JPH03230753A - Controlling method for converter - Google Patents

Controlling method for converter

Info

Publication number
JPH03230753A
JPH03230753A JP2558490A JP2558490A JPH03230753A JP H03230753 A JPH03230753 A JP H03230753A JP 2558490 A JP2558490 A JP 2558490A JP 2558490 A JP2558490 A JP 2558490A JP H03230753 A JPH03230753 A JP H03230753A
Authority
JP
Japan
Prior art keywords
full
voltage
current
switching element
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2558490A
Other languages
Japanese (ja)
Other versions
JP3029037B2 (en
Inventor
Masaoki Sekine
正興 関根
Takeshi Iwasaki
岩崎 武司
Yasushi Sekido
関戸 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP02025584A priority Critical patent/JP3029037B2/en
Publication of JPH03230753A publication Critical patent/JPH03230753A/en
Application granted granted Critical
Publication of JP3029037B2 publication Critical patent/JP3029037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To improve the power factor of input by resetting the current of a chock coil with every switching, and driving the switching elements with fixed frequency, and controlling the on time according to the change of output voltage. CONSTITUTION:A series circuit, comprising a switching element 4, a choke coil 6, and a switching element 5, is connected between the DC output terminals of a full-wave rectifying circuit 2. By driving circuits 18 and 19, the switching elements 4 and 5 are turned on or turned off at the same time with the fixed frequency enough high than the frequency of AC voltage. The on-time is controlled according to the change of output voltage. The current of the choke coil 6 is reset with every switching. The AC gain of an error amplifier 15 is let down enough with a capacitor 20 and a resistance 21 so that it may not respond to the basic frequency of full-wave rectifying voltage. This way, input current waveform becomes analog to the input voltage waveform.

Description

【発明の詳細な説明】 〔産業上の利用外!f〕 本発明は交流電圧を整流・平滑し直流電圧に変換するコ
ンバータにおいて、入力端子波形を入力端子波形と相似
にするコンバータの制御方法に関する。
[Detailed description of the invention] [Not for industrial use! f] The present invention relates to a converter that rectifies and smoothes AC voltage and converts it into DC voltage, and relates to a method of controlling the converter to make the input terminal waveform similar to the input terminal waveform.

〔従来の技術〕[Conventional technology]

第8閲及び第9図は従来のコンバータの’M m 方法
を説明するための図であり、第8図は回路図第9図は動
作波形図を示す。
8 and 9 are diagrams for explaining the 'M m method of the conventional converter, where FIG. 8 shows a circuit diagram and FIG. 9 shows an operating waveform diagram.

第8図において、交流電圧を高周波用フィルタIを介し
て全波U流回路2で全波V流し、チシ7バ回路3のスイ
ッチング素子4.5を交流電圧の周波数よりも充分高い
周波数でスイッチングさせることによりチコフパ回1I
II3の出力に直fLf!圧を得る。
In Fig. 8, an AC voltage is passed through a high-frequency filter I in a full-wave U flow circuit 2, and a switching element 4.5 of a circuit 3 is switched at a frequency sufficiently higher than the frequency of the AC voltage. By letting Chikofupa times 1I
Direct fLf to the output of II3! Get pressure.

