JPH03230116A - High-voltage bias circuit for driving liquid crystal - Google Patents

High-voltage bias circuit for driving liquid crystal

Info

Publication number
JPH03230116A
JPH03230116A JP2553990A JP2553990A JPH03230116A JP H03230116 A JPH03230116 A JP H03230116A JP 2553990 A JP2553990 A JP 2553990A JP 2553990 A JP2553990 A JP 2553990A JP H03230116 A JPH03230116 A JP H03230116A
Authority
JP
Japan
Prior art keywords
operational amplifier
amplifier circuit
liquid crystal
voltage
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2553990A
Other languages
Japanese (ja)
Inventor
Kozo Yokoyama
横山 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2553990A priority Critical patent/JPH03230116A/en
Publication of JPH03230116A publication Critical patent/JPH03230116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Display Device Control (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To allow the supply of a high voltage to the bias circuit by using plural pieces of operational amplifier circuits and dividing the bias circuit for driving a liquid crystal to a high-voltage side and a low-voltage side. CONSTITUTION:The max. potential VLCD is applied on the positive power source terminal (a) of the 1st operational amplifier circuit 1 and the voltage of Vc-3 is applied on the negative power source terminal (b). the half of the max. potential is applied between both terminals and half the VLCD is applied similarly on the 2nd operational amplifier circuit 2 as well if the voltage is reduced to a half of Vc=VLCD. Voltages V1, V2 of the high voltages for driving are generated by dividing resistors R5 to R9 from the 3rd operational amplifier circuit 3 and bias voltages V3, V4 of low voltages for driving are similarly generated by the dividing resistors R5 to R9 from the 4th operational amplifier circuit 4. The bias circuit is divided to the high-voltage side and the low-voltage side in such a manner, by which the potential is increased up to 2 times the dilectric strength of nearly one piece of the operational amplifier.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶表示装置等に用いる液晶駆動用高電圧バ
イアス回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high voltage bias circuit for driving liquid crystal used in liquid crystal display devices and the like.

〔発明の概要〕[Summary of the invention]

本発明は、液晶駆動用のバイアス回路を、高圧側(V+
、Vz)と低圧側(Vz、Vn)に分けることにより、
バイアス回路に高電圧を供給できるようにしたものであ
る。
In the present invention, the bias circuit for driving the liquid crystal is connected to the high voltage side (V+
, Vz) and low pressure side (Vz, Vn),
This allows high voltage to be supplied to the bias circuit.

〔従来の技術〕[Conventional technology]

第2図に示すように、液晶駆動用のバイアス回路は、一
つのオペアンプ回路4で構成することが知られている。
As shown in FIG. 2, it is known that a bias circuit for driving a liquid crystal is composed of one operational amplifier circuit 4.

〔発明が解決しようとするa題〕[Problem a that the invention seeks to solve]

しかし、従来の液晶駆動バイアス回路は、1個のオペア
ンプ回路を利用し、その十電源端子VCCを、液晶駆動
の最高電位に相当する電圧VLCDに、電源端子VSS
を接地電位として使用する為、液晶駆動用最高単位VB
gが、オペアンプ回路4の電源電圧の耐圧に相当するよ
うになる。液晶の表示装置の増大に伴って、この電圧■
16.は増加する。カラー化等の条件により液晶駆動用
最高電位V LCDは、さらに増加する傾向にあり、ま
すます高耐圧のオペアンプが必要となる。
However, the conventional liquid crystal drive bias circuit uses one operational amplifier circuit, and connects the power supply terminal VCC to the voltage VLCD corresponding to the highest potential of the liquid crystal drive.
Since VB is used as the ground potential, the highest unit for driving the liquid crystal
g corresponds to the withstand voltage of the power supply voltage of the operational amplifier circuit 4. With the increase in liquid crystal display devices, this voltage
16. increases. Due to conditions such as colorization, the highest potential for driving liquid crystals (VLCD) tends to further increase, and operational amplifiers with higher withstand voltages are required.

