JPH0323010A - Die for wire drawing and its manufacture - Google Patents

Die for wire drawing and its manufacture

Info

Publication number
JPH0323010A
JPH0323010A JP15873389A JP15873389A JPH0323010A JP H0323010 A JPH0323010 A JP H0323010A JP 15873389 A JP15873389 A JP 15873389A JP 15873389 A JP15873389 A JP 15873389A JP H0323010 A JPH0323010 A JP H0323010A
Authority
JP
Japan
Prior art keywords
film
die
base material
wire drawing
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15873389A
Other languages
Japanese (ja)
Inventor
Takumi Kono
巧 河野
Morihiro Okada
守弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP15873389A priority Critical patent/JPH0323010A/en
Publication of JPH0323010A publication Critical patent/JPH0323010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To manufacture an excellent die in wear resistance at low cost by forming the film of hard carbon on the inside surface of the hole of die of sintered hard alloy for wire drawing. CONSTITUTION:Under reduction of pressure, hydrocarbon gas, which is raw materials for hard carbonic film, is introduced and ionized by glow discharge and a red heated filament 33 and that ion is drawn out under spreading magnetic field of the magnet 34. The ion which is drawn out is accelerated toward a base material 31 which is applied with negative bias voltage and is brought into collision and vapor deposition with the base material. It is enough to use hydrocarbon of methane, etc., as material gas and also hydrogen gas may be used as dilute gas. Pressure in a vessel is taken as a prescribed vacuum to produce plasma and to accelerate ion. As the temperature of the base material, a good film is formed in a prescribed range of temp. from room temperature. A prescribed bias voltage is applied between the base material and ion source which is taken as a prescribed magnetic flux density. Thereby, the hard carbonic film 11 is formed and the excellent die in wear resistance can be manufactured at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属の線材の引き抜き加工に用いられる伸線
ダイスおよびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a wire drawing die used for drawing metal wire and a method for manufacturing the same.

(従来の技術) 鋼、銅等の金属材料の綿材の加工には、通常、中心に穴
を有するダイスに素材を通し、引き抜くことによって丸
形または異形の断面形状に断面を縮小する引き抜き加工
が行われている。これに用いられる装置は伸線機と呼ば
れるが、伸線をおこなう穴を有する部品は伸線ダイスと
呼ばれ、従来、鋼製ダイス、超硬合金製ダイス、ダイヤ
モンド製ダイスが用いられてきた。鋼製ダイスは最も古
くから用いられてきたダイスで高炭素鋼や高クロム鋼が
用いられてきたが、耐摩耗性が劣るために、現在ではほ
とんど用いられないようになってきた。
(Prior art) The processing of cotton material made of metal materials such as steel and copper usually involves a drawing process in which the material is passed through a die with a hole in the center and pulled out to reduce its cross-section to a round or irregularly shaped cross-sectional shape. is being carried out. The equipment used for this is called a wire drawing machine, and the part with the hole for wire drawing is called a wire drawing die, and conventionally steel dies, cemented carbide dies, and diamond dies have been used. Steel dies have been used for the longest time, and high carbon steel and high chromium steel have been used, but due to their poor wear resistance, they are now rarely used.

超硬合金製ダイスは、主戒分のタングステンカーバイド
を80〜95%含有する他に、コバルトや炭素を数%含
有してなる焼結合金であり、硬度が鋼より優れており、
耐摩耗性がよいので現在種々の金属材料の伸線に広く用
いられている。
Cemented carbide dies are sintered alloys that contain 80 to 95% of the main precept, tungsten carbide, as well as several percent of cobalt and carbon, and are superior in hardness to steel.
Due to its good abrasion resistance, it is currently widely used for drawing various metal materials.

金属材料の伸線には、硬度が高く、耐摩耗性にすぐれ、
表面平滑性のよいダイスを用いることが必要である。す
なわち、金属材料の伸線では、線材と同様に伸線ダイス
にも非常に大きなせん断応力が働くので、高硬度で、耐
摩耗性にすぐれた耐久性のよいダイスが望ましい。ダイ
スの耐久性が劣っていると摩耗が激しく、伸線中にダイ
スの内径が広がるために、線材が正確な線径に伸線され
なくなる。同時にダイスの表面平滑性が失われるために
、伸線される金属材料の線材の表面も平滑でなくなる。
For wire drawing of metal materials, it has high hardness and excellent wear resistance.
It is necessary to use a die with good surface smoothness. That is, in wire drawing of metal materials, a very large shear stress acts on the wire drawing die as well as the wire rod, so a die with high hardness, excellent wear resistance, and durability is desirable. If the durability of the die is poor, wear will be severe and the inner diameter of the die will expand during wire drawing, making it impossible to draw the wire to the correct wire diameter. At the same time, since the surface smoothness of the die is lost, the surface of the metal wire to be drawn also becomes uneven.