第8図のチ」ツバ回路3の動作を第9図に示す動作波形
図に従って説明する。先ず、スイッチング素子4.5を
同時にオンさせると、チョークコイル6にエネルギが蔚
棲され、チョークコイル6を流れる電IILIt  (
第9図181に示す)及びスイッチング素子4.5を流
れる電filz(第9図181に示す)はチョークコイ
ル6のインダクタンスをL全′eL?iW流回路2によ
り全波整流された電圧をE(第9図181に示す)とす
ると、E/Lの傾きで上賀する。次に、スイッチング素
子4,5を同時にオフさせると、チョークコイル6に酉
棲されたエネルギにより、整流用ダイオード7、フライ
ボイル川ダイオード8を介して電!(チラークコイル6
を流れるfa流■、を第9図1b+に、v1流用ダイオ
ード7を流れるfIi流2.を第9[idlに示す)が
流れ、大きな容量の平滑用コンデンサ9を充電しこのコ
ンデンサ9から直流出力電圧E0を得る。
The operation of the chip-flange circuit 3 shown in FIG. 8 will be explained with reference to the operating waveform diagram shown in FIG. 9. First, when switching elements 4.5 are turned on at the same time, energy is stored in choke coil 6, and electric current IILIt (
181 in FIG. 9) and the electric current filz (shown in FIG. 9 181) flowing through the switching element 4.5, the inductance of the choke coil 6 is L total'eL? Assuming that the voltage full-wave rectified by the iW current circuit 2 is E (shown at 181 in FIG. 9), it rises with a slope of E/L. Next, when the switching elements 4 and 5 are turned off at the same time, the energy stored in the choke coil 6 causes electricity to flow through the rectifier diode 7 and the flyboil diode 8! (Chiraak coil 6
The fa current flowing through the v1 diode 7 is shown in FIG. 9, 1b+, and the fIi current 2. A ninth current (shown as idl) flows, charges a large capacitance smoothing capacitor 9, and obtains a DC output voltage E0 from this capacitor 9.

チョークコイル6を流れる電流11を変*mlOで検出
してその低周波成分を取り出した電流検出値、!:、 
出力i圧+>、 と基I′Frri圧E1..との偏差
を誤差増幅器11で検出・増幅し交流電圧の全波整流電
圧波形の比例値とを電圧制御型利得増幅器(以下vCA
という)12で演算して得られた電圧検出値との差を差
動増幅器13で増幅し、その出力が最小になるようにパ
ルス幅制御回路14でスイッチング素子4.5の駆動を
14g1する。
The current detection value is obtained by detecting the current 11 flowing through the choke coil 6 at a variable *mlO and extracting its low frequency component. :,
Output i pressure +>, and base I'Frri pressure E1. .. The error amplifier 11 detects and amplifies the deviation between
) 12 is amplified by the differential amplifier 13, and the pulse width control circuit 14 drives the switching element 4.5 by 14g1 so that the output thereof is minimized.

このように1Amすることにより、チョークコイル6の
1を浦波形(第9図1b+に示す)を全波整流電圧波形
(第9図181に示す)と相似形にし、入力端子のAi
調波成分を低減している。
By setting the voltage to 1 Am in this way, the Ai of the choke coil 6 makes the Ura waveform (shown in FIG. 9 1b+) similar to the full-wave rectified voltage waveform (shown in FIG. 9 181), and the input terminal Ai
Reduces harmonic components.

[発明が解決しようとする!l!題〕 しかしこのようなMl)1方法では、チョークコイルの
電流波形を全波整流電圧波形と相似形にするため、コン
デンサインプット形整流回路に比較して高調波を低減で
きるが、入力電流波形は入力端子波形と相似形ではなく
なる。なぜならば、入力電流波形を入力電圧波形と相似
形にするためには電圧位相に関係なくスイッチング素子
のデユーティ比を一定にしなければならないが、この9
1のようにチラークコイルの電流を正弦波とすると。
[Invention tries to solve! l! However, in the Ml)1 method, the current waveform of the choke coil is made similar to the full-wave rectified voltage waveform, so harmonics can be reduced compared to a capacitor input type rectifier circuit, but the input current waveform is The waveform will no longer be similar to the input terminal waveform. This is because in order to make the input current waveform similar to the input voltage waveform, the duty ratio of the switching element must be constant regardless of the voltage phase.
If the current of the chiller coil is a sine wave as shown in 1.