そこで本発明は、従来のこのような欠点を解決するため
、前記オペアンプ回路4を2つに分けて、高耐圧な回路
を構成し、液晶の動作電圧増加に対応することを目的と
している。
Therefore, in order to solve these conventional drawbacks, the present invention aims to divide the operational amplifier circuit 4 into two parts to form a circuit with high withstand voltage to cope with the increase in the operating voltage of the liquid crystal.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、オペアンプのバイアス回路を
高圧側(Vl、V2)と低圧側(V3.V、)に分けて
バイアス回路を構成することにより、はぼ1ケのオペア
ンプの耐圧の2倍まで、液晶駆動用最高電位を増加でき
るようにした。
In order to solve the above problem, by configuring the bias circuit of the operational amplifier by dividing it into the high voltage side (Vl, V2) and the low voltage side (V3. The maximum potential for driving liquid crystals can be increased up to

〔作用〕[Effect]

上記のように、バイアス回路のオペアンプを高圧側と低
圧側に分けたために、液晶駆動用最高電位の〃のみが、
1ケのオペアンプに印加されることになり、実質上、バ
イアス回路の耐圧を2倍に増加できる。
As mentioned above, since the bias circuit operational amplifier is divided into high voltage side and low voltage side, only the highest potential for driving the liquid crystal is
Since the voltage is applied to one operational amplifier, the withstand voltage of the bias circuit can be practically doubled.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図において、液晶駆動用最高電位V LCDは、最
高電位を示し、接地電位に対して正電圧に印加されるも
のとする。第1のオペアンプ回路の十電源端子aは、液
晶駆動用最高電位VLeDに接続する。−を源端子すは
、後述する第2のオペアンプ回路の出力eに接続する。
In FIG. 1, the highest potential for driving liquid crystal VLCD indicates the highest potential, and is assumed to be applied at a positive voltage with respect to the ground potential. A power supply terminal a of the first operational amplifier circuit is connected to the highest potential for driving the liquid crystal VLeD. - is connected to the output e of a second operational amplifier circuit, which will be described later.

第1のオペアンプ回路の出力Cには、液晶駆動用最高電
位V LCDと、接地電位を分割抵抗R1,R1で設定
された電圧が発生する。この電圧は、通常液晶駆動用最
高電位V LCI+の%程度に設定する。第1のオペア
ンプ回路の出力Cは、第2のオペアンプ回路の十電源端
子eの’KNとなる。第2のオペアンプ回路の一電源端
子dは接地電位に接続する。第2のオペアンプ回路の出
力fは分割抵抗V、、V4で決められる電圧が発生する
。通常fは出力Cより2〜3v低めの電圧になるように
設定する。第2のオペアンプ回路の出力fは、前記第1
のオペアンプ回路の電源端子すに接続する。
At the output C of the first operational amplifier circuit, a voltage is generated which is the highest potential for driving the liquid crystal VLCD and a ground potential set by dividing resistors R1 and R1. This voltage is normally set to about % of the highest potential for driving the liquid crystal VLCI+. The output C of the first operational amplifier circuit becomes 'KN' of the power supply terminal e of the second operational amplifier circuit. One power supply terminal d of the second operational amplifier circuit is connected to ground potential. The output f of the second operational amplifier circuit generates a voltage determined by the dividing resistors V, , V4. Normally, f is set to a voltage 2 to 3 V lower than output C. The output f of the second operational amplifier circuit is
Connect to the power supply terminal of the operational amplifier circuit.

ここで、各電位関係を示すと、 第1のオペアンプ回路の +電源端子a″″V Lee −電源端子b = VC−3 の電圧が印加されており、vc=vLo/2とすれば、
第1のオペアンプ回路の電源端子間電圧は、a−b=V
Lce  VLC/D/2+3#VLC11/2の電源
で動作しており、はぼ液晶駆動用最高電位V LCDの
半分が印加されていることになる。オペアンプ回路2の
tfl端子間電圧もやはり、液晶駆動用最高電位V L
C1+の半分が印加されている。
Here, to show each potential relationship, if the voltage of +power supply terminal a''"V Lee -power supply terminal b = VC-3 of the first operational amplifier circuit is applied, and vc = vLo/2,
The voltage between the power supply terminals of the first operational amplifier circuit is a−b=V
It operates with a power source of Lce VLC/D/2+3#VLC11/2, and half of the highest potential for driving liquid crystal VLCD is applied thereto. The voltage between the tfl terminals of the operational amplifier circuit 2 is also the highest potential for driving the liquid crystal V L
Half of C1+ is applied.

第3のオペアンプ回路の十電源端子gは、液晶駆動用最
高電位V LCDに、−電子端子りは前記第2のオペア
ンプ回路の出力fに各々接続する。第3のオペアンプ回
路は、分割抵抗R2〜R7により、液晶駆動用のバイア
ス電源V3、V4を発生させる。
The power terminal g of the third operational amplifier circuit is connected to the highest potential VLCD for driving the liquid crystal, and the negative terminal is connected to the output f of the second operational amplifier circuit. The third operational amplifier circuit generates bias power supplies V3 and V4 for driving the liquid crystal using dividing resistors R2 to R7.