ダイスが劣化すると伸線工程中でもダイスの交換が必要
となり、伸線工程の操業率改善からも耐久性のすぐれた
ダイスが望ましい。伸線ダイスの高耐久性には、高硬度
で耐摩耗性に優れて、表面が平滑で低摩擦係数であるこ
とが重要である。鋼や銅等の金属の伸線加工においては
、加工の性質上一定の高温に保ちにくいので多くの場合
冷間で行なわれるが、生産性の向上のために最近では伸
線速度を800m./分以上で行なう高速加工が主流に
なってきた。この様に伸線ダイスは非常に過酷な条件で
用いられるために、その耐久性の一層の向上が要請され
ていた。ダイヤモンド製ダイスは、その優れた硬さを利
用して、超硬合金では加工しにくい細線に使用されてい
るが、大きなダイヤモンドが必要となり、また非常に高
価である(例えば、「機械工学便覧」日本機械学会発行
 昭和55年)。
If the die deteriorates, it will be necessary to replace it even during the wire drawing process, so a die with excellent durability is desirable from the perspective of improving the operation rate of the wire drawing process. For wire drawing dies to have high durability, it is important that they have high hardness, excellent wear resistance, and a smooth surface with a low coefficient of friction. Wire drawing of metals such as steel and copper is often carried out cold because it is difficult to maintain a constant high temperature due to the nature of the processing, but recently the drawing speed has been increased to 800 m.p.m. to improve productivity. High-speed machining performed at speeds of 1/min or more has become mainstream. As wire drawing dies are used under extremely harsh conditions, there has been a demand for further improvement in their durability. Due to its excellent hardness, diamond dies are used for thin wires that are difficult to machine with cemented carbide, but they require large diamonds and are very expensive (for example, ``Mechanical Engineering Handbook'') (Published by the Japan Society of Mechanical Engineers, 1981).

(発明が解決しようとする課題) 本発明は、耐摩耗性が超硬合金製ダイスよりすぐれ、さ
らに製造コストが超硬合金製ダイスと同等である伸線ダ
イスとその製造方法を提供するものである。金属材料の
伸線工程において、伸線ダイスの長寿命化と低コスト化
が達威されれば、伸線経費が大幅に改善されるが、本発
明はそれを可能にするものである。
(Problems to be Solved by the Invention) The present invention provides a wire drawing die that has better wear resistance than cemented carbide dies and has a manufacturing cost equivalent to that of cemented carbide dies, and a method for manufacturing the same. be. In the wire drawing process of metal materials, if the life of the wire drawing die can be extended and the cost reduced, the wire drawing cost can be significantly reduced, and the present invention makes this possible.

(課題を解決するための手段および作用)本発明は上記
課題を解決するために、超硬合金製の伸線ダイスの穴の
内面に硬度、耐摩耗性にすぐれた硬質炭素膜を形威した
ものであり、硬質炭素膜は気相法で蒸着するものである
(Means and effects for solving the problems) In order to solve the above problems, the present invention forms a hard carbon film with excellent hardness and wear resistance on the inner surface of the hole of a wire drawing die made of cemented carbide. The hard carbon film is deposited using a vapor phase method.

本発明でいう硬質炭素膜とは次のようなものである。元
素の構戒の主体は炭素であり、天然ダイヤモンドに準ず
る硬度を持ち、非晶質で電子線回折像はハローパターン
を示す。ラマンスベクトルでは1580cm−’付近と
1360C11−’付近に非晶質特有の広いピークを示
す。硬質炭素の薄膜を走査型電子顕微鏡で10,000
倍程度に拡大して観察すると、結晶粒が認められない一
様で平滑な膜である。硬質炭素膜は一般に炭化水素化合
物を原料とした気相合或法によって生或され、約4Qa
toa+%以下の水素を含有している。水素は炭素原子
のダングリングポンドの部分に入り、非晶質状態が安定
化されかつ高硬度の構造になると考えられている。適量
の水素が存在することで、硬質炭素は天然ダイヤモンド
に準ずる高い硬度を示すものと推測される。
The hard carbon film referred to in the present invention is as follows. The main element in the structure is carbon, which has a hardness similar to that of natural diamond, and is amorphous, with an electron diffraction pattern showing a halo pattern. The Ramanth vector shows broad peaks characteristic of amorphous materials near 1580 cm-' and 1360C11-'. A thin film of hard carbon was examined using a scanning electron microscope.
When observed under magnification, the film is uniform and smooth with no crystal grains. Hard carbon films are generally produced by a gas phase process using hydrocarbon compounds as raw materials, and have a thickness of approximately 4Qa.
Contains less than toa+% hydrogen. It is thought that hydrogen enters the dangling pond portion of the carbon atom, stabilizing the amorphous state and creating a highly hard structure. It is presumed that in the presence of an appropriate amount of hydrogen, hard carbon exhibits high hardness comparable to natural diamond.