スイッチング素子のデユーティ比を電圧位相で制(ML
なければならなくなるからである。その結果入力の力率
が悪くなるという欠点がある。またVCAは高価でオフ
セットyi整が必要であるという問題がある。更に、変
流器は直流電流を測定するため特殊なものが必要になる
The duty ratio of the switching element is controlled by the voltage phase (ML
Because it becomes necessary. As a result, there is a drawback that the input power factor deteriorates. Another problem is that VCA is expensive and requires offset yi adjustment. Furthermore, a special current transformer is required to measure direct current.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は以上の欠点を除去するために、交流電圧を全波
整流して全波整流電圧を得る全波整流回路と、該全波整
流回路の出力に接続され上記交流電圧より充分高い変換
周波数で同時にオン・オフNi1される2つのスイッチ
ング素子と、該スイッチング素子に挟まれたチョークコ
イルと、該チョークコイルの両端に接続された2つのダ
イオードと、平滑用コンデンサとを備え、上記スイッチ
ング素子のオン時に上記チョークコイルにエネルギを蓄
え、オフ時に上記2つのダイオードを介して上記平滑用
コンデンサにエネルギを紋出し、該コンデンサの両端か
ら負荷へ電力を供給するコンバータのv40+1方法に
おいて、上記チラークコイルの電流をスイッチング毎に
リセットすると共に、上記スイッチング素子の駆動を固
定周波数とし、出力電圧の変動に応じてオン時間を14
rRすることを特徴とするコンバータの14FB方法、
及び交流電圧を全波整流して全波整流電圧を得る全波整
流回路と、i全波整流回路の出力に1次5IIIAが接
続されたトランスと、該トランスの1次巻線と上記全波
整流回路の出力間に接続され上記交流電圧より充分高い
変換周波数でオン・オフ制御されるスイッチング素子と
、上記トランスの2次巻線に接続されたダイオードと平
滑用コンデンサの直列回路とを備え、上記スイッチング
素子のオン時に上記トランスの1次S6にエネルギを蓄
え、オフ時に上記トランスの2次巻線から上記ダイオー
ドを介して上記平滑用コンデンサにエネルギを放出し、
該コンデンサの両端から負荷へ電力を供給するコンバー
タのt14御方法において、上記トランスの1次巻線の
電流をスイッチング毎にリセットすると共に、上記スイ
ッチング素子の駆動を固定周波数とし、出力電圧の変動
に応じてオン時間を′!i制御することを特徴とするコ
ンバータの111g11方法を提供するものである。
In order to eliminate the above-mentioned drawbacks, the present invention provides a full-wave rectifier circuit that full-wave rectifies an AC voltage to obtain a full-wave rectified voltage, and a full-wave rectifier circuit that is connected to the output of the full-wave rectifier circuit and has a conversion frequency sufficiently higher than the AC voltage The switching element includes two switching elements that are simultaneously turned on and off at Ni1, a choke coil sandwiched between the switching elements, two diodes connected to both ends of the choke coil, and a smoothing capacitor. In the v40+1 method of a converter, which stores energy in the choke coil when it is on, and outputs energy to the smoothing capacitor via the two diodes when it is off, and supplies power from both ends of the capacitor to the load, the current in the chiller coil At the same time, the switching element is driven at a fixed frequency, and the on-time is set to 14 times according to fluctuations in the output voltage.
14FB method of converter characterized by rR,
and a full-wave rectifier circuit that obtains a full-wave rectified voltage by full-wave rectifying an AC voltage, a transformer in which a primary 5IIIA is connected to the output of the full-wave rectifier circuit, and a primary winding of the transformer and the full-wave rectifier circuit. A switching element connected between the outputs of the rectifier circuit and controlled to be turned on and off at a conversion frequency sufficiently higher than the alternating current voltage, and a series circuit of a diode and a smoothing capacitor connected to the secondary winding of the transformer, When the switching element is turned on, energy is stored in the primary S6 of the transformer, and when the switching element is turned off, energy is released from the secondary winding of the transformer to the smoothing capacitor via the diode,
In the t14 control method of the converter that supplies power from both ends of the capacitor to the load, the current in the primary winding of the transformer is reset every time the transformer is switched, and the switching element is driven at a fixed frequency to compensate for fluctuations in the output voltage. Turn on time accordingly! This invention provides a 111g11 method for a converter characterized by i-control.

(作用〕 このようなコンバータの[6方法によれば、入力電流波
形を入力端子波形と相似形にでき、あたかも入力端子に
抵抗が接続されたようになり、入力の力率改善が図れる
(Function) According to method [6] of such a converter, the input current waveform can be made similar to the input terminal waveform, so that it becomes as if a resistor is connected to the input terminal, and the input power factor can be improved.

