JPH03231196A - Radioisotope container - Google Patents

Radioisotope container

Info

Publication number
JPH03231196A
JPH03231196A JP2525890A JP2525890A JPH03231196A JP H03231196 A JPH03231196 A JP H03231196A JP 2525890 A JP2525890 A JP 2525890A JP 2525890 A JP2525890 A JP 2525890A JP H03231196 A JPH03231196 A JP H03231196A
Authority
JP
Japan
Prior art keywords
container
main body
detector
insertion part
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2525890A
Other languages
Japanese (ja)
Inventor
Shigeki Yamaguchi
山口 隆樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP2525890A priority Critical patent/JPH03231196A/en
Publication of JPH03231196A publication Critical patent/JPH03231196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To improve the precision in radiation measurement by a method wherein an insertion part wherein a radiation detector for detecting the radiation of a radioactive material contained in the main body of a container is inserted is provided in the main body of the container along the direction of the center thereof. CONSTITUTION:An insertion part 1a is formed in the main body 1 of a tubular container the upper end of which is sealed hermetically by a cap 3, so that a neutron detector 4 can be inserted thereinto toward the central part of the container. This insertion part 1a is a well-type cavity formed from the base of the main body 1 toward the central part thereof. A uranium dioxide 2, for instance, is contained in the main body 1, and when the total amount of this uranium dioxide 2 is measured, the detector 4 is inserted into the insertion part 1a. A signal from the detector 4 is connected to a measuring circuit 5. In a radioisotope container provided with the insertion part 1a enabling installation of the detector 4 in the central part in this way, the count of neutrons is large in the central part of the main body 1, while it lessens toward both ends.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はたとえば原子力発電所、核燃料加工工場、また
は燃料再処理施設などで使用される放射性物質を貯蔵す
るための放射性物質保管容器に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to radioactive materials for storing radioactive materials used in, for example, nuclear power plants, nuclear fuel processing plants, or fuel reprocessing facilities. Regarding storage containers.

(従来の技術) 原子力発電所の核燃料に加工するための核燃料加工工場
または原子力発電所で使用された使用済燃料を再処理す
る再処理工場では放射性物質である核燃料を専用の保管
容器に貯蔵している。
(Conventional technology) Nuclear fuel processing plants for processing into nuclear fuel for nuclear power plants or reprocessing plants for reprocessing spent fuel used in nuclear power plants store nuclear fuel, which is radioactive material, in special storage containers. ing.

これらの保管容器に収容されている内容物の放射性同位
体の同定を非破壊で行うには放射性物質から出る放射線
を測定する必要がある。
In order to non-destructively identify the radioactive isotopes in the contents contained in these storage containers, it is necessary to measure the radiation emitted from the radioactive materials.

第5図は核燃料加工工場内において、原子力発電所で使
用する燃料ペレットに加工する前の二酸化ウラン粉末を
入れる収容する保管容器と、この保管容器を放射線測定
する場合を示している。同図では、断面をあられす容器
本体1に二酸化ウラン2を収容したのち、蓋3により密
封したものである。二酸化ウランはU−238が自発核
分裂を起こすために常に中性子を発生している。この中
性子を検出するために中性子検出器4を備えており、こ
の中性子検出器4は測定回路5に接続されている。
FIG. 5 shows a storage container containing uranium dioxide powder before being processed into fuel pellets to be used in a nuclear power plant in a nuclear fuel processing plant, and a case in which this storage container is subjected to radiation measurements. In the figure, uranium dioxide 2 is contained in a container body 1 whose cross section is rough, and then the container body 1 is sealed with a lid 3. Uranium dioxide constantly generates neutrons because U-238 undergoes spontaneous nuclear fission. A neutron detector 4 is provided to detect these neutrons, and this neutron detector 4 is connected to a measurement circuit 5.