硬質炭素膜中の水素が多過ぎると軟らかい有機質の膜に
なる。そのため本発明の硬質炭素膜としては、水素の割
合は膜中に35atom%以下、好ましくは5〜3Qa
tor6%のものが適している。このような硬質炭素膜
はビノカース硬度4000〜7000で摩擦係数0. 
1〜0.2で天然ダイヤモンドに次ぐ物性を示すことが
知られている。
If there is too much hydrogen in the hard carbon film, it becomes a soft organic film. Therefore, in the hard carbon film of the present invention, the proportion of hydrogen in the film is 35 atom% or less, preferably 5 to 3 Qa.
A tor of 6% is suitable. Such a hard carbon film has a vinyl hardness of 4,000 to 7,000 and a friction coefficient of 0.
1 to 0.2, it is known to exhibit physical properties second only to natural diamond.

本発明で対象とする基材は、超硬合金であるがこれは先
にも説明した様に主威分のタングステンカーバイドを8
0〜95%含有する他に、コバルトや炭素を数%含有し
てなる焼結合金である。硬質炭素膜は、タングステン等
の炭素と共有結合性の高い結合をする材料を基材として
用いた場合には、膜の付着力の優れたコーティングとす
ることができる。基材と膜との付着力が強固でなくては
、たとえ膜自身が非常に高硬度であっても基材一膜の界
面で膜の剥離がおこって実用には適さない。
The base material targeted by the present invention is a cemented carbide, which, as explained earlier, contains 88% of the main strength of tungsten carbide.
It is a sintered alloy containing 0 to 95% of cobalt and several percent of carbon. The hard carbon film can be a coating with excellent film adhesion when a material such as tungsten that forms a highly covalent bond with carbon is used as the base material. Unless the adhesion between the base material and the film is strong, even if the film itself is extremely hard, the film will peel off at the interface between the base material and the film, making it unsuitable for practical use.

特に本発明では、実施例で説明するように、ダイスの温
度を高温に保ち、かつ高速イオンをダイスに照射するた
めに、タングステンカーバイド超硬合金と硬質炭素膜と
の付着性をきわめてよくすることができる。
In particular, in the present invention, as explained in the examples, in order to maintain the temperature of the die at a high temperature and irradiate the die with high-speed ions, it is necessary to make the adhesion between the tungsten carbide cemented carbide and the hard carbon film extremely good. I can do it.

一般的に、伸線ダイスの形状は、第2図に示したように
円錐形穴21を有し、一方の開口部22から伸線される
線材、捧材が入り、他方の開口部23から伸線された線
材、棒材がでてくる。この伸線ダイスの穴の内面に、気
相法を用いて、硬質炭素膜11を形威したものの断面図
を第1図に示した。
Generally, the shape of a wire drawing die has a conical hole 21 as shown in FIG. The drawn wire rod and bar material come out. FIG. 1 shows a cross-sectional view of a hard carbon film 11 formed on the inner surface of the hole of this wire drawing die using a vapor phase method.

以下に本発明の方法について説明する。既に述べた様に
、従来の伸線ダイスには、タングステンカーバイドを主
戒分として80〜95%含有し、コバルトや炭素を焼結
剤として数%含有してなる超硬合金が使用されているが
、本発明ではこの超硬合金製の伸線ダイスに気相法で硬
質炭素膜の蒸着を行なうものである。本発明に用いる硬
質炭素膜の気相蒸着法としては、従来からよく用いられ
ているプラズマCVD法(例えば、「プラズマと戒膜の
基礎」日刊工業新聞社発行、昭和61年)やイオン化蒸
着法等を用いることができるが、膜の基材への付着性.
膜質の均一性,膜表面の平滑性,生産性という点から、
特開昭59−174507号公報、特開昭59−174
508号公報等に開示されているようなイオン化蒸着法
が好ましい。
The method of the present invention will be explained below. As already mentioned, conventional wire drawing dies use cemented carbide containing 80 to 95% tungsten carbide as a main ingredient and several percent cobalt and carbon as sintering agents. However, in the present invention, a hard carbon film is deposited on this cemented carbide wire drawing die by a vapor phase method. The vapor phase deposition method of the hard carbon film used in the present invention includes the plasma CVD method (for example, "Fundamentals of Plasma and Command Film", published by Nikkan Kogyo Shimbun, 1985) and ionization vapor deposition method, which have been commonly used in the past. However, the adhesion of the film to the substrate.
From the viewpoint of uniformity of film quality, smoothness of film surface, and productivity,
JP-A-59-174507, JP-A-59-174
An ionized vapor deposition method such as that disclosed in Japanese Patent No. 508 is preferred.

