JPH03232719A - Production of readily grindable alumina - Google Patents

Production of readily grindable alumina

Info

Publication number
JPH03232719A
JPH03232719A JP2026169A JP2616990A JPH03232719A JP H03232719 A JPH03232719 A JP H03232719A JP 2026169 A JP2026169 A JP 2026169A JP 2616990 A JP2616990 A JP 2616990A JP H03232719 A JPH03232719 A JP H03232719A
Authority
JP
Japan
Prior art keywords
alumina
calcined
temperature
aluminum hydroxide
bayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2026169A
Other languages
Japanese (ja)
Other versions
JP2791596B2 (en
Inventor
Akio Nakayama
中山 昭雄
Takeshi Kato
毅 加藤
Yasuhide Takao
高尾 保秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2026169A priority Critical patent/JP2791596B2/en
Publication of JPH03232719A publication Critical patent/JPH03232719A/en
Application granted granted Critical
Publication of JP2791596B2 publication Critical patent/JP2791596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To obtain easily grindable alumina by pyrolyzing Bayer's method aluminium hydroxide at a specific temperature-raising rate, calcining the product and further calcining the prepared intermediate calcination alumina containing alpha-alumina as a main component in the presence of a mineralizing agent. CONSTITUTION:Aluminum hydroxide prepared by Bayer's method is pyrolyzed at a temperature-raising rate of <=20 deg.C/min to produce gamma-alumina free from water of crystallization. The gamma-alumina is subjected to an intermediate calcination treatment to prepare intermediately calcined alumina, which is further calcined in the presence of a mineralizer (e.g. aluminum fluoride) preferably at a temperature of 600-1500 deg.C to provide the objective alumina. The grinding of the prepared alumina for a short time permits to provide spherical alumina powder having a narrow fine particle diameter distribution of approximately 1-3mum and suitable as a raw material for ceramics.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、バイヤー法の水酸化アルミニウムを原料とし
て粉砕によって容易に微細にして均整なアルミナ粉末を
得ることのできる粉砕の賽易なアルミナの製造法に関す
るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is an easy-to-pulverize alumina powder that can be easily pulverized to obtain a uniform alumina powder using Bayer process aluminum hydroxide as a raw material. It concerns the manufacturing method.

〈従来の技術〉 アルミナ粉末は、各種セラミック1品の製造涼料や研磨
材などとして、従来から広く使用されている。近時、集
積回路の基盤など電子機器方面へのセラミックス材の用
途が拡大され、これに伴って威輌アルミナに要求される
品質も著しく厳しくなっている。
<Prior Art> Alumina powder has been widely used as a cooling agent or abrasive for manufacturing various ceramic products. In recent years, the use of ceramic materials in electronic devices such as integrated circuit boards has expanded, and the quality required for alumina has become significantly stricter.

従来、セラミックス原料用アルミナは所謂バイヤー法に
よる水酸化アルミニウムを焼成して造られたアルミナを
可及的に微粉砕したものが主として使用されていた。し
かしながら、従来のバイヤー法水酸化アルミニウムをそ
のまま焼成して得られたアルミナは、数pm〜十数μm
の一次粒子が強固に凝集した計数μm〜百数トμmの二
次粒子であって、この凝集粒子を粉砕するには極めて長
時間を要するのみならず、粉砕によって得られたアルミ
ナの粒度分布も広範囲にわたり、セラミックス原料とし
での微細な品質をもったアルミナ粉末を得ることが困難
であった。
Conventionally, as alumina for ceramic raw materials, alumina produced by firing aluminum hydroxide by the so-called Bayer process and pulverized as finely as possible has been mainly used. However, the alumina obtained by directly firing aluminum hydroxide using the conventional Bayer process has a particle size of several pm to several tens of μm.
Primary particles are strongly aggregated secondary particles with a count of several μm to over 100 μm, and not only does it take an extremely long time to crush these agglomerated particles, but the particle size distribution of the alumina obtained by crushing is It has been difficult to obtain alumina powder of fine quality suitable for use as a raw material for ceramics over a wide range of areas.