〔実施例〕〔Example〕

第1図及び第2図は本発明の一実施例を説明するための
間であり、第1図は回路図、第2図は動作波形図を示す
1 and 2 are for explaining one embodiment of the present invention, FIG. 1 shows a circuit diagram, and FIG. 2 shows an operation waveform diagram.

第1図において、交流電圧を高周波用フィルタlを介し
て全′m51流回路2の入力端子に接続し、全波整流回
路2の直流出力端子間にはスイッチング1子4.チラー
クコイル6.スイツチング素子5の直列回路を接続する
。そして、スイッチング妻子5と並列に整流用ダイオー
ド7と平滑用コンデンサ9の直列回路を接続し、スイッ
チング素子4とチロ−クコイル6との接続点とスイッチ
ング妻子5と平滑用コンデンサ9との接続点間にフライ
ホイル用ダイオード8をスイッチング妻子45がオフの
時に導通する方向に接続し、平滑用コンデンサ9の端子
間より出力を取り出す、そして出力電圧の安定化14m
は、W4差増幅回路15において出力電圧E0を抵抗1
6.17で分圧し、基準電圧E□、との1%差を誤差増
幅′S11で増幅し、パルス幅am回路14でパルス幅
に変換後、駆動回路1819に送りスイッチング素子4
,5をオン・オフ駆動することにより行う。
In FIG. 1, an AC voltage is connected to the input terminal of a full-wave rectifier circuit 2 through a high-frequency filter 1, and a switching circuit 4. Chilark coil6. A series circuit of switching elements 5 is connected. Then, a series circuit of a rectifier diode 7 and a smoothing capacitor 9 is connected in parallel with the switching wife and child 5, and between the connection point between the switching element 4 and the chiroku coil 6 and the connection point between the switching wife and child 5 and the smoothing capacitor 9. A flywheel diode 8 is connected in the direction in which it conducts when the switching wife 45 is off, the output is taken out between the terminals of the smoothing capacitor 9, and the output voltage is stabilized by 14 m.
In the W4 difference amplifier circuit 15, the output voltage E0 is connected to the resistor 1.
6.17, the 1% difference with the reference voltage E
, 5 are turned on and off.

次に動作を説明する。全波整流電圧の任意の位相におけ
る電圧健をEとすると、スイッチング素子4.5の同時
オン時に流れる電流■、は、チョークコイル6のインダ
クタンス−をLとすると。
Next, the operation will be explained. If the voltage at any phase of the full-wave rectified voltage is E, then the current () flowing when the switching elements 4.5 are simultaneously turned on is, and if the inductance of the choke coil 6 is L.

1、=Et/Lとなり、オン時間であるtが一定でチラ
ークコイルの電流がスイッチング毎にリセットされれば
、電流1.のビーク値を結んだ線は第21iJfblに
示すように第2図ialに示す全波整流電圧の波形と相
似になる。
1.=Et/L, and if the on time t is constant and the current of the chiller coil is reset at each switching, the current 1. The line connecting the peak values of , as shown in 21iJfbl, becomes similar to the waveform of the full-wave rectified voltage shown in FIG. 2ial.

交流電圧の周波数に比べ充分高いスイッチング周波数で
スイッチング素子4,5を駆動し、スイッチング毎にチ
ラークコイル6の電流をリセットさせると、全波整流回
路2の出力電流はスイッチング毎にスイッチング妻子4
.5に流れる電流I2の平均値の連続となる。各スイッ
チング毎の平均値l□は、スイッチング周期をT、オン
時間をTon とすると。
If the switching elements 4 and 5 are driven at a switching frequency that is sufficiently high compared to the frequency of the AC voltage and the current of the chiller coil 6 is reset at each switching, the output current of the full-wave rectifier circuit 2 is changed to the switching wife and child 4 at each switching.
.. The average value of the current I2 flowing through the current I2 is continuous. The average value l□ for each switching is assumed to be the switching period T and the on time Ton.