(発明が解決しようとする課題) しかしながら、このような形状をした放射性物質容器で
は以下のような課題があった。
(Problems to be Solved by the Invention) However, the radioactive substance container having such a shape has the following problems.

第6図は第5図において測定回路5でカウントする中性
子のカウント数を縦軸に、容器本体1の径を横軸にとっ
てグラフ化したものである。なお、横軸の幅は第5図に
示した容器本体1の径と同寸法にしである。第6図から
明らかなように測定回路5ての中性子のカウント数は容
器本体1の表面では大きいか中心部に向かって徐々に低
下する。
FIG. 6 is a graph showing the number of neutrons counted by the measuring circuit 5 in FIG. 5 on the vertical axis and the diameter of the container body 1 on the horizontal axis. Note that the width of the horizontal axis is the same as the diameter of the container body 1 shown in FIG. As is clear from FIG. 6, the number of neutron counts in the measuring circuit 5 is large on the surface of the container body 1, and gradually decreases toward the center.

これは中心方向に沿うにしたかって中性子検出器4との
間に存在する中性子吸収体となる二酸化ウラン2の量か
多くなるためである。このような場合、中性子のカウン
ト数から二酸化ウランの総量を求めると中性子の検出効
率か低いため精度に課題かあった。
This is because the amount of uranium dioxide 2 serving as a neutron absorber existing between the neutron detector 4 and the neutron detector 4 increases along the center direction. In such cases, calculating the total amount of uranium dioxide from the number of neutron counts poses a problem with accuracy because the neutron detection efficiency is low.

本発明は上記課題を解決するためになされたもので、放
射線計測の測定精度を向上させることができる放射性物
質保管容器を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a radioactive substance storage container that can improve the measurement accuracy of radiation measurement.

[発明の構成] (課題を解決するための手段) 本発明は密封構造の容器本体と、この容器本体にその中
心方向に沿って設けられ該容器本体内に収容された放射
性物質の放射線を検出するための放射線検出器を挿入す
る挿入部とからなることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes a container body having a sealed structure, and a device provided along the center direction of the container body to detect radiation of a radioactive substance contained in the container body. and an insertion section into which a radiation detector is inserted.

(作 用) 本発明においては、容器本体内に収容されている放射性
物質の測定に際して挿入部に放射線検出器を挿入するこ
とによって非破壊で精度よく測定することかできる。
(Function) In the present invention, by inserting a radiation detector into the insertion portion when measuring the radioactive substance contained in the container main body, the measurement can be performed non-destructively and with high precision.

(実施例) 本発明に係る放射性物質保管容器の第1の実施例を第1
図および第2図を参照して説明する。なお、図中第5図
と同一部分には同一符号を付して重複する部分の説明は
省略する。
(Example) The first example of the radioactive material storage container according to the present invention is shown in the first example.
This will be explained with reference to the figures and FIG. In addition, the same parts in the figure as in FIG. 5 are given the same reference numerals, and the explanation of the overlapping parts will be omitted.

第1図において、上端が蓋3て密封された筒状容器本体
1には中性子検出器4を中心部に向けて挿入できるよう
に挿入部1aか形成されている。
In FIG. 1, an insertion portion 1a is formed in a cylindrical container body 1 whose upper end is sealed with a lid 3 so that a neutron detector 4 can be inserted toward the center.

この挿入部1aは容器本体1の底面から中心部に向けて
形成されたウェル型くぼみである。
The insertion portion 1a is a well-shaped recess formed from the bottom of the container body 1 toward the center.

容器本体コ内には例えば二酸化ウラン2か収容されてい
る。この二酸化ウラン2の総量を測定する場合には中性
子検出器4を挿入部1a内に挿入する。中性子検出器4
からの信号は測定回路5に接続されている。
For example, uranium dioxide 2 is contained within the container body. When measuring the total amount of uranium dioxide 2, a neutron detector 4 is inserted into the insertion portion 1a. Neutron detector 4
The signal from is connected to the measuring circuit 5.