第3図にイオン化蒸着装置の原理図を示す。減圧下に硬
質炭素膜の原料となる炭化水素ガスを導入し、これをグ
ロー放電と赤熱フィラメント33によりイオン化させ、
′g1磁石34の広がり磁場でこのイオンを引き出す.
電磁石で覆われたこの部分をイオン源という。引き出さ
れたイオンは負のバイアス電圧がかけられた基材3lに
向かって加速され、基材に衝突,蒸着する. 原料ガスとしては、メタン,エタン.アセチレン,ベン
ゼン等の容易に気体として導入できる炭化水素を用いれ
ば良いが、中でもメタンが好ましい。水素ガスを前述の
原料ガスの希釈ガスとして用いてもさしつかえない。容
器内の圧力は、プラズマを発生させてしかもイオンを加
速することが必要なため、I X 1 0−&Torr
からl Torrでよいが、膜質.膜生或速度の点から
I X 1 0 ”’TorrからlX 1 0−’T
orrが望ましい。基材の温度とし、では室温(25℃
程度)から600゜Cとすると良好な薄膜が形威される
.その範囲内でも特に室温(25℃程度)から300゜
Cが好ましい範囲である。基材温度が600゜Cよ゛り
も高くなると作成される膜は黒鉛状になりやすく、また
たとえ硬質炭素膜ができても放冷して室温に戻すと、基
材と膜との間の残留熱応力が大きくなり、その後の使用
中に膜が剥離し易くなる。
FIG. 3 shows a diagram of the principle of the ionization vapor deposition apparatus. A hydrocarbon gas, which is a raw material for a hard carbon film, is introduced under reduced pressure, and is ionized by a glow discharge and a red-hot filament 33.
'The expanding magnetic field of the g1 magnet 34 pulls out these ions.
This part covered with electromagnets is called the ion source. The extracted ions are accelerated toward the base material 3l to which a negative bias voltage is applied, collide with the base material, and are deposited. Methane and ethane are used as raw material gases. Hydrocarbons that can be easily introduced as a gas such as acetylene and benzene may be used, but methane is particularly preferred. Hydrogen gas may be used as a diluent gas for the above-mentioned raw material gas. Since it is necessary to generate plasma and accelerate ions, the pressure inside the container is I
to 1 Torr may be sufficient, but the film quality may vary. From the point of view of film growth rate IX 10'''Torr to lX10-'
orr is desirable. The temperature of the base material is set to room temperature (25℃
A good thin film is produced when the temperature is set from 100°C to 600°C. Within this range, a particularly preferred range is from room temperature (about 25°C) to 300°C. If the substrate temperature is higher than 600°C, the film created tends to become graphite-like, and even if a hard carbon film is formed, if it is left to cool to room temperature, the bond between the substrate and the film will deteriorate. Residual thermal stress increases, and the film becomes more likely to peel off during subsequent use.

基材とイオン源との間のバイアス電圧は−50Vから−
1500Vとし、中でも−500vから−IOOOVが
好ましい範囲である。炭化水素イオンがバイアス電圧に
より加速されて基材に衝突すると、衝突エネルギーによ
り衝突したイオンのC−H結合が切れて、、水素原子は
弾き出されてしまう.この、水素原子が弾き出される量
は、衝突するイオンの運動エネルギー即ちバイアス電圧
に従っており、バイアス電圧が小さ過ぎると水素が多い
有機的な軟らかい膜になりやすく、バイアス電圧が高過
ぎると黒鉛状の膜になり、さらには膜の自己スッパタリ
ングが生じ威膜速度が低下する。
The bias voltage between the substrate and the ion source is from -50V to -
The voltage is set at 1500V, with a preferable range of -500V to -IOOOV. When hydrocarbon ions are accelerated by a bias voltage and collide with a substrate, the C-H bonds of the colliding ions are broken due to the collision energy, and the hydrogen atoms are ejected. The amount of hydrogen atoms ejected depends on the kinetic energy of the colliding ions, that is, the bias voltage; if the bias voltage is too low, a soft, organic film with a large amount of hydrogen tends to form, whereas if the bias voltage is too high, a graphite-like film tends to form. Furthermore, self-sputtering of the membrane occurs and the membrane speed decreases.