ET、、/Lは前述したように全波整流電圧波形と相似
であるからTon/Tを一定に保てば、全波整流回路の
出力電流は全波整流電圧波形と相似形になり、従って、
入力電流波形は入力電圧波形と相似形になる。
As mentioned above, ET, , /L are similar to the full-wave rectified voltage waveform, so if Ton/T is kept constant, the output current of the full-wave rectifier circuit will be similar to the full-wave rectified voltage waveform, and therefore ,
The input current waveform becomes similar to the input voltage waveform.

人力に流れた電流はすべて出力に流れるため平滑用コン
デンサ9の電圧は全波整流電圧Eの基本周波数で変動す
る。出力電圧の安定化制御が、全波整流電圧Eの基本周
波数に対してゲインを持っているとこの周波数成分の変
動を減らそうと、スイッチング!子のオフ時間をmmす
ることになりゴ。、、/Tが変化し、入力端子波形は電
圧波形と相似形とならない。そこで、第111Zの誤差
増幅回路15の交流ゲインをコンデンサ20と抵抗21
とで充分落とし、全波整流電圧Eの基本周波数に対して
は応答しないようにし、直流に対してのみ安定化制御で
きるようにすることにより、入力端子波形は電圧波形と
相似形になる。
Since all the current flowing to the human power flows to the output, the voltage of the smoothing capacitor 9 fluctuates at the fundamental frequency of the full-wave rectified voltage E. If the output voltage stabilization control has a gain with respect to the fundamental frequency of the full-wave rectified voltage E, switching! The child's off time will be reduced to mm. , , /T changes, and the input terminal waveform does not have a similar shape to the voltage waveform. Therefore, the AC gain of the 111Z error amplification circuit 15 is adjusted by the capacitor 20 and the resistor 21.
The input terminal waveform becomes similar to the voltage waveform by sufficiently lowering the voltage E, so as not to respond to the fundamental frequency of the full-wave rectified voltage E, and by making stabilization control possible only for direct current.

第3図は本発明の他の一実施例を説明するための図であ
り、第1図の回路の出力電圧検出部にバンドパスフィル
タ22を挿入し、全波整流電圧Eの基本周波数成分を取
り除いてから、r!差増幅器!1に人力するもので、負
荷変動や入力変動に対する応答の改善を図ったものであ
る。
FIG. 3 is a diagram for explaining another embodiment of the present invention, in which a bandpass filter 22 is inserted in the output voltage detection section of the circuit of FIG. 1, and the fundamental frequency component of the full-wave rectified voltage E is After removing it, r! Difference amplifier! 1 is manually operated, and is designed to improve response to load fluctuations and input fluctuations.

1114図は本発明の他の一実施例を説明するための図
であり1第1図の回路の出力部に高速応答コンバータ回
路23を接続したものである。第1図の実施例では応答
が遅く、また第3図の実施例でも全波整流電圧の基本周
波数成分の電圧脈動があり負荷に支障をきたす場合や、
入出力の絶縁が必要な場合、高速に安定化i4mを行い
、且つ入出力を絶縁し負荷に電圧精度の良い電力を供給
できるように構成したものである。尚、このコンバータ
回1!823は良く知られているので、動作説明は省略
する。また、この実施例ではフォワードコンバータを示
しているが、フライバックコンバータ等どのような回路
構成でも同様な効果が得られる。
FIG. 1114 is a diagram for explaining another embodiment of the present invention, in which a high-speed response converter circuit 23 is connected to the output section of the circuit shown in FIG. In the embodiment shown in FIG. 1, the response is slow, and in the embodiment shown in FIG.
When input/output insulation is required, the system is configured to perform stabilization i4m at high speed, insulate input/output, and supply power with high voltage accuracy to the load. Incidentally, since this converter circuit 1!823 is well known, a description of its operation will be omitted. Furthermore, although a forward converter is shown in this embodiment, similar effects can be obtained with any circuit configuration such as a flyback converter.

