JPH03232225A - Semiconductor manufacturing device - Google Patents

Semiconductor manufacturing device

Info

Publication number
JPH03232225A
JPH03232225A JP2931490A JP2931490A JPH03232225A JP H03232225 A JPH03232225 A JP H03232225A JP 2931490 A JP2931490 A JP 2931490A JP 2931490 A JP2931490 A JP 2931490A JP H03232225 A JPH03232225 A JP H03232225A
Authority
JP
Japan
Prior art keywords
magnet
plasma
wafer
semiconductor manufacturing
rack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2931490A
Other languages
Japanese (ja)
Inventor
Masato Fujinaga
藤永 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2931490A priority Critical patent/JPH03232225A/en
Publication of JPH03232225A publication Critical patent/JPH03232225A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable multiple wafers to be processed evenly by automatically rotating and shifting a magnet by a method wherein a magnet driving mechanism which moves the magnet, for increasing the density of plasma, in parallel with a wafer surface over the whole wafer surface is installed. CONSTITUTION:When a motor 5 is driven, the gears 4c, 4a, 4b are successively driven so that a magnet may be shifted, while rotating, along a rack 2. At this time, since the plasma density in a chamber 6 is heightened only in a magnetized part, any wafer on the lower side can be evenly etched away, etc., by the movement of the magnet 1. Furthermore, when the gear 4b reach a stopper 3, the motor 5 is reversely driven, that is, the magnet 1 is to be reversely shifted along the rack 2. By repeating said procedures, any wafer can be automatically processed in even distribution.

Description

【発明の詳細な説明】 J産業上の利用分野〕 この発明は半導体製造装置に関し、特にプラズマを用い
てウェハを加工する装置に関するものである。
[Detailed Description of the Invention] Field of Industrial Application] The present invention relates to semiconductor manufacturing equipment, and particularly to equipment for processing wafers using plasma.

J従来の技術〕 第6図に従来の半導体製造装置の概略構成を示す。この
装置6では陰極2Iにウェハ20を配置し、13.56
MHzの高周波電力(IW/cm”を印加する。陽極2
2の外面に閉磁気回路を構成したSm−Co(サマリウ
ム−コバルト)磁石1を配置しており、イオンシースの
電界と陽極側からの磁界とで高密度な放電を起こす、こ
こで低い圧力でも放電が可能となるのは磁石1のNSの
ギャップが閉ループ状であり、これに沿って電子がドリ
フト運動するマグネトロン放電となり、イオン化が効率
よく行われるためである。また、磁石1は偏心回転させ
ウェハ20の均一なプラズマエツチングを行う。上記画
電極間隔は32mm、その時のウェハ20上の水平磁界
成分は約100 Gaussである。
J. Prior Art FIG. 6 shows a schematic configuration of a conventional semiconductor manufacturing apparatus. In this device 6, the wafer 20 is placed on the cathode 2I, and 13.56
Apply MHz high frequency power (IW/cm”. Anode 2
A Sm-Co (samarium-cobalt) magnet 1 that forms a closed magnetic circuit is placed on the outer surface of the magnet 2, and the electric field of the ion sheath and the magnetic field from the anode side cause a high-density discharge, even at low pressure. The reason why the discharge is possible is that the NS gap of the magnet 1 has a closed loop shape, and a magnetron discharge occurs along which electrons drift, and ionization is performed efficiently. Further, the magnet 1 is eccentrically rotated to perform uniform plasma etching of the wafer 20. The picture electrode spacing is 32 mm, and the horizontal magnetic field component on the wafer 20 at that time is about 100 Gauss.

上記プラズマエツチングの概念図を第7図に示す。A conceptual diagram of the above plasma etching is shown in FIG.

■ イオンの散乱を減じ、イオンをまっすぐにウェハ2
0へ引き込むため、シース幅より長い平均自由行程の圧
力領域までガス圧力を下げ、■ 陽極側から磁界を与え
ウェハ20から離れた位置でマグネトロン放電を起こし
、 ) これにより低圧力下でも高密度プラズマを得る。
■ Reduce ion scattering and direct ions to wafer 2.
0, the gas pressure is lowered to a pressure region with a mean free path longer than the sheath width, and a magnetic field is applied from the anode side to cause magnetron discharge at a position away from the wafer 20. ) This creates high-density plasma even under low pressure. get.

しかし、多数のウェハを一度に処理する場合、単に磁石
を回転させるだけでは磁石の端で磁力が弱いことや磁力
線の向きが電界Eと直交しないこと等のために均一なプ
ラズマが得られないという問題点があった。
However, when processing a large number of wafers at once, it is difficult to obtain uniform plasma simply by rotating the magnet because the magnetic force is weak at the edge of the magnet and the direction of the magnetic field lines is not perpendicular to the electric field E. There was a problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の半導体製造装置では、−度に処理する
枚数が少ないために、量産する場合、多数回処理するこ
とが必要であり、また−度に多くのウェハを処理すると
、プラズマの均一性が悪いため、すべてのウェハに対し
同じ処理にならないという問題点があった。
However, because conventional semiconductor manufacturing equipment processes only a small number of wafers at a time, it is necessary to perform the process multiple times for mass production, and when processing many wafers at a time, plasma uniformity deteriorates. Therefore, there was a problem in that all wafers were not processed in the same way.

この発明は上記のような問題点を解消するためになされ
たもので、多数のウェハを一度にしかも均一に処理する
ことができ、これにより生産効率が高く、大量生産が可
能な半導体製造装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to process a large number of wafers at once and uniformly, thereby creating a semiconductor manufacturing device that has high production efficiency and is capable of mass production. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体製造装置は、プラズマを高密度化
する磁石に加え、該磁石をウェハ配置面に対し平行に、
かつ該面内全体に渡って移動させる磁石駆動機構を設け
たものである。
The semiconductor manufacturing apparatus according to the present invention includes a magnet that densifies plasma, and a magnet that is parallel to the wafer placement surface.
In addition, a magnet drive mechanism is provided to move the magnet over the entire surface.

〔作用〕[Effect]

この発明においては、プラズマを高密度化する磁石をウ
ェハ面に対し平行に、かつ咳面内全体に渡って移動させ
るようにしたから、高密度のプラズマ部位がとのウェハ
上にも行きわたるようになり、これにより一度にすべて
のウェハに対し、均一な処理を行うことが可能となる。
In this invention, the magnet that densifies the plasma is moved parallel to the wafer surface and across the entire surface of the wafer, so that the high-density plasma region is spread over the other wafer. This makes it possible to perform uniform processing on all wafers at once.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置におけ
る磁石の駆動機構を示している。図において、6はプラ
ズマを立てるチェンバ、lはチェンバ6の上に1mm程
度の間をおいて位置する磁石である。これは電磁石でも
よい。また4a、4bはシャフト8を介して上記磁石1
に固定した第1、第2の歯車、2は該第2の歯車4bと
かみ合うラック(RACK) 、3は該歯車4bのスト
ッパである。また5はモータで、その回転軸5aには駆
動歯車4Cが取り付けられており、該歯車4Cは上記第
1の歯車4aとかみ合っている。これらの部材により磁
石の駆動機構が構成されている。
FIG. 1 shows a magnet drive mechanism in a semiconductor manufacturing apparatus according to an embodiment of the present invention. In the figure, 6 is a chamber for generating plasma, and l is a magnet located above the chamber 6 with a distance of about 1 mm. This may be an electromagnet. Further, 4a and 4b are connected to the magnet 1 via the shaft 8.
2 is a rack (RACK) that meshes with the second gear 4b, and 3 is a stopper for the gear 4b. Further, 5 is a motor, and a drive gear 4C is attached to the rotating shaft 5a of the motor, and the gear 4C meshes with the first gear 4a. These members constitute a magnet drive mechanism.

第2図は上記駆動機構の詳細を示す拡大図で、ここで、
7は固定支であり、該固定支7により上記モータ5とシ
ャフト8とを支持している。
FIG. 2 is an enlarged view showing details of the drive mechanism, where:
A fixed support 7 supports the motor 5 and the shaft 8.

次に作用効果について説明する。Next, the effects will be explained.

上記モータ5が回転すると、歯車4c、4a。When the motor 5 rotates, the gears 4c and 4a.

4bと順次回転力が伝わり、第4図に示すように、上記
磁石1は回転しながらラック2に沿って移動する。第3
図は上記プヴズマ装置6上の磁石走査面10で磁石1が
移動する経路11を示している。
4b, the rotational force is sequentially transmitted, and as shown in FIG. 4, the magnet 1 moves along the rack 2 while rotating. Third
The figure shows the path 11 along which the magnet 1 travels in the magnet scanning plane 10 on the Puvsma device 6.

この時チェンバ6内のプラズマ密度は磁力のある所だけ
高くなるため、上記磁石1の動きにより下側のどのウェ
ハに対しても均一にエツチング等が行われる。またスト
ッパ3まで歯車4bがくると、そこでモータ5が逆回転
するようになり、ランク2に沿って逆に動くこととなる
。これを繰り返して、自動的にどのウェハに対しても均
一な処理の分布を得ることができる。
At this time, since the plasma density within the chamber 6 increases only in areas where there is magnetic force, etching, etc., is uniformly performed on all wafers below due to the movement of the magnet 1. Further, when the gear 4b reaches the stopper 3, the motor 5 starts to rotate in the opposite direction, and moves in the opposite direction along the rank 2. By repeating this process, uniform processing distribution can be automatically obtained for any wafer.

このように本実施例では、プラズマを高密度化する磁石
1をウェハ配置面に対し平行に、かつ該面内全体に渡っ
て移動させるようにしたので、高密度のプラズマ部位が
どのウェハ上にも行きわたるようになり、これにより一
度にすべてのウェハに対し、均一な処理を行うことが可
能となる。
In this way, in this embodiment, the magnet 1 that increases the density of plasma is moved parallel to the wafer placement surface and over the entire surface, so that it is possible to determine which wafer the high-density plasma region is on. This makes it possible to uniformly process all wafers at once.

なお、上記実施例では、磁石の駆動機構に歯車とラック
を用いたが、歯車とラックとは摩擦力が大きいことから
用いたのであって、これらは、例えば歯車をゴムタイヤ
にし、ラックをなめらかな面に代えてもよい。
In the above embodiment, a gear and a rack were used for the magnet drive mechanism, but the gear and rack were used because they have a large frictional force. You can also replace it with a face.

また、磁石の移動経路は第3図に示すものに限らず、第
5図のようにジグザグに移動するものでもよい。
Further, the movement path of the magnet is not limited to the one shown in FIG. 3, but may be one that moves in a zigzag pattern as shown in FIG.

さらに、ウェハの処理はエツチング処理に限るものでは
なく、デポジション、ドーピングなどの処理でもよく、
本発明の磁石の駆動機構はプラズマを用いてウェハの加
工処理を行う装置にはすべて通用できる。
Furthermore, wafer processing is not limited to etching processing, but may also include deposition, doping, etc.
The magnet drive mechanism of the present invention is applicable to all apparatuses that process wafers using plasma.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体製造装置によれば
、プラズマを高密度化する磁石に加え、該磁石をウェハ
面に対し平行にかつ該面内全体に渡って移動させる磁石
駆動機構を設けたので、磁石を自動的に回転、かつ移動
させて多数のウェハに対して均一に処理を行うことが可
能となり、生産効率の向上及びコストの低減を図ること
ができる。
As described above, according to the semiconductor manufacturing apparatus of the present invention, in addition to the magnet that densifies plasma, a magnet drive mechanism that moves the magnet parallel to and throughout the wafer surface is provided. Therefore, it is possible to automatically rotate and move the magnet to uniformly process a large number of wafers, thereby improving production efficiency and reducing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体製造装置にお
ける磁石の駆動機構を示す斜視図、第2図は駆動機構の
腰部拡大図、第3図は上記磁石の走査経路を示す図、第
4図は上記磁石の走査の様子を概念的に示す図、第5図
は走査経路の他の例を示す図、第6図は従来の半導体製
造におけるプラズマ処理装置の概略図、第7図は該装置
におけるプラズマエツチングの様子を示す概念図である
。 1・・・磁石、2・・・ランク、3・・・ストッパ、4
a〜4c・・・歯車、5・・・モータ、6・・・プラズ
マ処理装置、7・・・固定支。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a perspective view showing a magnet drive mechanism in a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged view of the waist of the drive mechanism, FIG. 3 is a view showing the scanning path of the magnet, and FIG. The figure is a diagram conceptually showing how the magnet scans, FIG. 5 is a diagram showing another example of the scanning path, FIG. 6 is a schematic diagram of a conventional plasma processing apparatus for semiconductor manufacturing, and FIG. FIG. 2 is a conceptual diagram showing the state of plasma etching in the apparatus. 1...Magnet, 2...Rank, 3...Stopper, 4
a to 4c... Gear, 5... Motor, 6... Plasma processing device, 7... Fixed support. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)プラズマ領域中に磁界を供給してプラズマを活性
化する磁石を有し、高密度プラズマを用いてウエハを加
工する半導体製造装置において、該磁石をウエハ配置面
に対し平行にかつ該ウエハ配置面全体に渡って移動させ
る磁石駆動機構を設け、 上記プラズマの活性化を均一に行うようにしたことを特
徴とする半導体製造装置。
(1) In semiconductor manufacturing equipment that processes wafers using high-density plasma and has a magnet that activates plasma by supplying a magnetic field into a plasma region, the magnet is placed parallel to the wafer placement surface and the wafer is A semiconductor manufacturing apparatus characterized in that a magnet drive mechanism is provided to move the magnet over the entire arrangement surface, and the plasma is uniformly activated.
JP2931490A 1990-02-07 1990-02-07 Semiconductor manufacturing device Pending JPH03232225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2931490A JPH03232225A (en) 1990-02-07 1990-02-07 Semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2931490A JPH03232225A (en) 1990-02-07 1990-02-07 Semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JPH03232225A true JPH03232225A (en) 1991-10-16

Family

ID=12272760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2931490A Pending JPH03232225A (en) 1990-02-07 1990-02-07 Semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JPH03232225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275831B1 (en) * 1995-05-30 2001-01-15 니시히라 쥰지 Removal method of the inner surface of the vacuum container in the vacuum processing system and its vacuum processing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100275831B1 (en) * 1995-05-30 2001-01-15 니시히라 쥰지 Removal method of the inner surface of the vacuum container in the vacuum processing system and its vacuum processing system

Similar Documents

Publication Publication Date Title
EP0525633B1 (en) Magnetron plasma processing apparatus
EP0563899B1 (en) Plasma generating method and plasma generating apparatus using said method
KR100390540B1 (en) Magnetron plasma etching apparatus
KR20020027604A (en) Magnetron plasma processing apparatus
KR20210089577A (en) Film forming apparatus and method
JP4911898B2 (en) Plasma injection system and method with target movement
JPH03232225A (en) Semiconductor manufacturing device
CN111668081A (en) Etching equipment and etching method
JPH0547715A (en) Magnetron plasma processor
JP3281545B2 (en) Plasma processing equipment
JPS607132A (en) Dry etching device
KR920008123B1 (en) Plasma etching apparatus
JPH0534433B2 (en)
JPH02312231A (en) Dryetching device
JPH0621010A (en) Plasma processor
JPS6342707B2 (en)
JPS6126223A (en) Method and device for etching
JPH025413A (en) Plasma processor
JP3221928B2 (en) Magnetron reactive ion processing equipment
JPH07116624B2 (en) Rotating electrode type magnetron etching device
JPH06264229A (en) Sputtering device
JPS6276628A (en) Dry etching device
JP3898318B2 (en) Sputtering equipment
JPS6372870A (en) Plasma treatment device
JPH01243359A (en) Plasma doping