〈発明が解決しようとする!I!!> 本発明は、バイヤー法水酸化アルミニウムを涼料として
粉砕によって容易に微細にして均整な粒度をもったアル
ミナ粉末を得ることのできる焼成アルミナの製造方法を
提供したものである−0 く課題を解決するための手段〉 本発明者らは、バイヤー法水酸化アルミニウムを原料と
して粉砕により容易に微細にして均整な粒度をもったア
ルミナ粉末とすることのできる焼成アルミナを得べく種
々研究を虫ねた結果、 IQ料としでのバイヤー法水酸
化アルミニウムを1分間当たり20℃以下というぎわめ
て緩やかな昇温速度をもって加熱することによって熱分
解し所謂γ−アルミナとした後 さらにこれを高温焼成
してα−アルミナ90%以トからなる中間焼成アルミナ
を造り、この中間焼成アルミナを鉱化剤の存在の下に焼
成するという一連の操作によって粉砕によって 容易に
粒径1−3μm程度の微細にして球状の粒径の整ったア
ルミナ粉末を得ることができるという新規な事実を見い
だした。
<Invention tries to solve! I! ! > The present invention provides a method for producing calcined alumina that can easily be made into fine alumina powder with a uniform particle size by pulverization using Bayer process aluminum hydroxide as a coolant. Means for Solving> The present inventors have conducted various studies in order to obtain calcined alumina that can be easily made into fine alumina powder with a uniform particle size by pulverization using Bayer process aluminum hydroxide as a raw material. As a result, Bayer process aluminum hydroxide, used as an IQ material, was thermally decomposed into so-called γ-alumina by heating it at a very slow temperature increase rate of 20°C per minute or less, and then this was further calcined at a high temperature. Through a series of operations such as producing intermediate calcined alumina consisting of 90% or more of α-alumina, and then calcining this intermediate calcined alumina in the presence of a mineralizing agent, it is easily reduced to a fine particle size of about 1-3 μm by pulverization. We have discovered a new fact that it is possible to obtain alumina powder that is spherical and has a uniform particle size.

本発明は、上記の知見に基づいてなされたものである。The present invention has been made based on the above findings.

すなわへ1本発明は、バイヤー法水酸化アルミニウムを
1分間当たり20℃以下の昇温速度で加熱して熱分解し
た後 これを焼成してα−アルミナ90%以上からなる
中間焼成アルミナとし、しかる後この中間焼成アルミナ
を鉱化剤の存在下で焼成する粉砕の容易なアルミナの製
造法である。
In other words, 1. The present invention heats Bayer process aluminum hydroxide at a temperature increase rate of 20° C. or less per minute to thermally decompose it, and then calcinates it to produce intermediate calcined alumina consisting of 90% or more of α-alumina, Thereafter, this intermediate calcined alumina is calcined in the presence of a mineralizing agent to produce alumina, which is easy to crush.

以下1本発明について史に具体的に説明する。The present invention will be explained in detail below.

本発明において使用する原料−アルミナは、バイヤー法
によって1iJif+された水酸化アルミニウムである
。従来 バイヤー法水酸化アルミニウムを1例えばセラ
ミック材の原料として使用する場合、通常、多くの場合
ロータリーキルンのごとき連続焼成炉を使用するかまた
は流動層式焼成装置などを使用して焼成してαアルミナ
の形態として使用されている。この焼成は通常1000
℃以上の温度で行なわれるのであるが このようにして
得られたアルミナは、tlum−I・数/j Illの
一次粒子が強固に凝集してできた径1数μm−白数μm
という粗大な粒子であるので、セラミックス原料として
使用するためには、これを粉砕してから使用しなければ
ならなかった。しかしながら、上記従来の焼成アルミナ
は粉砕性がきわめて悪く、長時間の粉砕によってもなお
十分な粉砕を行なうことが難しいのみならず、得られた
アルミナ粉末の粒径も数μmmヒトものが大部分であり
、しかも整った粒状の粉末を得ることが難しかった。
The raw material-alumina used in the present invention is aluminum hydroxide subjected to 1iJif+ by the Bayer method. Conventional Bayer Process When aluminum hydroxide is used as a raw material for ceramic materials, it is usually fired in a continuous firing furnace such as a rotary kiln or in a fluidized bed firing equipment to produce α-alumina. used as a form. This firing is usually 1000
The alumina obtained in this way is formed by the strong agglomeration of primary particles of tlum-I number/j Ill, and has a diameter of several μm - several μm in diameter.
Because they are coarse particles, they had to be crushed before they could be used as ceramic raw materials. However, the conventional calcined alumina described above has extremely poor pulverization properties, and not only is it difficult to achieve sufficient pulverization even after long-term pulverization, but the particle size of the obtained alumina powder is mostly human, with a particle size of several μmm. Moreover, it was difficult to obtain a well-defined granular powder.