第5図は本発明の他の一実施例を説明するための図であ
り、第1図の千17パ回路の代わりにフライバック形回
路で構成したものであり1人出力を絶縁する必要のある
場合等に用いられる。
FIG. 5 is a diagram for explaining another embodiment of the present invention, in which a flyback type circuit is used instead of the 1,170-pin circuit shown in FIG. Used in certain cases.

第5図において、交流電圧を高・周波用フィルタlを介
して全波整流回路2の入力端子に接続し、全波整流回路
2の直流出力端子間にはトランス24の1次巻mNlと
スイッチング素子4の直列回路を接続する。そして、ト
ランス24の2次S緯N2に整流用ダイオード7と平滑
用コンデンサ9の直列回路を接続し、平滑用コンデンサ
9の端子間より出力を取り出す、そして、出力電圧の安
定化!4御はlI!I差増幅回路15において出力電圧
E、を抵抗1617で分圧し、基Ijfli圧E、、、
、との誤差を誤差増幅311で増幅し、フォトカプラ2
5で絶縁してlくルス輻1A御回g314に伝達してパ
ルス幅ら変換後、駆動回路18に送りスイッチング素子
4をオン・オフ駆動することにより行う、この実施例に
おし)ても第1図の実施例で説明したのとほぼ同様の動
作であり、同様の効果が得られる。
In FIG. 5, the AC voltage is connected to the input terminal of the full-wave rectifier circuit 2 via the high-frequency filter l, and the primary winding mNl of the transformer 24 and the switching terminal are connected between the DC output terminals of the full-wave rectifier circuit 2. Connect the series circuit of element 4. Then, a series circuit of a rectifier diode 7 and a smoothing capacitor 9 is connected to the secondary S latitude N2 of the transformer 24, and the output is taken out between the terminals of the smoothing capacitor 9, and the output voltage is stabilized! 4 people are lI! In the I difference amplifier circuit 15, the output voltage E, is divided by the resistor 1617, and the base Ijfli pressure E,...
, is amplified by the error amplification 311, and the photocoupler 2
In this embodiment, the pulse width is insulated by 5, and the pulse width 1A is transmitted to g314, and after converting the pulse width, it is sent to the drive circuit 18 and the switching element 4 is turned on and off. The operation is almost the same as that described in the embodiment of FIG. 1, and the same effects can be obtained.

第6図は本発明の他の一実施例を説明するための図であ
り、第5図の回路の出力電圧検出部に/インドパスフィ
ルタ22を挿入し、全波整流電圧Eの基本周波数成分を
取り除いてから、a差増幅器11に人力するもので、負
荷変動や入力変動に対する応答の改河を図ったものであ
る。
FIG. 6 is a diagram for explaining another embodiment of the present invention, in which an Indian pass filter 22 is inserted into the output voltage detection section of the circuit of FIG. 5, and the fundamental frequency component of the full-wave rectified voltage E is is removed and then manually applied to the a-difference amplifier 11, with the aim of improving the response to load fluctuations and input fluctuations.

