911738A (en) porous barium titanate piezoelectric ceramics and preparation method thereof
CN1254453C (en) Microwave dielectric composite composition
JP2011159993A (en) Piezoelectric component
CN112552048B (en) Preparation method of potassium-sodium niobate ceramic with high piezoelectric property and high remanent polarization
CN113698204A (en) Potassium-sodium niobate-based lead-free piezoelectric textured ceramic with high piezoelectric response and high Curie temperature and preparation method thereof
JPH03232755A (en) Production of piezoelectric porcelain
EP0012583B1 (en) Piezoelectric ceramic production
JPH03208858A (en) Production of piezoelectric porcelain
JPH09278535A (en) Production of ceramic
JPH03244169A (en) Manufacture of piezoelectric porcelain
JPH07315926A (en) Piezoelectric porcelain composition for ceramic filter device excellent in moisture resistance
CN115819082B (en) Piezoelectric ceramic material and preparation method thereof
JPH04209762A (en) Production of piezoelectric porcelain
KR101110365B1 (en) Method for manufacturing ferroelectric ceramics
JPH0333046A (en) Pulverized body and its production and production of sintered compact using the same
JPH0517216A (en) Piezoelectric ceramics
JPH05139825A (en) Production of lead titanate based piezoelectric ceramic
KR100358048B1 (en) Method of fabrication a piezoelectric ceramics
JPH04209760A (en) Production of piezoelectric porcelain
KR930011273B1 (en) Composition of piezoelectric ceramics