このように中性子検出器4か中心部に設置できる挿入部
1aを設けた放射性物質容器の作用を説明する。第2図
は従来例として説明したと同様に第1図において測定回
路5てカウントする中性子のカウント数を縦軸に、容器
の径を横軸にとってグラフ化したものである。
The operation of the radioactive substance container provided with the insertion part 1a that can be installed in the center of the neutron detector 4 will be explained. FIG. 2 is a graph in which the number of neutrons counted by the measuring circuit 5 in FIG. 1 is plotted on the vertical axis and the diameter of the container is plotted on the horizontal axis, as in the conventional example.

第2図から明らかなように中性子吸収体となる二酸化ウ
ランの量が少なくなるため容器本体1の中央部では中性
子のカウント数か多くなる。両端へ向うにつれてカウン
ト数は少なくなる。
As is clear from FIG. 2, since the amount of uranium dioxide which acts as a neutron absorber decreases, the number of neutrons counted increases in the center of the container body 1. The count decreases toward both ends.

第3図は本発明の第2の実施例を示したもので、この実
施例では容器本体1の中心部を貫通したトンネル状の挿
入部1aを形成したことにある。他の部分は第1の実施
例と同様なのでその説明を省略する。この実施例によれ
ば中性子検出器4を左右から挿入することかできる利点
がある。
FIG. 3 shows a second embodiment of the present invention, in which a tunnel-shaped insertion portion 1a is formed passing through the center of the container body 1. The other parts are the same as those in the first embodiment, so their explanation will be omitted. This embodiment has the advantage that the neutron detector 4 can be inserted from either the left or the right.

第4図は本発明の第3の実施例を示したもので、この実
施例では蓋3に挿入部1aを備えたことにある。この実
施例によれば上方から中性子検出器4を挿入するので操
作性が容易である。
FIG. 4 shows a third embodiment of the present invention, in which the lid 3 is provided with an insertion portion 1a. According to this embodiment, since the neutron detector 4 is inserted from above, operability is easy.

第3図および第4図で示した容器及び放射線測定装置の
動作は前記第1の実施例の場合と同様である。
The operations of the container and radiation measuring device shown in FIGS. 3 and 4 are the same as in the first embodiment.

尚、上記各々の実施例では燃料加工工場での二酸化ウラ
ンを入れる核燃料物質保管容器を例に説明したが、例え
ば再処理工場で生産する核燃料物質を入れる核燃料物質
保管容器についても同様に実施できる。更に中性子測定
以外の例えばγ線測定の場合においても同様な作用か得
られる。
In each of the above embodiments, a nuclear fuel material storage container containing uranium dioxide at a fuel fabrication plant was described as an example, but the same can be applied to a nuclear fuel material storage container containing nuclear fuel material produced at a reprocessing plant, for example. Furthermore, similar effects can be obtained in cases other than neutron measurements, such as gamma ray measurements.

[発明の効果] 本発明によれば非破壊で放射線の検出効率を高め精度よ
く放射線測定することができる。
[Effects of the Invention] According to the present invention, radiation detection efficiency can be increased and radiation can be measured with high accuracy in a non-destructive manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る放射性物質保管容器の第1の実施
例を示す構成図、第2図は第1図における作用を示す特
性図、第3図及び第4図はそれぞれ本発明の第2および
第3の実施例を示す構成図、第5図は従来の放射性物質
保管容器を示す構成図、第6図は第5図における作用を
示す特性図である。 1・・容器本体 1 a・・・挿入部 ・・二酸化ウラン 3・・蓋 4・・・中性子検出器 5・・測定回路 (8733)
FIG. 1 is a configuration diagram showing a first embodiment of a radioactive material storage container according to the present invention, FIG. 2 is a characteristic diagram showing the action in FIG. 1, and FIGS. FIG. 5 is a configuration diagram showing a conventional radioactive material storage container, and FIG. 6 is a characteristic diagram showing the operation in FIG. 5. 1... Container body 1 a... Insertion section... Uranium dioxide 3... Lid 4... Neutron detector 5... Measurement circuit (8733)