第7図は本発明の他の一実施例を説明するための図であ
り、第5図の回路の出力部に高速応答チジッパ回路26
を接続したものである。第5図の実施例では応答が遅く
、また第5図の実施例でも全波整流電圧の基本周波数成
分の電圧脈動があり負荷に支障をきたす場合、lIi達
に安定化!4御を行い負荷に電圧精度の良い電力を供給
できるように構成したものである。尚、このチコッパ回
路26は良(知られているので、動作説明は省略する。
FIG. 7 is a diagram for explaining another embodiment of the present invention, in which a high-speed response chip zipper circuit 26 is connected to the output section of the circuit of FIG.
is connected. In the embodiment shown in Fig. 5, the response is slow, and even in the embodiment shown in Fig. 5, there is voltage pulsation in the fundamental frequency component of the full-wave rectified voltage, which causes a problem with the load. 4 control, and is configured to supply power with high voltage accuracy to the load. Incidentally, since this chipper circuit 26 is well known, a description of its operation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、電流波形制御の電流検
出用度fLSやVCAが不必要になる等回路に特別なも
のを使用せず、簡単な構成で、入力電流波形を入力電圧
波形と相似形にでき、あたかも入力端子に抵抗が接続さ
れたようになり、入力の力率改河が図れる。
As explained above, the present invention does not use any special circuit such as the current detection function fLS or VCA for current waveform control, and has a simple configuration that allows the input current waveform to be similar to the input voltage waveform. It is possible to change the input power factor by making it appear as if a resistor is connected to the input terminal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を説明するための
図、第3図乃至第7図は夫々本発明の一実施例を説明す
るための図、第8図及び第9図は従来例を説明するため
の図である。 l・・・高周波用フィルタ 2・・・全波整流回路3・
・・チ1フパ回路 4.5・・・スイッチング稟子 6・・・チク−クコイル  7・・・整流用ダイオード
8・・・フライホイル用ダイオード 9・・・平滑用コンデンサ 10・・・変流器II・・
・誤差増幅乙    12・・・VCA13・・・差動
増幅2514・・・パルス幅制御回路15・・・誤差増
幅回路   16.17・・・抵抗18、19・・・駆
動回路   20・・・コンデンサ21・・・抵抗22
・・・バンドパスフィルタ23・・・高速応答コンバー
タ回路 24・・−トランス     25・・・フォトカプラ
26・・・高速応答チlI7パ回路
1 and 2 are diagrams for explaining one embodiment of the present invention, FIGS. 3 to 7 are diagrams for explaining one embodiment of the present invention, respectively, and FIGS. 8 and 9 are diagrams for explaining one embodiment of the present invention, respectively. FIG. 2 is a diagram for explaining a conventional example. l...High frequency filter 2...Full wave rectifier circuit 3.
・・Chi1 Fupa circuit 4.5・・Switching diode 6・・Chiku-ku coil 7・・Rectifier diode 8・・Flywheel diode 9・・Smoothing capacitor 10・・Current transformer Vessel II...
・Error amplification B 12...VCA13...Differential amplification 2514...Pulse width control circuit 15...Error amplification circuit 16.17...Resistors 18, 19...Drive circuit 20...Capacitor 21...Resistance 22
... Bandpass filter 23 ... High-speed response converter circuit 24 ... -Transformer 25 ... Photocoupler 26 ... High-speed response chipper circuit

Claims (3)