第4のオペアンプ回路の十電′a端子iは前記第2のオ
ペアンプ回路の出力fに接続する。−電源端子jは接地
する。第4のオペアンプ回路は同様に分割抵抗R6〜R
7により、液晶駆動用のバイアス電源V 3 、 V 
aを発生する。
A terminal i of the fourth operational amplifier circuit is connected to the output f of the second operational amplifier circuit. - Power supply terminal j is grounded. Similarly, the fourth operational amplifier circuit has dividing resistors R6 to R.
7, bias power supplies V 3 and V for driving the liquid crystal
generate a.

第1図から明らかなように、第3及び第4のオペアンプ
回路はともに、液晶駆動用最高電位■、。
As is clear from FIG. 1, both the third and fourth operational amplifier circuits are at the highest potential for driving the liquid crystal.

の半分の電源電圧で動作していることになる。ここで、
分割抵抗R2〜R1は、通常の電圧変均法に従った分割
比に設定する。
This means that it is operating at half the power supply voltage. here,
The dividing resistors R2 to R1 are set at a dividing ratio according to a normal voltage equalization method.

前述したような回路構成にすることにより、オペアンプ
回路の電源端子間耐圧が、低いものでも見かけ上の耐圧
が2倍に増加でき、高デユティ−化や、カラー化による
液晶パネルの動作電圧増加によも充分対応して駆動でき
る。又、第2のオペアンプ回路をオペアンプで構成しで
あるため、出力fに流れるフォース及びシンク電流にも
安定した電圧が得られ、液晶の表示品質に好結果をもた
らす。
By configuring the circuit as described above, the apparent withstand voltage can be doubled even if the voltage between the power supply terminals of the operational amplifier circuit is low, making it possible to increase the operating voltage of liquid crystal panels due to higher duty cycles and colorization. It can be driven very well. Furthermore, since the second operational amplifier circuit is constituted by an operational amplifier, a stable voltage can be obtained for the force and sink current flowing to the output f, resulting in good results for the display quality of the liquid crystal.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、オペアンプ回路を複数
個使用して、非常にシンプルな回路で高耐圧な液晶駆動
バイアス回路が作れる。耐圧も2倍に引き上げられるた
め、はとんどの液晶表示パネルの駆動に対応ができる。
As described above, the present invention uses a plurality of operational amplifier circuits to create a high-voltage liquid crystal drive bias circuit with a very simple circuit. Since the breakdown voltage has been doubled, it can be used to drive most liquid crystal display panels.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液晶駆動用高電圧バイアス回路の実施
例、第2図は従来技術による液晶駆動バイアス回路をそ
れぞれ示す。 ・第1のオペアンプ回路 ・第2のオペアンプ回路 ・第3のオペアンプ回路 ・第4のオペアンプ回路 以上
FIG. 1 shows an embodiment of a high voltage bias circuit for driving a liquid crystal according to the present invention, and FIG. 2 shows a bias circuit for driving a liquid crystal according to the prior art.・First operational amplifier circuit・Second operational amplifier circuit・Third operational amplifier circuit・Fourth operational amplifier circuit and above

Claims (1)

【特許請求の範囲】[Claims] 液晶駆動用のバイアス回路において、液晶駆動用最高電
位を+電源端子とし、後述する第2のオペアンプ回路の
出力を−電源端子として、液晶駆動用最高電位を分割し
た出力を持つ第1のオペアンプ回路と、前記第1のオペ
アンプ回路の出力を+電源端子とし、接地電位を−電源
端子とし、出力を前記第1のオペアンプ回路の−電源端
子に帰還させた第2のオペアンプ回路と、液晶駆動用最
高電位を+電源端子とし、−電源端子に前記第2のオペ
アンプ回路の出力を接続しバイアス電圧V_1、V_2
を発生させる第3のオペアンプ回路と、前記第2のオペ
アンプ回路の出力を+電源端子に、−電源端子を接地し
バイアス電圧V_3、V_4を発生させる第4のオペア
ンプ回路から構成する液晶駆動用高電圧バイアス回路。
In the bias circuit for driving the liquid crystal, the highest potential for driving the liquid crystal is set as a + power supply terminal, and the output of a second operational amplifier circuit, which will be described later, is set as the - power supply terminal, and the first operational amplifier circuit has an output obtained by dividing the highest potential for driving the liquid crystal. and a second operational amplifier circuit in which the output of the first operational amplifier circuit is used as a + power supply terminal, the ground potential is used as a − power supply terminal, and the output is fed back to the − power supply terminal of the first operational amplifier circuit, and a second operational amplifier circuit for driving a liquid crystal. The highest potential is the + power supply terminal, the output of the second operational amplifier circuit is connected to the - power supply terminal, and the bias voltages V_1, V_2 are set.
a third operational amplifier circuit that generates bias voltages V_3 and V_4, and a fourth operational amplifier circuit that connects the output of the second operational amplifier circuit to the + power supply terminal and grounds the - power supply terminal and generates bias voltages V_3 and V_4. Voltage bias circuit.
JP2553990A 1990-02-05 1990-02-05 High-voltage bias circuit for driving liquid crystal Pending JPH03230116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2553990A JPH03230116A (en) 1990-02-05 1990-02-05 High-voltage bias circuit for driving liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2553990A JPH03230116A (en) 1990-02-05 1990-02-05 High-voltage bias circuit for driving liquid crystal

Publications (1)

Publication Number Publication Date
JPH03230116A true JPH03230116A (en) 1991-10-14

Family

ID=12168806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2553990A Pending JPH03230116A (en) 1990-02-05 1990-02-05 High-voltage bias circuit for driving liquid crystal

Country Status (1)

Country Link
JP (1) JPH03230116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021879A1 (en) * 1995-01-13 1996-07-18 Seiko Epson Corporation Power supply circuit, power supply for liquid crystal display, and liquid crystal display
EP0772182A2 (en) * 1995-10-04 1997-05-07 Sharp Kabushiki Kaisha Display-driving voltage generating apparatus
US6028598A (en) * 1993-05-10 2000-02-22 Kabushiki Kaisha Toshiba Liquid crystal driving power supply circuit
WO2012127934A1 (en) * 2011-03-23 2012-09-27 シャープ株式会社 Driving device and display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028598A (en) * 1993-05-10 2000-02-22 Kabushiki Kaisha Toshiba Liquid crystal driving power supply circuit
WO1996021879A1 (en) * 1995-01-13 1996-07-18 Seiko Epson Corporation Power supply circuit, power supply for liquid crystal display, and liquid crystal display
US6188395B1 (en) * 1995-01-13 2001-02-13 Seiko Epson Corporation Power source circuit, power source for driving a liquid crystal display, and a liquid crystal display device
KR100290075B1 (en) * 1995-01-13 2001-05-15 야스카와 히데아키 Power supply circuit, power supply for driving liquid crystal display and liquid crystal display device
EP0772182A2 (en) * 1995-10-04 1997-05-07 Sharp Kabushiki Kaisha Display-driving voltage generating apparatus
EP0772182A3 (en) * 1995-10-04 1997-05-14 Sharp Kabushiki Kaisha Display-driving voltage generating apparatus
US5781001A (en) * 1995-10-04 1998-07-14 Sharp Kabushiki Kaisha Display-driving voltage generating apparatus
WO2012127934A1 (en) * 2011-03-23 2012-09-27 シャープ株式会社 Driving device and display device
JP2012198440A (en) * 2011-03-23 2012-10-18 Sharp Corp Drive unit and display device

Similar Documents

Publication Publication Date Title
CN100390853C (en) Efficient liquid crystal display drive voltage generating circuit and its method
US6586888B2 (en) Organic EL drive circuit and organic EL display device using the same
US20040136213A1 (en) Step-down circuit, power supply circuit, and semiconductor integrated circuit
JP3707680B2 (en) Drive voltage control device
US5198747A (en) Liquid crystal display driver and driver method
JP2006332022A (en) Led drive circuit, lighting device, and electro-optical device
US6476591B2 (en) Power supply device for driving liquid crystal, liquid crystal device and electronic equipment using the same
CN101201638A (en) Voltage regulator with current sink for diverting external current and digital amplifier including the same
US20200162044A1 (en) Driver circuit and operational amplifier circuit used therein
US20120133634A1 (en) Apparatus, system, and method for generating a low power signal with an operational amplifier
WO2021109239A1 (en) Display panel
JP3016143B2 (en) Power supply circuit for LCD
TW200947180A (en) Operational amplifiers capable of enhancing slew rate and related method
JPH03230116A (en) High-voltage bias circuit for driving liquid crystal
US4535303A (en) Driver circuit
JPH04286408A (en) Amplifier circuit
JP3813045B2 (en) H-bridge driver
KR100482312B1 (en) Operational amplifier
JPH03274090A (en) Liquid crystal display device
JP2001282208A (en) Liquid crystal drive assembly and drive method for the same
US4177433A (en) Reel motor preamplifier
JPS59200510A (en) Amplifier with low power consumption
JPH07302943A (en) Drive circuit
JPH08228155A (en) Digital-to-analog converter
JP2823384B2 (en) Liquid crystal display panel drive device