バイヤー法水酸化アルミニウムは3分子の結晶水をもっ
た所謂ギブサイト系のアルミナであるが、これを加熱し
た場合、500〜600″C程度の温度において熱分解
による脱水が完了し、所謂γ−アルミナとなり史に10
00℃以上の温度に保持することによって縁結焼成物と
しでのα−アルミナに変化する。
Bayer process aluminum hydroxide is a so-called gibbsite-based alumina that has three molecules of water of crystallization, but when it is heated, dehydration through thermal decomposition is completed at a temperature of about 500 to 600"C, resulting in so-called γ-alumina. Next history 10
By maintaining the temperature at 00°C or higher, it changes into α-alumina as an edge-sintered product.

本発明の方法においては、上記のようなバイヤー法水酸
化アルミニウムを焼成してα−アルミナとするに際して
、少なくとも、上記したように水酸化アルミニウムが熱
分解して結晶水を放出してγ−アルミナとなるまでの昇
温速度を毎分20℃以下1g!ましくは16℃以下とい
うきわめて緩やかな速度で行なう、この焼成は、ロータ
リーキルン、トンネルキルン、シャトルキルンなどいず
れによってもよい。
In the method of the present invention, when the Bayer process aluminum hydroxide as described above is calcined to produce α-alumina, at least as described above, the aluminum hydroxide is thermally decomposed and releases crystal water to produce γ-alumina. The temperature increase rate is 20℃ or less 1g per minute! This calcination, which is preferably carried out at a very slow speed of 16° C. or lower, may be carried out in any rotary kiln, tunnel kiln, shuttle kiln, or the like.

熱分解を終えてγ化されたアルミナは5次いで、α−ア
ルミナ90%以上となるように中間焼成されるのである
が この焼成における昇温速度については特に限定され
ることはない、この焼成によって得られた中間焼成アル
ミナのα化度が90%より低いと 次工程である鉱化剤
との焼成に際して粉砕され難い粗大な板状粒子の生長が
起こりg?、となるのてで避けるべきである。より望ま
しくはα−アルミナ95%以上になるように焼成するこ
とである。
The alumina that has been γ-oxidized after thermal decomposition is then subjected to intermediate calcination so that it becomes 90% or more α-alumina, but there are no particular restrictions on the rate of temperature increase in this calcination. If the degree of gelatinization of the obtained intermediately fired alumina is lower than 90%, coarse plate-like particles that are difficult to crush during the next step of firing with a mineralizer will grow. , so it should be avoided. More preferably, the firing should be performed so that the α-alumina content becomes 95% or more.

このようにして得られた中間焼成アルミナは、鉱化剤の
存在の下に0OO−1500℃に焼成する。鉱化剤とし
ては弗化水素酸、弗化アルミニウム、弗化ナトノウム、
氷晶石のような弗素化合物が好適に使用し得る。また、
塩素ガス、塩化水素酸のような塩化物を使用してもよい
、この焼成によって中間焼成アルミナはきわめて粉砕さ
れ易い結晶状態に変わる。焼成はロータリーキルン、ト
ンネルキルン、シャトルキルンなどいずれをも使用し得
る。
The intermediate calcined alumina thus obtained is calcined at 000-1500°C in the presence of a mineralizer. Mineralizing agents include hydrofluoric acid, aluminum fluoride, sodium fluoride,
Fluorine compounds such as cryolite can be suitably used. Also,
Chloride gas or chlorides such as hydrochloric acid may be used; this calcination converts the intermediate calcined alumina to a crystalline state that is highly susceptible to crushing. For firing, any rotary kiln, tunnel kiln, shuttle kiln, etc. can be used.

アルミナに対する鉱化剤の使用割合は、硬化剤として例
えば弗化水素酸を使用する場合にはα化したアルミナ近
傍の弗化水素濃度が10容門%程度であれば600″C
程度の加熱によって望ましい粒径の焼成物を得ることが
できる、弗化水素濃度が2.5容閂%程度であるとI′
J00℃程度の焼成では結晶の成長速度がやや遅いので
800 ”C程度に焼成することが望ましく また0、
5容疑%では1000℃以トの温度に焼成することが望
ましい、鉱化剤として例えば弗化アルミニウムをアルミ
ナに添加して焼成する場合には、焼成炉内での弗素化合
物の分解、rli発などによる系外への飛散を考膚して
添加鷲をやや多くする必要があるが、通常 αアルミナ
に対して0.05%以トの弗素化合物を添加すれば1分
である。
For example, when using hydrofluoric acid as a hardening agent, the ratio of mineralizing agent to alumina is 60"C if the concentration of hydrogen fluoride near the pregelatinized alumina is about 10% by volume.
When the hydrogen fluoride concentration is about 2.5% by volume, a fired product with a desired particle size can be obtained by heating to a certain degree.
Since the crystal growth rate is somewhat slow when fired at about 00℃, it is desirable to bake at about 800"C.
5%, it is desirable to calcinate at a temperature of 1000°C or higher. When calcining with aluminum fluoride added as a mineralizing agent to alumina, decomposition of fluorine compounds in the calcining furnace, rli emission, etc. Although it is necessary to increase the amount of fluorine added slightly in consideration of scattering outside the system, it usually takes 1 minute to add 0.05% or more of the fluorine compound to α-alumina.

F記のように焼成された中間焼成アルミナは、鉱化剤の
存在によってきわめて粉砕され功い形状となり例えばボ
ールミルのような粉砕装置を使用して容易に径1−3μ
m程度の粒状のアルミナ粉末を得ることができる。
The intermediate calcined alumina calcined as shown in F is highly pulverized due to the presence of the mineralizing agent and has a good shape, so that it can be easily reduced to a diameter of 1-3 μm using a crushing device such as a ball mill.
It is possible to obtain granular alumina powder with a size of about 100 m.

ト述のように1本発明の方法は、バイヤー法7km化ア
ルミニウムを焼成してα−アルミナ化するに際して少な
くとも、水酸化アルミニウムが熱分解して結晶水を放出
して所謂γ−アルミナとなるまでの昇温速度を毎分20
゛C以下というきわめて緩やかなト井速度をもって加熱
した後、史に温度を1婬させて少なくともその90%以
トがα化する程度にまで焼成して中間焼成アルミナとし
、しかる後これを鉱化剤の存在の下に加熱焼成する粉砕
の容易なアルミナの製造法であって、本発明の方法で焼
成されたアルミナはきわめて粉砕され易い性質を有し 
粉砕により容易にセラミックス原料に通した粒径l−3
μm程度の粒状のアルミナ粉末を得ることができる。
As mentioned above, in the method of the present invention, when baking Bayer process 7km aluminum to convert it into α-alumina, at least until aluminum hydroxide thermally decomposes and releases crystal water to become so-called γ-alumina. heating rate of 20 per minute
After heating at a very slow well speed of less than ゛C, the temperature is lowered to 1000 yen and calcined to the extent that at least 90% of the alumina is pregelatinized to produce intermediate calcined alumina, which is then mineralized. A method for producing alumina that is easy to crush by heating and calcining in the presence of a chemical agent, and the alumina calcined by the method of the present invention has the property of being extremely easy to crush.
Particle size l-3 that can be easily passed through ceramic raw materials by crushing
Granular alumina powder of about μm size can be obtained.

く作 用〉 本発明の方法によった場合、何故に粉砕容易な焼成アル
ミナが得られるのかその理由については十分に解明され
ていないが、本発明の方法によってきわめて緩やかな昇
温速度で加熱分解されたバイヤー法水酸化アルミニウム
はある程度大きなミクロボアをもった遷移アルミナとな
り、これをα化すと粗な構造のまゆ形鎖状のα−アルミ
ナが得られる。これを鉱化剤の存在の下に加熱すると、
気相を介した物質移動によって次粒子間の連結部分が切
れ 独−f性の高い比較的粒径の揃った小球状粒子の集
合体になり、そのために粉砕性が向トするものと思われ
る。
Effect> The reason why calcined alumina that is easy to crush can be obtained by the method of the present invention is not fully elucidated, but the method of the present invention allows for thermal decomposition at an extremely slow temperature increase rate. The Bayer process aluminum hydroxide becomes transitional alumina with somewhat large micropores, and when this is alpha-ized, α-alumina with a coarse structure and cocoon-shaped chains is obtained. When this is heated in the presence of mineralizing agents,
It is thought that mass transfer through the gas phase breaks the connections between the particles, forming an aggregate of small spherical particles with relatively uniform particle size and high uni-f property, which improves the crushability. .

なお 本発明の方法によるときは、中間焼成アルミナの
鉱化剤との焼成過程において、J京料の水酸化アルミニ
ウム中に不純分として含まれているナトリウム分が揮化
し除去される傾向があるために ナトリウム分の含有の
少ない製品アルミナを得ることができるという利点を併
−)せて有する。
In addition, when using the method of the present invention, the sodium content contained as an impurity in the aluminum hydroxide of J-Kyoryo tends to be volatilized and removed during the firing process of intermediate fired alumina with the mineralizing agent. It also has the advantage of being able to obtain product alumina with low sodium content.

〈実施例〉 次ぎに 本発明の実施例を掲げる。<Example> Next, examples of the present invention are listed.

実施例1 バイヤー法によって得ら−また水酸化アルミニウムを毎
分3.3℃の昇温速度で1300″Cまで加熱し熱分解
した。引き城き1300℃まで昇温しα化焼成して中間
焼成アルミナとした。そのα化度は100%であった。
Example 1 Aluminum hydroxide obtained by the Bayer method was heated to 1300"C at a heating rate of 3.3°C per minute to pyrolyze it. The temperature was then raised to 1300°C and pregelatinized to give an intermediate Calcined alumina was used.The degree of gelatinization was 100%.

この中間焼成アルミナ100部に対して弗化アルミニウ
ムを弗素8!尊で0.08部を添加し 1250℃X1
時間燻成した。
8 parts of aluminum fluoride per 100 parts of this intermediate calcined alumina! Add 0.08 part at 1250℃ x 1
Time smoldered.

実施例2゜ 実施V!41で用いた水酸化アルミニウムの中間焼成温
度を1180℃とした以外は同様の加熱処理を行なった
。得られた中間焼成アルミナのα化度は90%であつた
。これを管状炉を用いて、弗化水素2.5vo1%の気
Mi中で1100℃X1時間焼成した。なお、弗化水素
ガスは45℃に加熱した38vt%の弗化水素水W4液
中に空気を通過させて発生させた。
Example 2゜Execution V! The same heat treatment as in Example 41 was performed except that the intermediate firing temperature of aluminum hydroxide used in Example 41 was 1180°C. The degree of gelatinization of the obtained intermediate fired alumina was 90%. This was fired at 1100°C for 1 hour in a 2.5vol% hydrogen fluoride atmosphere using a tubular furnace. Note that the hydrogen fluoride gas was generated by passing air through a 38 vt % hydrogen fluoride water W4 solution heated to 45°C.

実施例3゜ 実施例1と同様にして得たα化度100%の中間焼成ア
ルミナを、実施例2同様に管状炉で弗化水素10vo1
%の気流中で600″CXIUf間焼成した。弗化水素
ガスは弗化水素水溶液の加熱温度を75℃とした以外は
実施例2と同様の方法で発生させた。
Example 3 Intermediate calcined alumina with a degree of gelatinization of 100% obtained in the same manner as in Example 1 was heated in a tubular furnace in the same manner as in Example 2 with 10 vol of hydrogen fluoride.
% air flow for 600''CXIUf.Hydrogen fluoride gas was generated in the same manner as in Example 2 except that the heating temperature of the hydrogen fluoride aqueous solution was 75°C.

実施例4゜ 実施例1と同様にして得たα化度100%の中間焼成ア
ルミナを、800℃X0.5時間加熱焼成した以外は実
施例2と同様の方法で管状炉焼成した。
Example 4 Intermediately fired alumina with a degree of gelatinization of 100% obtained in the same manner as in Example 1 was fired in a tubular furnace in the same manner as in Example 2, except that it was fired at 800° C. for 0.5 hours.

実施例5゜ 実施例1と同様にして得たα化度100%の中間焼成ア
ルミナを、実施例2と同様に管状炉焼成した。弗化水素
ガスは弗化水素水溶液の保持温度を17℃とした以外は
実施例2と同様の方法で発生させた。
Example 5 Intermediate calcined alumina with a degree of gelatinization of 100% obtained in the same manner as in Example 1 was calcined in a tubular furnace in the same manner as in Example 2. Hydrogen fluoride gas was generated in the same manner as in Example 2, except that the holding temperature of the hydrogen fluoride aqueous solution was 17°C.

比較例1゜ 熱分解を気流炉で、1000℃の高温ガスに接触させる
ことにより急速に行なった以外は、実施例1と同様の方
法で行なった。
Comparative Example 1 The same method as in Example 1 was carried out except that the thermal decomposition was rapidly carried out in an air flow furnace by contacting with high temperature gas at 1000°C.

比較例2゜ 水酸化アルミニウムを毎分3.3℃の昇温速度で600
″C加熱し熱分解し、この焼成物を引き続き800″C
程度にまで加熱した後(a化度O%)、実施例1と同様
に、弗化アルミニウムの存在下に1250″CX1時間
焼成した。
Comparative Example 2゜Aluminum hydroxide was heated to 600℃ at a heating rate of 3.3℃ per minute.
The fired product was heated to 800°C for thermal decomposition.
After heating to a certain degree (degree of a-oxidation: 0%), it was fired in the same manner as in Example 1 at 1250"CX for 1 hour in the presence of aluminum fluoride.

比較例3゜ 比較例1同様の方法で熱分解した後、900″C程度の
温度で短時間焼成した後(α化度O%)、実施例2と同
様に管状炉を用いて弗化水素気流中で1100℃X1時
間焼成した。
Comparative Example 3 After thermal decomposition in the same manner as Comparative Example 1, and then calcined for a short time at a temperature of about 900"C (degree of gelatinization 0%), hydrogen fluoride was dissolved using a tube furnace in the same manner as in Example 2. It was fired at 1100° C. for 1 hour in an air stream.

比較例4゜ バイヤー法水酸化アルミニウムを毎分36℃の昇温速度
で600″Cまで昇温加熱し熱分解した後、引き続き1
300℃まで#温しα化しくα化度100%)得られた
中間焼成アルミナを実施例2と同様にして弗化水素雰囲
気中で焼成した。
Comparative Example 4 Bayer process Aluminum hydroxide was thermally decomposed by heating to 600''C at a rate of 36℃ per minute, and then 1
The intermediate calcined alumina obtained (heated to 300° C. and gelatinized to a degree of gelatinization of 100%) was calcined in the same manner as in Example 2 in a hydrogen fluoride atmosphere.

比較例5 熱分解後の焼成におけるα化度を50%とした以外は 
比較例4と同様の方法で行なった。
Comparative Example 5 Except that the degree of gelatinization in calcination after pyrolysis was 50%.
The same method as in Comparative Example 4 was used.

比較例6゜ 熱分解後の焼成におけるα化度を75%とした以外は比
較例4と同様の方法で行なった。
Comparative Example 6 The same method as Comparative Example 4 was carried out except that the degree of gelatinization in the calcination after pyrolysis was 75%.

比較例7゜ 管状炉焼成を500″CX0.5時間とした以外は実施
例4と同様の方法で行なった。
Comparative Example 7 The same method as in Example 4 was carried out except that the firing time was 500"C for 0.5 hours in a tube furnace.

比較例8゜ 管状炉焼成での気流の弗化水素濃度を0.3vo1%と
じた以外は 実施例4と同様の方法で行なった。弗化水
素ガスは弗化水素水溶液の保持温度を14℃とした以外
は、実施例2と同様の方法で発生させた。
Comparative Example 8 The same method as in Example 4 was carried out except that the hydrogen fluoride concentration in the air flow during firing in an 8° tube furnace was adjusted to 0.3 vol%. Hydrogen fluoride gas was generated in the same manner as in Example 2, except that the holding temperature of the hydrogen fluoride aqueous solution was 14°C.

実施例1−5および比較例1−8で得られた傾成アルミ
ナの粉砕性を第1表に示す。
Table 1 shows the crushability of the graded alumina obtained in Example 1-5 and Comparative Example 1-8.

なお 表中に示す中間焼成アルミナのα化度はXM回新
法(理学電機■製ガイガーフレックスRA D −l1
lA CuKa線)で(+04)、 (+13)、 (
+10)の回折線から求めた。
The degree of gelatinization of the intermediate fired alumina shown in the table was determined by the XM regeneration method (Geigerflex RA D-11 manufactured by Rigaku Denki).
lA CuKa line) (+04), (+13), (
+10) was determined from the diffraction line.

また粉砕性はを下記の粉砕機で湿式粉砕し、その粒度分
布をセディグラフ法で測定し、平均粒径2μmになるま
での粉砕所要時間で表した。
The pulverizability was measured by wet pulverization using the following pulverizer, and its particle size distribution was measured by the Sedigraph method, and expressed as the time required for pulverization until the average particle size reached 2 μm.

卓上型遊星ボールミル(フリッチュ・ジャパン■製P−
7) 粉砕容器  12m1   燗結アルミナ製ボール  
 5 m mφ   アルミナ製ボールM   12g 試料縁   2.5g 水分閂   ビロリン酸ソーダ0.0005 sol/
l水溶液 2.5g 容器470 rpm、底&1900rp−回転数 ll 〈発明の効果〉 1−記のように 本発明の方法によって得られた焼成ア
ルミナは 粉砕がきわめて容易であって短時間の粉砕に
よって径1−371程度の極微細な均整な球状のアルミ
ナ粉末を得ることができる。
Tabletop planetary ball mill (P- manufactured by Fritsch Japan)
7) Grinding container 12m1 sintered alumina bowl
5 mm mφ Alumina ball M 12g Sample rim 2.5g Water bar Sodium birophosphate 0.0005 sol/
l Aqueous solution 2.5 g Container 470 rpm, bottom & 1900 rpm - rotation speed l <Effects of the invention> As stated in 1-1, the calcined alumina obtained by the method of the present invention is extremely easy to crush, and can be crushed in diameter by short-time crushing. It is possible to obtain ultrafine, uniform, spherical alumina powder with a particle size of about 1-371.

【図面の簡単な説明】[Brief explanation of drawings]

施例1によって得られたアルミナ、第2〜5図はそれぞ
れ比較例1.比較例2 比較例5および比較例7によっ
て得られたアルミナを示す。
The alumina obtained in Example 1 and FIGS. 2 to 5 are those of Comparative Example 1. Comparative Example 2 Alumina obtained in Comparative Example 5 and Comparative Example 7 is shown.

Claims (2)

【特許請求の範囲】[Claims] (1)バイヤー法水酸化アルミニウムを1分間当り20
℃以下の昇温速度で加熱して熱分解した後、これを焼成
してα−アルミナ90%以上からなる中間焼成アルミナ
とし、しかる後この中間焼成アルミナを鉱化剤の存在下
で焼成することを特徴とする粉砕の容易なアルミナの製
造法。
(1) Bayer method Aluminum hydroxide 20% per minute
After thermal decomposition by heating at a temperature increase rate of ℃ or less, this is calcined to produce an intermediate calcined alumina consisting of 90% or more of α-alumina, and then this intermediate calcined alumina is calcined in the presence of a mineralizing agent. A method for producing alumina that is easy to crush.
(2)鉱化剤として弗素化合物を用いる請求項1記載の
粉砕の容易なアルミナの製造法。(3)中間焼成アルミ
ナの鉱化剤の存在下での焼成を600〜1500℃の温
度で行なうことを特徴とする請求項1または2記載の粉
砕の容易なアルミナの製造法。
(2) The method for producing alumina that is easy to crush according to claim 1, wherein a fluorine compound is used as the mineralizing agent. (3) The method for producing easily pulverized alumina according to claim 1 or 2, characterized in that the intermediate calcined alumina is calcined in the presence of a mineralizer at a temperature of 600 to 1500°C.
JP2026169A 1990-02-07 1990-02-07 A method for producing alumina that is easy to grind. Expired - Lifetime JP2791596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2026169A JP2791596B2 (en) 1990-02-07 1990-02-07 A method for producing alumina that is easy to grind.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2026169A JP2791596B2 (en) 1990-02-07 1990-02-07 A method for producing alumina that is easy to grind.

Publications (2)

Publication Number Publication Date
JPH03232719A true JPH03232719A (en) 1991-10-16
JP2791596B2 JP2791596B2 (en) 1998-08-27

Family

ID=12186045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2026169A Expired - Lifetime JP2791596B2 (en) 1990-02-07 1990-02-07 A method for producing alumina that is easy to grind.

Country Status (1)

Country Link
JP (1) JP2791596B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009993A (en) * 2010-12-15 2011-04-13 中国铝业股份有限公司 Method for preparing submicron aluminium oxide by two-stage roasting method
CN106745135A (en) * 2016-12-23 2017-05-31 袁伟昊 A kind of sapphire level high purity aluminium oxide block, polycrystalline ingot preparation method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009993A (en) * 2010-12-15 2011-04-13 中国铝业股份有限公司 Method for preparing submicron aluminium oxide by two-stage roasting method
CN106745135A (en) * 2016-12-23 2017-05-31 袁伟昊 A kind of sapphire level high purity aluminium oxide block, polycrystalline ingot preparation method and device

Also Published As

Publication number Publication date
JP2791596B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
EP0384603B1 (en) Process for the production of magnesium oxide
WO2008035656A1 (en) α-ALUMINA POWDER
JP2010150090A (en) alpha-ALUMINA POWDER
JPH013008A (en) Method for producing easily crushable alumina
JP2011126773A (en) alpha-ALUMINA FOR PRODUCING SINGLE CRYSTAL SAPPHIRE
JPH06171931A (en) Preparation of alpha.- alumina powder
US3227521A (en) Process for producing substantially kappa-phase alumina
JP2839725B2 (en) Method for producing high-purity crystalline silica
JP3875952B2 (en) Low soda alumina manufacturing apparatus and manufacturing method
JPH08290914A (en) Alpha-alumina and its production
JPH03232719A (en) Production of readily grindable alumina
JP3389642B2 (en) Method for producing low soda alumina
JPH06263437A (en) Production of platy boehmite particles
US4774068A (en) Method for production of mullite of high purity
JPH03141115A (en) Production of fine yttrium oxide powder
EP0536381A4 (en)
JP3170016B2 (en) Method for producing high-purity crystalline silica
JP3436024B2 (en) Continuous production method of alumina
JPH07101723A (en) Production of alpha alumina powder
JPH06329411A (en) Production of flaky transition alumina
JPH04154613A (en) Synthetic silica powder having high purity
JPS596812B2 (en) Pseudo-boehmite type alumina hydrate and its manufacturing method
JPH04260612A (en) Production of fine alpha-alumina powder
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPS5918106A (en) Preparation of silicon aluminum oxynitride type powdery raw material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12