Claims (1)

【特許請求の範囲】[Claims] 密封構造の容器本体と、この容器本体にその中心方向に
沿って設けられ該容器本体内に収容された放射性物質の
放射線を検出するための放射線検出器を挿入する挿入部
とからなることを特徴とする放射性物質保管容器。
It is characterized by comprising a container body with a sealed structure, and an insertion part provided along the center direction of the container body and into which a radiation detector for detecting radiation of the radioactive substance contained in the container body is inserted. radioactive material storage container.
JP2525890A 1990-02-06 1990-02-06 Radioisotope container Pending JPH03231196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2525890A JPH03231196A (en) 1990-02-06 1990-02-06 Radioisotope container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2525890A JPH03231196A (en) 1990-02-06 1990-02-06 Radioisotope container

Publications (1)

Publication Number Publication Date
JPH03231196A true JPH03231196A (en) 1991-10-15

Family

ID=12160997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2525890A Pending JPH03231196A (en) 1990-02-06 1990-02-06 Radioisotope container

Country Status (1)

Country Link
JP (1) JPH03231196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274239A (en) * 1992-07-23 1993-12-28 Sunol Technologies, Inc. Shielded dose calibration apparatus
CN102879797A (en) * 2012-10-09 2013-01-16 贝谷科技股份有限公司 Food and water radioactivity detection instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274239A (en) * 1992-07-23 1993-12-28 Sunol Technologies, Inc. Shielded dose calibration apparatus
CN102879797A (en) * 2012-10-09 2013-01-16 贝谷科技股份有限公司 Food and water radioactivity detection instrument

Similar Documents

Publication Publication Date Title
Millard Jr Determination of uranium and thorium in USGS standard rocks by the delayed neutron technique
Anders et al. A Rapid, Nondestructive Method of Precision Oxygen Analysis by Neutron Activation.
US4617169A (en) Measurement of radionuclides in waste packages
US8428215B2 (en) Method of improving the spent nuclear fuel burnup credit
US6134289A (en) Thermal neutron detection system
JPH03231196A (en) Radioisotope container
US4200491A (en) Apparatus and method for detecting power distribution in a nuclear reactor fuel element
KR100332712B1 (en) Measuring method for fissile content in nuclear fuel material using cadmium ratio of neutron counts and its equipment
US4515749A (en) Subcriticality measurement apparatus and method
Kull et al. A simple gamma-spectrometric technique for measuring isotopic abundances in nuclear materials
JPH01100493A (en) Nuclear fission type neutron detector
GB1509269A (en) Inspecting radioactive fuel rods
KR20100073688A (en) Sample holder module and active neutron counter having the same
Tommasino The present state of track etch processes in radiation dosimetry
KR200167924Y1 (en) 1,000 ㎖ Cylindrical Beaker for Gamma-ray Spectrometry with Ge-detector
Caldwell et al. Measurement of transuranic content in wastes
JPS62294997A (en) Method of measuring non-criticality
Foley APPLICATION OF THE RANDOM SOURCE INTERROGATION SYSTEM (RANDOM DRIVER) AT THE OAK RIDGE Y-12 PLANT. Preliminary Results.
JP3329859B2 (en) Neutron measurement method and its measurement device
Veres et al. Deliverable 2.5 Assessment of feasibility of waste form characterisation methods
Weston et al. Measurement of the neutron capture cross sections of the actinides
Brodzinski et al. Instrument for determining the transuranic element content of chopped leached fuel hulls and other materials
MILlard Jr Descriptions and Analyses of Eight New USGS Rock Standards
Papp et al. Evaluation of the uranium concentration in rocks at the μg/g level by a low-background Geiger-Müller counter
JPS61292599A (en) Vessel for radioactive waste