【特許請求の範囲】[Claims] (1)交流電圧を全波整流して全波整流電圧を得る全波
整流回路と、該全波整流回路の出力に接続され上記交流
電圧より充分高い変換周波数で同時にオン・オフ制御さ
れる2つのスイッチング素子と、該スイッチング素子に
挟まれたチョークコイルと、該チョークコイルの両端に
接続された2つのダイオードと、平滑用コンデンサとを
備え、上記スイッチング素子のオン時に上記チョークコ
イルにエネルギを蓄え、オフ時に上記2つのダイオード
を介して上記平滑用コンデンサにエネルギを放出し、該
コンデンサの両端から負荷へ電力を供給するコンバータ
の制御方法において、 上記チョークコイルの電流をスイッチング毎にリセット
すると共に、上記スイッチング素子の駆動を固定周波数
とし、出力電圧の変動に応じてオン時間を制御すること
を特徴とするコンバータの制御方法。
(1) A full-wave rectifier circuit that full-wave rectifies an AC voltage to obtain a full-wave rectified voltage; and 2, which is connected to the output of the full-wave rectifier circuit and is simultaneously controlled on and off at a conversion frequency sufficiently higher than the AC voltage. The device includes two switching elements, a choke coil sandwiched between the switching elements, two diodes connected to both ends of the choke coil, and a smoothing capacitor, and stores energy in the choke coil when the switching element is turned on. , in a method of controlling a converter that releases energy to the smoothing capacitor through the two diodes when off and supplies power to the load from both ends of the capacitor, the current of the choke coil being reset each time the choke coil is switched; A method for controlling a converter, characterized in that the switching element is driven at a fixed frequency and the on-time is controlled according to fluctuations in output voltage.
(2)交流電圧を全波整流して全波整流電圧を得る全波
整流回路と、該全波整流回路の出力に1次巻線が接続さ
れたトランスと、該トランスの1次巻線と上記全波整流
回路の出力間に接続され上記交流電圧より充分高い変換
周波数でオン・オフ制御されるスイッチング素子と、上
記トランスの2次巻線に接続されたダイオードと平滑用
コンデンサの直列回路とを備え、上記スイッチング素子
のオン時に上記トランスの1次巻線にエネルギを蓄え、
オフ時に上記トランスの2次巻線から上記ダイオードを
介して上記平滑用コンデンサにエネルギを放出し、該コ
ンデンサの両端から負荷へ電力を供給するコンバータの
制御方法において、 上記トランスの1次巻線の電流をスイッチング毎にリセ
ットすると共に、上記スイッチング素子の駆動を固定周
波数とし、出力電圧の変動に応じてオン時間を制御する
ことを特徴とするコンバータの制御方法。
(2) A full-wave rectifier circuit that full-wave rectifies an AC voltage to obtain a full-wave rectified voltage, a transformer with a primary winding connected to the output of the full-wave rectifier circuit, and a primary winding of the transformer. a switching element connected between the outputs of the full-wave rectifier circuit and controlled to turn on and off at a conversion frequency sufficiently higher than the AC voltage; and a series circuit of a diode and a smoothing capacitor connected to the secondary winding of the transformer. storing energy in the primary winding of the transformer when the switching element is turned on;
In a method for controlling a converter, which releases energy from the secondary winding of the transformer to the smoothing capacitor via the diode when turned off, and supplies power to the load from both ends of the capacitor, the primary winding of the transformer A method for controlling a converter, characterized in that the current is reset every time the current is switched, the switching element is driven at a fixed frequency, and the on-time is controlled according to fluctuations in the output voltage.
(3)上記スイッチング素子のオン時間は、上記全波整
流電圧の基本周波数に対しては応答しないようにしたこ
とを特徴とする請求項1または2記載のコンバータの制
御方法。
(3) The method of controlling a converter according to claim 1 or 2, wherein the on-time of the switching element is made not to respond to the fundamental frequency of the full-wave rectified voltage.
JP02025584A 1990-02-05 1990-02-05 Converter control method Expired - Fee Related JP3029037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02025584A JP3029037B2 (en) 1990-02-05 1990-02-05 Converter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02025584A JP3029037B2 (en) 1990-02-05 1990-02-05 Converter control method

Publications (2)

Publication Number Publication Date
JPH03230753A true JPH03230753A (en) 1991-10-14
JP3029037B2 JP3029037B2 (en) 2000-04-04

Family

ID=12169966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02025584A Expired - Fee Related JP3029037B2 (en) 1990-02-05 1990-02-05 Converter control method

Country Status (1)

Country Link
JP (1) JP3029037B2 (en)

Also Published As

Publication number Publication date
JP3029037B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
US4525774A (en) Regulated AC-DC converter having saturation inductance in resonant circuit
US4935857A (en) Transistor conduction-angle control for a series-parallel resonant converter
US6023416A (en) DC power supply apparatus including boosting/lowering converter unit and control
JP3112584B2 (en) Inverter high-efficiency operation device
JPH05111259A (en) Power supply circuit
EP0593257A2 (en) Boost converter
JPH04299070A (en) Switching regulator
JPH07115774A (en) Power supply
JPS6323563A (en) Power supply unit
JPH03230753A (en) Controlling method for converter
JP2885610B2 (en) Switching mode rectifier circuit
US5434769A (en) Multi-phase adaptable AC-DC converter
KR20200078110A (en) Bipolar pulse power supply circuit
JP2550325B2 (en) Power supply
JPS61132071A (en) Power source
JPH05300734A (en) Switching regulator
JPH01315265A (en) Rectifier device
JPS622856A (en) Switching regulator
JPH03230760A (en) Controlling method for converter
JPS634424B2 (en)
JPS6236463B2 (en)
JP2637646B2 (en) DC power supply circuit
JPS6253177A (en) Constant-frequency switching power unit
JP3175756B2 (en) High power factor converter
JPS63245258A (en) Power circuit device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees