JPH03231963A - Thermoplastic polymer composition - Google Patents

Thermoplastic polymer composition

Info

Publication number
JPH03231963A
JPH03231963A JP10880290A JP10880290A JPH03231963A JP H03231963 A JPH03231963 A JP H03231963A JP 10880290 A JP10880290 A JP 10880290A JP 10880290 A JP10880290 A JP 10880290A JP H03231963 A JPH03231963 A JP H03231963A
Authority
JP
Japan
Prior art keywords
weight
maleic anhydride
functional group
epm
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10880290A
Other languages
Japanese (ja)
Inventor
Toshikazu Takeuchi
資和 竹内
Masahiro Kobayashi
小林 雅広
Yasuo Toyama
外山 靖男
Kohei Goto
幸平 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP10880290A priority Critical patent/JPH03231963A/en
Publication of JPH03231963A publication Critical patent/JPH03231963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the subject composition having excellent heat resistance, mechanical strength, abrasion, etc., and suitable as a modifying material for various plastics, etc., by compounding a thermoplastic polyurethane, an olefinic polymer having specific functional group and, if necessary, an olefinic polymer having no functional group in specific amounts, respectively. CONSTITUTION:The objective composition comprises (A) 2-98wt.% of a thermoplastic polyurethane having a molecular weight of 5000-500000 and (B) 2-28wt.% of an olefinic resin having at least one kind of functional groups selected from carboxyl groups, acid anhydride groups and epoxy groups. On the objective composition comprises (A) 2-98wt.% of the thermoplastic poly urethane, (B) 1-35wt.% of the olefinic resin and (C) 1-97wt.% of an olefinic prelymer (e.g. ethylene-propylene copolymer) having no functional group.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、耐熱性、機械的強度、耐摩耗性が優れた相溶
性の高いポリマーブレンド系の熱可塑性重合体組成物に
関し、さらに詳しくは、熱可塑性ポリウレタン(以下、
ITPUJという)、カルボキシル基、酸無水物基、エ
ポキシ基から選ばれた官能基を有するオレフィン系重合
体、および必要に応じて官能基を持たないオレフィン系
重合体からなる熱可塑性重合体組成物に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a highly compatible thermoplastic polymer composition with excellent heat resistance, mechanical strength, and abrasion resistance, and more specifically, , thermoplastic polyurethane (hereinafter referred to as
ITPUJ), a carboxyl group, an acid anhydride group, an epoxy group, and optionally an olefin polymer without a functional group. .

[従来の技術] TPUは、柔軟性、引張強度、引裂強度、低温特性、耐
摩耗性、耐油性、耐屈曲疲労性に優れ、スポーツシュー
ズ底、スキーブーツ、各種ホース、チューブ、フィルム
などに多く利用されている。
[Conventional technology] TPU has excellent flexibility, tensile strength, tear strength, low-temperature properties, abrasion resistance, oil resistance, and bending fatigue resistance, and is often used in sports shoe soles, ski boots, various hoses, tubes, films, etc. It's being used.

しかしながら、耐水性や最適加工温度範囲が狭いなど成
形加工性に劣り、また密度が大きく、吸水率が高いなど
の欠点も有している。さらに、この種の熱可塑性重合体
は、ポリエーテルやポリエステルのソフトセグメントと
芳香族ジイソシアナートとエチレングリコールや1,4
−ブタンジオールの短鎖ジオールからなるポリウレタン
のハードセグメントから構成されたマルチブロック共重
合体であり、TPUの」−記の優れた特性を発現させる
だめには、ハードセグメント量をある程度以」二含有さ
せる必要がある。そのため、高性能のTPU材料では高
硬度で、かつ高弾性率の材料にならざるを得ず、高性能
を維持した低硬度で低弾性率のTPUは得られていない
のが現状であった。
However, it has disadvantages such as poor moldability such as water resistance and narrow optimum processing temperature range, and high density and high water absorption. Furthermore, this type of thermoplastic polymer is composed of soft segments of polyethers and polyesters, aromatic diisocyanates, ethylene glycol, and 1,4
- It is a multi-block copolymer composed of hard segments of polyurethane made of short chain diol of butanediol, and in order to exhibit the excellent properties of TPU, the amount of hard segments must be increased to a certain level. It is necessary to do so. Therefore, high-performance TPU materials must have high hardness and high elastic modulus, and at present, TPU with low hardness and low elastic modulus that maintains high performance has not been obtained.

[発明が解決しようとする問題点コ 一方、オレフィン系重合体は、引張強度、耐熱水性に優
れるものである。そこで、TPUとオレフィン系重合体
を組み合わせる試みがなされてきた。
[Problems to be Solved by the Invention] On the other hand, olefin polymers have excellent tensile strength and hot water resistance. Therefore, attempts have been made to combine TPU and olefin polymers.

しかしながら、TPUとオレフィン系重合体は相溶性に
乏しく、期待される性能を有するTPUとオレフィン系
重合体とからなる組成物は未だに見い出されていなかっ
た。
However, TPU and olefin polymers have poor compatibility, and a composition comprising TPU and olefin polymers that has the expected performance has not yet been found.

[問題を解決するための手段] 本発明は、(1)TPU (A)2〜98重量%、およ
びカルボキシル基、酸無水物基、エポキシ基から選ばれ
た少なくとも1種の官能基を有するオレフィン系重合体
(B)28〜2重量%からなる熱可塑性重合体組成物、
ならびに(2)熱可塑性ポリウレタン(A)2〜98重
量%、カルボキシル基、酸無水物基、エポキシ基から選
ばれた少なくとも1種の官能基を有するオレフィン系重
合体(B)1〜35重量%、および官能基を有さないオ
レフィン系重合体(C)1〜97%重量%からなる熱可
塑性重合体組成物を提供するものである。
[Means for Solving the Problems] The present invention provides (1) TPU (A) 2 to 98% by weight, and an olefin having at least one functional group selected from a carboxyl group, an acid anhydride group, and an epoxy group. A thermoplastic polymer composition consisting of 28 to 2% by weight of the polymer (B),
and (2) 2 to 98% by weight of thermoplastic polyurethane (A), 1 to 35% by weight of olefin polymer (B) having at least one functional group selected from carboxyl group, acid anhydride group, and epoxy group. , and an olefinic polymer (C) having no functional group in an amount of 1 to 97% by weight.

(A)成分 本発明で使用するTPUとは、長鎖ポリオール、短鎖グ
リコール、ジイソシアナートなどを原料として重付加反
応により、分子内にウレタン結合を介して得られるエラ
ストマーであって、靴底、ホース、チューブ、接着剤な
どに用いられているものである。この熱可塑性ポリウレ
タンの原料である長鎖ポリオールには、ポリ(1,4−
ブチレンアジペート)、ポリ(1,6−ヘキサンアジペ
ート)、ポリカプロラクトン、ポリエチレングリコール
、ポリプロピレングリコール、ポリオキシテトラメチレ
ングリコールなどが挙げられる。また短鎖グリコールに
は、エチレングリコール、1゜4−ブタンジオール、1
,6−ヘキサンジオールなどがあり、さらにジイソシア
ナートとしては、トリレンジイソンアナート、4.4’
 −ジフェニルメタンジイソシアナート、ヘキサメチレ
ンジイソシアナート、イソホロンジイソシアナートなど
がある。そして、長鎖ポリオールとジイソシアナー)・
でソフトセグメントを形成し、短鎖グリコールとジイソ
シアナートでハードセグメントを形成するものである。
Component (A) The TPU used in the present invention is an elastomer obtained through a polyaddition reaction using long-chain polyols, short-chain glycols, diisocyanates, etc. as raw materials through urethane bonds in the molecule, and is used for shoe soles. , used in hoses, tubes, adhesives, etc. The long-chain polyol that is the raw material for this thermoplastic polyurethane contains poly(1,4-
butylene adipate), poly(1,6-hexane adipate), polycaprolactone, polyethylene glycol, polypropylene glycol, polyoxytetramethylene glycol, and the like. In addition, short chain glycols include ethylene glycol, 1゜4-butanediol, 1
, 6-hexanediol, etc. Further diisocyanates include tolylene diisonanate, 4.4'
-Diphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, etc. and long-chain polyols and diisocyaners).
A soft segment is formed with short chain glycol and diisocyanate, and a hard segment is formed with short chain glycol and diisocyanate.

熱可塑性ポリウレタンの分子量は、好ましくは5.00
0〜500,000、さらに好ましくは10.000〜
300,000である。
The molecular weight of the thermoplastic polyurethane is preferably 5.00.
0 to 500,000, more preferably 10,000 to
300,000.

(B)成分 本発明で使用されるカルボキシル基、酸無水物基、エポ
キシ基から選ばれた少なくとも1種以上の官能基を有す
るオレフィン系重合体は、下記オレフィン系重合体の原
料オレフィンと官能基を有する単量体との共重合、もし
くは下記オレフィン系重合体と官能基を有する単量体と
の高分子反応によって官能基を導入した重合体である。
(B) Component The olefin polymer having at least one functional group selected from a carboxyl group, an acid anhydride group, and an epoxy group used in the present invention is a raw material olefin and a functional group of the following olefin polymer. It is a polymer into which a functional group has been introduced by copolymerization with a monomer having the following, or a polymer reaction between the following olefin polymer and a monomer having a functional group.

オレフィン系重合体は、少なくとも50モル%、好まし
くは70モル%以にの1−オレフィン、例えばエチレン
、プロピレン、1−ブテン、イソブタン、1−ペンテン
、1−ヘキセン、1−デセン、4−メチル−1−ブテン
、4−メチル−1−ペンテン、4,4−ジメチル−1−
ペンテン、または−に記オレフィンの混合物の重合体が
挙げられる。
The olefinic polymer contains at least 50 mol%, preferably more than 70 mol% of 1-olefins, such as ethylene, propylene, 1-butene, isobutane, 1-pentene, 1-hexene, 1-decene, 4-methyl- 1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-
Polymers of pentene or mixtures of the olefins listed above may be mentioned.

好適には、エチレンとプロピレン、エチレンと1ブテン
との共重合体、高密度ポリエチレン、中密度ポリエチレ
ン、低密度ポリエチレン、ポリプロピレンなどが好まし
い。
Preferable examples include copolymers of ethylene and propylene, ethylene and 1-butene, high-density polyethylene, medium-density polyethylene, low-density polyethylene, polypropylene, and the like.

カルボキシル基、酸無水物基含有オレフィン系重合体に
使用される酸成分としては、例えばアクリル酸、メタア
クリル酸、メタクリル酸、イタコン酸、(無水)マレイ
ン酸、フマル酸(無水)シス−4−シクロヘキセン−1
,2−ジカルボン酸および−1−記カルボン酸のモノエ
ステルなどを例示でき、好適にはアクリル酸、メタクリ
ル酸および(無水)マレイン酸を挙げることができる。
Examples of the acid component used in the olefin polymer containing a carboxyl group or an acid anhydride group include acrylic acid, methacrylic acid, methacrylic acid, itaconic acid, maleic acid (anhydride), and fumaric acid (anhydride) cis-4- Cyclohexene-1
, 2-dicarboxylic acid, and monoester of -1-carboxylic acid, and preferred examples include acrylic acid, methacrylic acid, and maleic acid (anhydride).

中でも、(無水)マレイン酸が他の酸に比べて少量の添
加で十分な酸変性効果が得られるので特に好ましい。好
適なカルボキシル基含有オレフィン系重合体としては、
無水マレイン酸変性エチレン−1−ブテン共重合体、無
水マレイン酸変性エチレン−プロピレン共重合体、無水
マレイン酸変性ポリエチレン、無水マレイン酸変性ポリ
プロピレンなどを挙げることができる。
Among these, maleic acid (anhydride) is particularly preferred since a sufficient acid modification effect can be obtained with addition of a small amount compared to other acids. Suitable carboxyl group-containing olefin polymers include:
Examples include maleic anhydride-modified ethylene-1-butene copolymer, maleic anhydride-modified ethylene-propylene copolymer, maleic anhydride-modified polyethylene, and maleic anhydride-modified polypropylene.

エポキシ基含有オレフィン系重合体に使用されるエポキ
シ化合物としては、α、β−不飽和カルボン酸のグリシ
ジルエステルが挙げられ、一般式%式% (式中、Rは水素原子または低級アルキル基である。) で示されるα、β−不飽和カルボン酸のグリシジルエス
テルの1種またはそれ以上の混合物が使用でき、例えば
アクリル酸グリシジル、メタクリル酸グリシジル、エタ
クリル酸グリシジルなどが挙げられ、中でもメタクリル
酸グリシジルが好適に使用される。
Examples of the epoxy compound used in the epoxy group-containing olefin polymer include glycidyl esters of α,β-unsaturated carboxylic acids, which have the general formula % (wherein R is a hydrogen atom or a lower alkyl group). ) can be used, such as glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, etc., among which glycidyl methacrylate is preferred. Preferably used.

このようなカルボキシル基、酸無水物基および/または
エポキシ基含有オレフィン系重合体は、それらの官能基
を有するモノマーを構成成分として、通常0.01〜2
0重量%、好適には0.05〜15重量%の範囲で含有
する。
Such olefin polymers containing carboxyl groups, acid anhydride groups, and/or epoxy groups usually contain monomers having these functional groups in a concentration of 0.01 to 2.
The content is 0% by weight, preferably in the range of 0.05 to 15% by weight.

本発明において、(B)成分はTPUに複合化させる必
須成分であり、単独で使用するか、後記する(C)成分
である官能基を有していないオレフィン系重合体を複合
化させる際の相溶化剤として作用する。
In the present invention, component (B) is an essential component to be composited with TPU, and can be used alone or when composited with an olefinic polymer having no functional group, which is component (C) described later. Acts as a compatibilizer.

(C)成分 (C)成分は、カルボキシル基、酸無水物基、エポキシ
基などの官能基を有さないオレフィン系重合体であり、
具体的には(B)成分において例示したオレフィン系重
合体と同様のものを挙げることができる。
Component (C) Component (C) is an olefin polymer that does not have a functional group such as a carboxyl group, an acid anhydride group, or an epoxy group,
Specifically, the same olefin polymers as exemplified in component (B) can be mentioned.

好ましくは、エチレン−プロピレン共重合体、高密度ポ
リエチレン、低密度ポリエチレン、ポリプロピレンなど
である。
Preferred are ethylene-propylene copolymer, high density polyethylene, low density polyethylene, polypropylene and the like.

本発明の各成分の組成は、(C)成分を使用しない場合
は、TPU (A)2〜98重量%、好ましくは3〜9
5重量%、さらに好ましくは5〜85重量%、特に好ま
しくは10〜80重量%、カルボキシル基、酸無水物基
、エポキシ基から選ばれた少なくとも1種の官能基を有
するオレフィン系重合体(B)2〜28重量%、好まし
くは3〜28重量%、さらに好ましくは5〜25重量%
である。
When component (C) is not used, the composition of each component of the present invention is TPU (A) 2 to 98% by weight, preferably 3 to 9% by weight.
5% by weight, more preferably 5 to 85% by weight, particularly preferably 10 to 80% by weight, an olefin polymer (B )2 to 28% by weight, preferably 3 to 28% by weight, more preferably 5 to 25% by weight
It is.

TPUが2重量%未満では、耐熱性、機械的強度に劣り
、TPUが98重量%を超えると、低硬度、低弾性率な
組成物が得られない。
If the TPU content is less than 2% by weight, heat resistance and mechanical strength will be poor, and if the TPU content exceeds 98% by weight, a composition with low hardness and low elastic modulus cannot be obtained.

一方、官能基を有するオレフィン系重合体が2重量%未
満であれば、TPUと官能基を持たないオレフィン系重
合体との相溶性が不十分となり、均一な組成物が得られ
ない。また、官能基を有するオレフィン系重合体が28
重量%を超えると、組成物の流動性に劣る。
On the other hand, if the content of the olefinic polymer having a functional group is less than 2% by weight, the compatibility between TPU and the olefinic polymer not having a functional group will be insufficient, making it impossible to obtain a uniform composition. In addition, the olefin polymer having a functional group is 28
If it exceeds % by weight, the fluidity of the composition will be poor.

(C)成分を使用する場合の各成分の組成は、TPU 
(A)2〜98重量%、好ましくは3〜95重量%、さ
らに好ましくは5〜85重量%、特に好ましくは10〜
80重量、カルボキシル基、酸無水物基、エポキシ基か
ら選ばれた少なくとも1種の官能基を有するオレフィン
系重合体(B)1〜35重量%、好ましくは2〜28重
量%、さらに好ましくは3〜25重量%、および官能基
を有さないオレフィン系重合体(C)1〜97重量%、
好ましくは3〜90重量%、さらに好ましくは5〜80
重量%である。
When using component (C), the composition of each component is TPU
(A) 2-98% by weight, preferably 3-95% by weight, more preferably 5-85% by weight, particularly preferably 10-95% by weight
80% by weight, olefin polymer (B) having at least one functional group selected from carboxyl group, acid anhydride group, and epoxy group 1 to 35% by weight, preferably 2 to 28% by weight, more preferably 3% by weight ~25% by weight, and 1 to 97% by weight of an olefinic polymer (C) having no functional group,
Preferably 3 to 90% by weight, more preferably 5 to 80% by weight
Weight%.

官能基を持たないオレフィン系重合体(C)が1重量%
未満であると耐熱水性に劣り、97%重量%を超えると
耐衝撃性、耐摩耗性、耐油性に劣る。
1% by weight of olefin polymer (C) without functional groups
If it is less than 97% by weight, the hot water resistance will be poor, and if it exceeds 97% by weight, the impact resistance, abrasion resistance, and oil resistance will be poor.

官能基を持たないオレフィン系重合体は、本発明の組成
物を低硬度、低弾性率化するにあたり有効に作用するた
め、必要に応じて配合できる。
An olefinic polymer having no functional group can be blended as necessary because it effectively acts to lower the hardness and elastic modulus of the composition of the present invention.

また、その他必要に応じて本発明の目的を逸脱しない範
囲で熱可塑性重合体、例えばポリスチレン系樹脂、ジエ
ン系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹
脂、ポリカーボネート系樹脂、ポリアセタール系樹脂、
ポリアミド系樹脂、゛ポリエステル系樹脂、ポリエーテ
ル系樹脂、ポリスルフォン、ポリフェニレンサルファイ
ドなどの熱可塑性樹脂、スヂレンーブタジエン系ブロッ
ク共重合体、スチレン−イソプレン系ブロック共重合体
およびこれらの水素添加物などのスチしノン系熱可塑性
エラストマー、ポリオレフィン系熱可塑性エラストマー
、ポリエステル系熱可塑性エラストマ、ポリアミド系熱
可塑性ガラス)ヘマー、塩化ビニル系熱可塑性エラスト
マーなどの熱可塑性エラストマー、スチレンーブタジエ
ンゴ14、ブタジェンゴム、ニトリルゴム、アクリルゴ
ム、水素化ニトリルゴムのエラストマーを混合使用する
ことができる。
In addition, if necessary, thermoplastic polymers such as polystyrene resins, diene resins, polyvinyl chloride resins, polyvinyl acetate resins, polycarbonate resins, polyacetal resins,
Polyamide resins, polyester resins, polyether resins, polysulfones, thermoplastic resins such as polyphenylene sulfide, styrene-butadiene block copolymers, styrene-isoprene block copolymers, and hydrogenated products thereof Styrene-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based thermoplastic glass) hemer, thermoplastic elastomer such as vinyl chloride-based thermoplastic elastomer, styrene-butadiengo 14, butadiene rubber, Elastomers of nitrile rubber, acrylic rubber, and hydrogenated nitrile rubber can be used in combination.

また本発明の組成物は、イオウ架橋、過酸化物架橋、樹
脂架橋、金属イオンの架橋、電r−線架橋、シラン架橋
などの架橋物を含有していてもよく、これらの架橋は、
静的または動的な方法で行なうことができる。
The composition of the present invention may also contain crosslinks such as sulfur crosslinks, peroxide crosslinks, resin crosslinks, metal ion crosslinks, electric r-ray crosslinks, and silane crosslinks, and these crosslinks are
This can be done in a static or dynamic manner.

本発明の組成物の調製は、公知の種々の方法が適用でき
る。例えば、押出機(単軸、二軸)、口1 −ル、パンバリーミキサー、ニーダ−、ヘンシェルミキ
サーなど、従来より公知のいずれの方法を用いてもよい
Various known methods can be applied to prepare the composition of the present invention. For example, any conventionally known method may be used, such as an extruder (single-screw or twin-screw), mill, Panbury mixer, kneader, or Henschel mixer.

また、前記の方法で得た熱可塑性重合体組成物の成形加
工には、従来より公知の方法、例えば押出成形、射出成
形、中空成形、圧縮成形、カレンダー加工などにより実
用上有用な成形品に加工することができる。また、必要
に応じて塗装、メツキなどの加工を施すこともできる。
In addition, the thermoplastic polymer composition obtained by the above method can be molded into a practically useful molded product by conventionally known methods such as extrusion molding, injection molding, blow molding, compression molding, and calendering. Can be processed. Furthermore, processing such as painting and plating can be applied as necessary.

さらに、本発明の熱可塑性重合体組成物には、通常の熱
可塑性重合体に用いられる添加剤を必要に応じて添加す
ることができる。例えば、フタル酸エステル化合物など
の可塑剤、シリカ、タルク、ガラス繊維などの充填剤ま
たは補強剤、その他酸化防止剤、紫外線吸収剤、帯電防
止剤、勤°燃剤、滑剤、発泡剤、着色剤、顔料、核利、
架橋剤、架橋助剤など、またはこれらの混合物を添加す
ることができる。
Furthermore, additives used for ordinary thermoplastic polymers can be added to the thermoplastic polymer composition of the present invention, if necessary. For example, plasticizers such as phthalate ester compounds, fillers or reinforcing agents such as silica, talc, and glass fibers, other antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, lubricants, foaming agents, colorants, Pigments, pigments,
Crosslinking agents, crosslinking aids, etc., or mixtures thereof can be added.

本発明の熱可塑性重合体組成物は、優れた耐熱性、耐摩
耗性、加工性、しなやかさ、低温特性、] 2 温度依存性、相溶性、塗装性、印刷性、ホットスタンプ
性、接着性、深絞り性、耐熱水性、ゴム弾性、ゴム感触
、可とう性、すべり抵抗性、耐ストレスクラック性など
を生かして、各種プラスチック改良材、履物の底材、接
着剤・粘度剤の累月、アスファルトの改質利、加硫ゴム
の改質祠などに利用できる。例えば、食肉鮮魚用トレー
、青果物バック、冷菓食品容器などのシート用途、食品
包装、日用雑貨包装、工業資材包装、紙オムツなどの伸
縮テープなどのフィルム用途、スポーツシューズ、レジ
ャーシコーズ、ファッションサンダル、皮靴などの履物
用途、テレビ、ステレオ、掃除機などの家電用品用途、
バンパ一部品、ボディーパネル、サイトシールドなどの
自動車用内外装部品用途、ホットメルト型接着剤・粘着
剤、コンタクト型接着剤、スプレー型接着剤などの累月
用途、道路舗装材、防水シート、配管コーティングなど
アスファルトブレンド用素材用途、その他日用品、施 レジャー用品、玩具、ホース、チューブ数、工業用品な
ど幅広い用途に用いることができる。
The thermoplastic polymer composition of the present invention has excellent heat resistance, abrasion resistance, processability, flexibility, low-temperature properties, 2. temperature dependence, compatibility, paintability, printability, hot stampability, and adhesiveness. By taking advantage of deep drawability, hot water resistance, rubber elasticity, rubber feel, flexibility, slip resistance, stress crack resistance, etc., we are developing various plastic improvement materials, footwear sole materials, adhesives and viscosity agents, It can be used for asphalt modification, vulcanized rubber modification, etc. For example, sheet applications such as meat and fresh fish trays, fruit and vegetable bags, frozen dessert food containers, food packaging, daily necessities packaging, industrial material packaging, film applications such as elastic tapes for disposable diapers, sports shoes, leisure shoes, and fashion sandals. , footwear such as leather shoes, home appliances such as televisions, stereos, vacuum cleaners, etc.
Automotive interior and exterior parts applications such as bumper parts, body panels, and sight shields; cumulative applications such as hot-melt adhesives and adhesives, contact adhesives, and spray adhesives; road paving materials, waterproof sheets, and piping. It can be used in a wide range of applications, including asphalt blend materials such as coatings, other daily necessities, leisure goods, toys, hoses, tubes, and industrial goods.

[実 施 例コ 以下、本発明を実施例を挙げ詳細に説明するが、本発明
の主旨を超えない限り、実施例に限定されるものではな
い。
[Examples] Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to the examples unless it goes beyond the gist of the present invention.

(参考例1) 無水マレイン酸変性のエチレン−プロピレンコム(EP
M)の製造方法 エチレン−プロピレン共重合ゴム(ロ本合成ゴム■製、
EP96]、5P)100部、i、3−ビス(t e 
r t−ブチルパーオキシプロビル)ベンゼン0.5部
、および無水マレイン酸0. 5部を混合し、シリンダ
ー温度220°Cに設定した押出機テ混練し、無水マレ
イン酸変性のEPMぺL/ツト化を行なった。赤外吸収
スペクトルによる定量分析から、0.30重量%の無水
マレイン酸が付加していることを確認した。これを無水
71ツイン酸変性EPM4)と称す。
(Reference Example 1) Maleic anhydride-modified ethylene-propylene comb (EP
Manufacturing method of M) Ethylene-propylene copolymer rubber (manufactured by Romoto Synthetic Rubber ■,
EP96], 5P) 100 parts, i, 3-bis (t e
0.5 parts of r t-butylperoxypropyl)benzene, and 0.5 parts of maleic anhydride. 5 parts were mixed and kneaded in an extruder set at a cylinder temperature of 220°C to form maleic anhydride-modified EPM pellets. Quantitative analysis using an infrared absorption spectrum confirmed that 0.30% by weight of maleic anhydride was added. This is called anhydrous 71twin acid-modified EPM4).

(参考例2) 参考例1に使用した無水マレイン酸量を1.0重量部に
代え、無水マレイン酸付加量0.8重量%の無水マレイ
ン酸度性EPM−(2)を調製した。
(Reference Example 2) The amount of maleic anhydride used in Reference Example 1 was changed to 1.0 parts by weight, and a maleic anhydride EPM-(2) with an added amount of maleic anhydride of 0.8% by weight was prepared.

(参考例3) 参考例1に使用した無水マレイン酸量を1. 5重量部
に代え、無水マレイン酸付加量1.2重量%の無水マレ
イン酸変性EPM−(3)を調製した。
(Reference Example 3) The amount of maleic anhydride used in Reference Example 1 was 1. A maleic anhydride-modified EPM-(3) was prepared in which the amount of maleic anhydride added was 1.2% by weight instead of 5 parts by weight.

物性の評価方法 O引張特性 JIS  K6301に準拠し、50%引張応力(M)
、100%引張応力(Mloo)、300 0%引張応力(M  )、引張強度(T8)、00 破断伸び(EB)を求めた。
Physical property evaluation method O Tensile properties Based on JIS K6301, 50% tensile stress (M)
, 100% tensile stress (Mloo), 300% tensile stress (M ), tensile strength (T8), and 00 elongation at break (EB) were determined.

0硬度I JIS  K6301に準拠し、JIS  A硬度計で
測定した。
0 Hardness I Measured using a JIS A hardness meter in accordance with JIS K6301.

O密 度 浮力法により、23℃の値を求めた。O density The value at 23°C was determined by the buoyancy method.

0VICAT軟化温度 ASTM  D1044に準拠し、荷重1 kgの条件
で測定した。
0VICAT Softening Temperature Measured in accordance with ASTM D1044 under a load of 1 kg.

Oテーパー摩耗 5 ASTM  D1044に準拠し、摩耗輪H−22を使
用し、測定した。
O Taper Wear 5 Measured using a worn wheel H-22 in accordance with ASTM D1044.

O吸湿率 80℃、24時間真空乾燥し、絶乾状態とした試験片を
20℃、65%RHの条件下で24時間放置後の吸収水
分をカールフィッシャ水分計で測定し、吸湿率を求めた
O Moisture Absorption Rate After vacuum drying at 80°C for 24 hours and leaving the test piece in an absolutely dry state for 24 hours at 20°C and 65% RH, the absorbed moisture was measured using a Karl Fischer moisture meter to determine the moisture absorption rate. Ta.

(実施例1〜3) 熱可塑性ポリウレタン(■クラレ製、クラミロン319
0)75重量部に対し、参考例1〜3で調製した無水マ
レイン酸変性EPM−(11〜(3)を各25重量部を
プラストミルを用いて190℃、60rpm、5分間混
練し、ブレンド物を得た。混練物をプレス成形し、圧縮
成形品の試験片を作成し、各種物性を測定した。結果を
表−1に示す。
(Examples 1 to 3) Thermoplastic polyurethane (■ Kuramiron 319 manufactured by Kuraray)
0) To 75 parts by weight, 25 parts by weight of each of the maleic anhydride-modified EPM-(11 to (3)) prepared in Reference Examples 1 to 3 was kneaded using a plastomill at 190°C, 60 rpm, for 5 minutes to obtain a blend. The kneaded product was press-molded, compression-molded test pieces were prepared, and various physical properties were measured.The results are shown in Table 1.

(実施例4〜12) 熱可塑性ポリウレタン75.50.25重ffi部に対
し、エチレン−プロピレン共重合ゴム(日本合成ゴム■
製、EP33)と(無水マレイン酸変性EPM−(2)
)を表−1の組成比で混練し、同様6 の評価を行なった。結果を表−1に示す。
(Examples 4 to 12) Ethylene-propylene copolymer rubber (Japanese Synthetic Rubber ■
EP33) and (maleic anhydride-modified EPM-(2)
) were kneaded at the composition ratio shown in Table 1 and similarly evaluated as 6. The results are shown in Table-1.

(実施例13〜14) 実施例5で用いた無水マレイン酸度性EPM(2)の代
わりに、無水マレイン酸変性EPM−(1)とEPM−
(3]を用い、各々同様の評価を行なった。
(Examples 13 to 14) Instead of the maleic anhydride acidic EPM (2) used in Example 5, maleic anhydride modified EPM-(1) and EPM-
(3), and the same evaluation was performed for each.

結果を表−1に示す。The results are shown in Table-1.

(実施例15.16) (A)成分の配合比を代えた以外は実施例1と同様の評
価を行なった。結果を表−1に示す。
(Examples 15 and 16) The same evaluation as in Example 1 was performed except that the blending ratio of component (A) was changed. The results are shown in Table-1.

(参考例4) エポキシ基含有EPMの製造 参考例1に使用したEPM100重量部に対し、ジクミ
ルパーオキサイド0.5重量部、メタクリル酸グリシジ
ルエーテル3部を混合し、シリンダー温度200℃に設
定した押出機で混練し、エポキシ基含有EPMのペレッ
ト化を行なった。赤外吸収スペクトルから、メタクリル
酸グリシジルが1.3重量%EPMにグラフトしている
ことを確認した。この得られたグラフト共重合体をエポ
キシ基含有EPMと称する。
(Reference Example 4) Production of epoxy group-containing EPM 100 parts by weight of the EPM used in Reference Example 1 was mixed with 0.5 parts by weight of dicumyl peroxide and 3 parts by weight of glycidyl methacrylate, and the cylinder temperature was set at 200°C. The mixture was kneaded using an extruder to pelletize the epoxy group-containing EPM. From the infrared absorption spectrum, it was confirmed that 1.3% by weight of glycidyl methacrylate was grafted onto EPM. The obtained graft copolymer is referred to as epoxy group-containing EPM.

(参考例5) カルボキシル基含有EPMの製造 参考例1に使用したEPM100重量部に対し、1.3
−ビス(t e r t−ブチルパーオキシプロピル)
ベンゼン0.5重量部、アクリル酸またはメタクリル酸
1重量部を混合し、シリンダー温度220℃に設定した
押出機で混練し、カルボキシル基含有EPMのペレット
化を行なった。赤外吸収スペクトルから、アクリルまた
はメタクリル酸が0.8重量%EPMにグラフトしてい
ることを確認した。
(Reference Example 5) Production of carboxyl group-containing EPM 1.3 parts by weight of EPM used in Reference Example 1
-bis(tert-butylperoxypropyl)
0.5 part by weight of benzene and 1 part by weight of acrylic acid or methacrylic acid were mixed and kneaded in an extruder set at a cylinder temperature of 220°C to pelletize the carboxyl group-containing EPM. It was confirmed from the infrared absorption spectrum that 0.8% by weight of acrylic or methacrylic acid was grafted onto EPM.

(実施例17) 実施例5で用いた無水マレイン酸変性EPM−(2)の
代わりに、エポキシ基含有EPMを用いて同様の評価を
行なった。結果を表−1に示す。
(Example 17) Similar evaluation was performed using an epoxy group-containing EPM instead of the maleic anhydride-modified EPM-(2) used in Example 5. The results are shown in Table-1.

(実施例18) 実施例5で用いた無水マレイン酸変性EPM(2)の代
わりに、カルボキシル基含有EPMを用いて同様の評価
を行なった。結果を表−1に示す。
(Example 18) Similar evaluation was performed using a carboxyl group-containing EPM instead of the maleic anhydride-modified EPM (2) used in Example 5. The results are shown in Table-1.

(参考例6) 高密度ポリエチレン(三菱油化株制、BX50A)10
0部、1.3−ビス(t e r t−ブチルパーオキ
シプロピル)ベンゼン0.5部および無水マレイン酸0
. 5部を混合し、シリンダー温度200℃に設定した
押出機で混練し、無水マレイン酸変性のポリエチレンペ
レットを製造した。赤外吸収スペクトルによる定量分析
から、0.3重量%の無水マレイン酸が付加しているこ
とを確認した。これを無水マレイン酸度性PE4)と称
す。
(Reference example 6) High density polyethylene (Mitsubishi Yuka Corporation, BX50A) 10
0 parts, 1.3-bis(tert-butylperoxypropyl)benzene 0.5 parts and maleic anhydride 0
.. 5 parts were mixed and kneaded in an extruder set at a cylinder temperature of 200°C to produce maleic anhydride-modified polyethylene pellets. Quantitative analysis using an infrared absorption spectrum confirmed that 0.3% by weight of maleic anhydride was added. This is called maleic anhydride PE4).

(参考例7) 高密度ポリエチレンの代りに低密度ポリエチレン(三菱
油化■製、2C−30)100部を用いた以外は、参考
例4と同様にして0.3重量%の無水マレイン酸が付加
した無水マレイン酸変性ポリエチレンペレットを製造し
た。これを無水マレイン酸変性P E−f2)と称す。
(Reference Example 7) 0.3% by weight of maleic anhydride was prepared in the same manner as in Reference Example 4, except that 100 parts of low-density polyethylene (manufactured by Mitsubishi Yuka ■, 2C-30) was used instead of high-density polyethylene. Added maleic anhydride modified polyethylene pellets were produced. This is called maleic anhydride-modified PE-f2).

(参考例8) 高密度ポリエチレンの代りにポリプロピレン(三菱油化
畑製、MA−3)100部を用いた以外は、参考例4と
同様にして0.3重量%の無水9 マレイン酸が付加した無水マレイン酸変性ポリプロピレ
ンペレットを製造した。これを無水マレイン酸変性PP
と称す。
(Reference Example 8) 0.3% by weight of 9-maleic anhydride was added in the same manner as in Reference Example 4, except that 100 parts of polypropylene (manufactured by Mitsubishi Yukahata, MA-3) was used instead of high-density polyethylene. Maleic anhydride-modified polypropylene pellets were produced. This is maleic anhydride-modified PP.
It is called.

実施例19〜34 表−2に示す組成割合の各成分を190°Cでプラスト
ミル(東洋精機製作所製)を用い、60rpI11で5
分間混練し、各組成物を得た。表−2「IJに示す熱可
塑性ポリウレタンとしては[クラミロンU3190J 
 (■クラレ製)を、高密度ポリエチレンとしては[B
X50AJ  (三菱油化製)を、低密度ポリエチレン
としてはJZC−30J  (三菱油化製)を、ポリプ
ロピレンとしてはrMA3J(三菱油化製)を使用した
Examples 19 to 34 Each component having the composition ratio shown in Table 2 was heated at 190°C using a plastomill (manufactured by Toyo Seiki Seisakusho) at 60rpI11.
The mixture was kneaded for minutes to obtain each composition. Table 2: The thermoplastic polyurethane shown in IJ is [Clamilon U3190J
(■Kuraray) is used as high-density polyethylene [B
X50AJ (manufactured by Mitsubishi Yuka) was used as the low density polyethylene, JZC-30J (manufactured by Mitsubishi Yuka) was used as the low density polyethylene, and rMA3J (manufactured by Mitsubishi Yuka) was used as the polypropylene.

得られた各組成物をプレス成形し、圧縮成形品の試験片
を作成し、各種物性を測定した。各物性のうち、VIC
AT軟化点、100%引張応力(M  )、引張強度(
TB)、破断伸び(EB)00 およびテーパー摩耗量は前記と同様にして測定し、他の
物性は下記のとおり測定した。結果は表−2に示す。
Each of the obtained compositions was press-molded, compression-molded test pieces were prepared, and various physical properties were measured. Among each physical property, VIC
AT softening point, 100% tensile stress (M), tensile strength (
TB), elongation at break (EB) 00, and taper wear amount were measured in the same manner as described above, and other physical properties were measured as described below. The results are shown in Table-2.

0 O透明性 圧縮成形した1mmmm−トを目視にて判定透明二〇、
半透明:△、不透明:× 0耐熱水性 引張りテストピースを70℃の温水に10日間浸漬した
後、JIS  K6301に従い、引張ったときの保持
率(%)で評価。
0 O Transparency Judging by visual inspection of compression molded 1mmmm-t Transparency 20,
Translucent: △, Opaque: × 0 A hot water resistant tensile test piece was immersed in hot water at 70°C for 10 days, and then evaluated by the retention rate (%) when pulled according to JIS K6301.

O硬度■ A、STM  D2240に準拠し、Sho r eD
硬度計で測定した。
O Hardness A, based on STM D2240, ShoreD
It was measured with a hardness meter.

○比 重 浮力法により、23°C値を求めた。○ Weight The 23°C value was determined by the buoyancy method.

O低温衝撃性 アイゾツト衝撃強度(JIS  K7110)のノツチ
付アイゾツト衝撃強度に準じ、−30℃にて測定した。
O Low temperature impact Izot impact strength (JIS K7110) Notched Izot impact strength was measured at -30°C.

(比較例1) 実施例1で用いた無水マレイン酸変性EPM−(1)の
代わりに、変性前のEPMとのブレンド物の評価を行な
った。結果を表−3に示す。機械的強度、耐熱性、耐摩
耗性に関して、無水マレイン酸変性EPMを用いた場合
の方が優れた物性値が得られた。
(Comparative Example 1) Instead of the maleic anhydride-modified EPM-(1) used in Example 1, a blend with EPM before modification was evaluated. The results are shown in Table-3. In terms of mechanical strength, heat resistance, and abrasion resistance, better physical property values were obtained when maleic anhydride-modified EPM was used.

(比較例2) 実施例4〜12で用いた無水マレイン酸変性EP M 
−(2)の代わりに、未変性EPMを用い代表的な組成
比について同様の評価を行なった。結果を表−3に示す
。TB、VICAT軟化点、摩耗量に関して無水マレイ
ン酸変性EPM−(21を用いると、未変性EPMより
優れた物性値が得られている。
(Comparative Example 2) Maleic anhydride modified EP M used in Examples 4 to 12
Similar evaluations were conducted for typical composition ratios using unmodified EPM instead of -(2). The results are shown in Table-3. When using maleic anhydride-modified EPM-(21), better physical property values than unmodified EPM were obtained in terms of TB, VICAT softening point, and wear amount.

(比較例3) 本発明で用いた熱可塑性ポリウレタンの評価を行なった
。結果を表−3に示す。本発明により低硬度、低弾性率
化を図ることができ、さらに低吸水性、加工性も改善さ
れている。
(Comparative Example 3) The thermoplastic polyurethane used in the present invention was evaluated. The results are shown in Table-3. According to the present invention, it is possible to achieve low hardness and low elastic modulus, and furthermore, low water absorption and processability are also improved.

(比較例4) 熱可塑性ポリウレタン60重量部に対して、実施例2で
用いた無水マレイン酸度性EPM〜(2)を40重量部
を用いて、同様の評価を行なった。結果を表−3に示す
。この場合、組成物の流動性が悪く、物性を測定できる
ような試料は得られなかった。
(Comparative Example 4) A similar evaluation was conducted using 40 parts by weight of maleic anhydride EPM (2) used in Example 2 with respect to 60 parts by weight of thermoplastic polyurethane. The results are shown in Table-3. In this case, the fluidity of the composition was poor, and a sample whose physical properties could be measured could not be obtained.

(比較例5) 熱可塑性ポリウレタン75重量部に対して、エチレン−
プロピレン共重合体ゴム24重量部、無水マレイン酸E
PM−(2)を1重量部用いて、同様の評価を行なった
。結果を表−3に示す。TPUと官能基を持たないオレ
フィン系重合体の相溶性が不十分なため、機械的強度、
耐熱性の好ましい物性値が得られなかった。
(Comparative Example 5) Ethylene-
24 parts by weight of propylene copolymer rubber, maleic anhydride E
Similar evaluations were conducted using 1 part by weight of PM-(2). The results are shown in Table-3. Due to insufficient compatibility between TPU and olefin polymers without functional groups, mechanical strength and
Preferred physical property values of heat resistance were not obtained.

(比較例6) 熱可塑性ポリウレタン1重量部に対して、エチレン−プ
ロピレン共重合体ゴム79重量部、無水マレイン酸EP
M−(2)を20重量部用いて、同様の評価を行なった
。結果を表−3に示す。TPUの量が少ないため、機械
的強度、耐熱性、耐摩耗性に劣った。
(Comparative Example 6) 79 parts by weight of ethylene-propylene copolymer rubber and maleic anhydride EP per 1 part by weight of thermoplastic polyurethane
Similar evaluations were conducted using 20 parts by weight of M-(2). The results are shown in Table-3. Since the amount of TPU was small, mechanical strength, heat resistance, and abrasion resistance were poor.

比較例7〜20 表−4に示す組成割合の各成分を使用し、実施3 例9〜34と同様にして組成物を得た。得られた各組成
物の物性を実施例19〜34と同様にして測定した。結
果を表−4に示す。
Comparative Examples 7 to 20 Compositions were obtained in the same manner as in Examples 9 to 34 of Example 3 using each component in the composition ratio shown in Table 4. The physical properties of each of the obtained compositions were measured in the same manner as in Examples 19-34. The results are shown in Table 4.

本発明の(b)成分の使用量が本発明の範囲未満である
比較例7〜11は、(a)成分と(c)成分の相溶性が
十分でなく、引張特性、摩耗特性、耐熱水性に劣る。
In Comparative Examples 7 to 11, in which the amount of component (b) used in the present invention was less than the range of the present invention, the compatibility of components (a) and (c) was insufficient, resulting in poor tensile properties, abrasion properties, and hot water resistance. inferior to

比較例12〜14は、(b)成分の使用量が本発明の範
囲を超えているもので、流動性が悪く成形ができなかっ
た。
In Comparative Examples 12 to 14, the amount of component (b) used exceeded the range of the present invention, and the fluidity was poor and molding could not be performed.

比較例15〜17は、(a)成分が本発明の範囲未満で
あり、低温衝撃性に劣り、一方、(a)成分が本発明の
範囲を超えている比較例18〜20は、耐熱水性に劣る
Comparative Examples 15 to 17 have component (a) below the range of the present invention and are poor in low-temperature impact resistance, while Comparative Examples 18 to 20 in which component (a) exceeds the range of the present invention have poor hot water resistance. inferior to

以下余白 4 [発明の効果コ 本発明の組成物は、従来の熱可塑性ポリウレタンと未変
性のオレフィン系重合体とのブレンド物では得られない
高強度、高伸度、高軟化温度、耐摩耗性などの熱可塑性
ポリウレタンの優イまた特性を維持し、しかも低硬度、
低モジュラスの柔軟性と低吸水性、低密度、低温衝撃性
か付Ijされた熱可塑性重合体組成物が得られ、実用性
の極めて高いものである。
Blank space below 4 [Effects of the Invention] The composition of the present invention has high strength, high elongation, high softening temperature, and abrasion resistance that cannot be obtained with conventional blends of thermoplastic polyurethane and unmodified olefin polymers. It maintains the superior properties of thermoplastic polyurethanes such as low hardness,
A thermoplastic polymer composition with low modulus flexibility, low water absorption, low density, and low-temperature impact resistance is obtained, and is extremely practical.

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性ポリウレタン(A)2〜98重量%、お
よびカルボキシル基、酸無水物基、エポキシ基から選ば
れた少なくとも1種の官能基を有するオレフィン系重合
体(B)2〜28重量%からなる熱可塑性重合体組成物
(1) Thermoplastic polyurethane (A) 2 to 98% by weight, and olefin polymer (B) having at least one functional group selected from carboxyl group, acid anhydride group, and epoxy group 2 to 28% by weight A thermoplastic polymer composition comprising:
(2)熱可塑性ポリウレタン(A)2〜98重量%、カ
ルボキシル基、酸無水物基、エポキシ基から選ばれた少
なくとも1種の官能基を有するオレフィン系重合体(B
)1〜35重量%、および官能基を有さないオレフィン
系重合体(C)1〜97重量%からなる熱可塑性重合体
組成物。
(2) Thermoplastic polyurethane (A) 2 to 98% by weight, an olefin polymer (B
) 1 to 35% by weight, and an olefinic polymer (C) having no functional group 1 to 97% by weight.
JP10880290A 1989-12-19 1990-04-26 Thermoplastic polymer composition Pending JPH03231963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10880290A JPH03231963A (en) 1989-12-19 1990-04-26 Thermoplastic polymer composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-328666 1989-12-19
JP32866689 1989-12-19
JP10880290A JPH03231963A (en) 1989-12-19 1990-04-26 Thermoplastic polymer composition

Publications (1)

Publication Number Publication Date
JPH03231963A true JPH03231963A (en) 1991-10-15

Family

ID=26448615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10880290A Pending JPH03231963A (en) 1989-12-19 1990-04-26 Thermoplastic polymer composition

Country Status (1)

Country Link
JP (1) JPH03231963A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170981A (en) * 1991-12-24 1993-07-09 Sanyo Chem Ind Ltd Sheet or film molded from resin composite
JPH06100773A (en) * 1992-09-17 1994-04-12 Sanyo Chem Ind Ltd Elastomer composite for absorbing vibration
JPH06322261A (en) * 1993-05-10 1994-11-22 Sanyo Chem Ind Ltd Vibration-damping soundproofing sheet
JP2001253980A (en) * 2000-03-09 2001-09-18 Asahi Kasei Corp Urethane-based elastomer
JP2001253979A (en) * 2000-03-09 2001-09-18 Asahi Kasei Corp Urethane-based elastomer composition
US6469099B1 (en) 2000-11-14 2002-10-22 Dow Global Technologies Inc. Compatibilized resin blends and the preparation thereof
WO2009098917A1 (en) * 2008-02-04 2009-08-13 Kuraray Co., Ltd. Polishing pad manufacturing method
CN110760180A (en) * 2018-07-26 2020-02-07 浙江华峰热塑性聚氨酯有限公司 Waterproof moisture-permeable thermoplastic polyurethane polymer and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170981A (en) * 1991-12-24 1993-07-09 Sanyo Chem Ind Ltd Sheet or film molded from resin composite
JPH06100773A (en) * 1992-09-17 1994-04-12 Sanyo Chem Ind Ltd Elastomer composite for absorbing vibration
JPH06322261A (en) * 1993-05-10 1994-11-22 Sanyo Chem Ind Ltd Vibration-damping soundproofing sheet
JP2001253980A (en) * 2000-03-09 2001-09-18 Asahi Kasei Corp Urethane-based elastomer
JP2001253979A (en) * 2000-03-09 2001-09-18 Asahi Kasei Corp Urethane-based elastomer composition
US6469099B1 (en) 2000-11-14 2002-10-22 Dow Global Technologies Inc. Compatibilized resin blends and the preparation thereof
WO2009098917A1 (en) * 2008-02-04 2009-08-13 Kuraray Co., Ltd. Polishing pad manufacturing method
JP5318756B2 (en) * 2008-02-04 2013-10-16 株式会社クラレ Polishing pad manufacturing method
CN110760180A (en) * 2018-07-26 2020-02-07 浙江华峰热塑性聚氨酯有限公司 Waterproof moisture-permeable thermoplastic polyurethane polymer and preparation method thereof
CN110760180B (en) * 2018-07-26 2021-10-12 浙江华峰热塑性聚氨酯有限公司 Waterproof moisture-permeable thermoplastic polyurethane polymer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3351081B2 (en) Thermoplastic elastomer composition
EP0347794B1 (en) Thermoplastic resinous composition
US9249291B2 (en) Thermoplastic elastomers with silky feel
US5623019A (en) Compatibilized thermoplastic molding composition
JPH04226154A (en) Thermoplastic composition comprising polyurethane and partially crosslinked alkyl acrylate copolymer
US5104938A (en) Thermoplastic polymer composition
JP2003327822A (en) Thermoplastic elastomer resin composition
JP7281466B2 (en) Thermoplastic composition and molded article thereof
JPH03231963A (en) Thermoplastic polymer composition
JP2003286384A (en) Thermoplastic elastomer composition and thermoplastic resin composition using the same
JPS6155528B2 (en)
US4373063A (en) Elastomeric composition
JPH0420549A (en) Thermoplastic elastomer composition
JP2003119402A (en) Thermoplastic resin composition
JPS61291610A (en) Block copolymer and its composition
JPH0343433A (en) Thermoplastic polymer composition
JP4444602B2 (en) Composite molded body
GB2056465A (en) Compatible Polymer Blends
JPH03207757A (en) Thermoplastic elastomer composition
JPH0593125A (en) Thermoplastic polymer composition
JP2003171508A (en) Thermoplastic elastomer composition and thermoplastic resin composition using the same
JPH04108838A (en) Thermoplastic polymer composition
JP3518022B2 (en) Thermoplastic elastomer composition
JPH09255868A (en) Flexible thermoplastic resin composition and molding material and molding product using the same
JPH0670164B2 (en) Elastomer composition