イオン源での磁束密度はIOOGからIOOOGの範囲
が適当であり、300Gから500Gがより好ましい範
囲である。詳細な製造条件は、装置内のガス導入口の配
置,イオン源の大きさ,基材の位置などによって変化す
るので適宜、最適条件を設定することが望ましい。
The appropriate range of magnetic flux density in the ion source is from IOOG to IOOOG, and more preferably from 300G to 500G. The detailed manufacturing conditions vary depending on the arrangement of the gas inlet in the apparatus, the size of the ion source, the position of the substrate, etc., and therefore it is desirable to set optimal conditions as appropriate.

以上の方法で第1図に示す様に、硬質炭素膜が蒸着され
たダイスが作成される。この方法で作成されたダイスは
、硬度がビッカース硬度で4000〜7000を示し、
従来の超硬合金製のダイスに比べて、耐久性が著しく向
上しダイス寿命が大幅にのびる。
By the above method, a die on which a hard carbon film is deposited is produced as shown in FIG. The die made by this method has a hardness of 4000 to 7000 on the Vickers scale,
Compared to conventional cemented carbide dies, the durability is significantly improved and the lifespan of the dies is greatly extended.

また、硬質炭素膜は、摩擦係数も0. 1〜0.2であ
り、表面平滑性もよいので、線材、棒材の滑りがよくな
り伸線された材料の表面の平滑性、光沢が優れている。
In addition, the hard carbon film has a friction coefficient of 0. 1 to 0.2, and the surface smoothness is good, so that the wire rod or bar material slides easily, and the surface smoothness and gloss of the wire-drawn material are excellent.

以下に実施例でさらに詳細に説明する. 〔実施例〕 実施例l 第2図に示す様に表面を鏡面仕上げ加工した穴径が4f
fIII1の超硬合金製(タングステンカーバイドを9
2%、コバルトを5%、炭素を3%含有する)伸線ダイ
スを蒸着前処理として塩酸で洗浄し表面部のコバルトを
除去した。次にこのダイスの穴の内面に、第3図のイオ
ン化蒸着装置を用いて、メタンガスを原料として気圧I
 X 1 0−”Torr,基材バイアス電圧−8 0
 0 V,基材温度300゜C イオン電流2 ta 
A / cnの条件で60分間蒸着した。
This will be explained in more detail in Examples below. [Example] Example 1 As shown in Figure 2, the hole diameter is 4f with a mirror finish on the surface.
Made of fIII1 cemented carbide (tungsten carbide 9
The wire drawing die (containing 2% cobalt, 5% cobalt, and 3% carbon) was washed with hydrochloric acid as a pre-evaporation treatment to remove cobalt on the surface. Next, using the ionization vapor deposition apparatus shown in FIG.
X 1 0-”Torr, base material bias voltage-8 0
0 V, base material temperature 300°C, ion current 2 ta
It was deposited for 60 minutes under the conditions of A/cn.

作威されたダイスは、表面が平滑で、かつ剥離のない約
2n厚の硬質炭素膜が一様にコーティングされていた。
The prepared die had a smooth surface and was uniformly coated with a hard carbon film about 2n thick that did not peel off.

この膜の水素含有量は13atom%であり、電子線回
折像はハローパターンを示した。
The hydrogen content of this film was 13 atom%, and the electron beam diffraction image showed a halo pattern.

ラマンスベクトルでは158叶『1付近と1360cm
+−’付近に広いピークを示した。蒸着が不要な部分に
はマスキングを行い、硬質炭素膜が蒸着しないようにし
た。
In the Lamans vector, 158 leaves are around 1 and 1360 cm.
A broad peak was observed near +-'. Areas where vapor deposition was not required were masked to prevent the hard carbon film from being vapor deposited.

この伸綿ダイスを用いて、直径4IIIII1の鋼ワイ
ヤーの伸線を行ったところ、3500kgの鋼製ワイヤ
ーの伸線が行えた。比較のために従来の超硬合金製のダ
イスで伸線を行なうと600kgの伸線で劣化し、交換
が必要となった。
When a steel wire with a diameter of 4III1 was drawn using this cotton drawing die, 3500 kg of steel wire could be drawn. For comparison, when wire was drawn using a conventional cemented carbide die, the wire deteriorated after 600 kg of wire was drawn and had to be replaced.

また、伸線された線の表面についても、本発明のダイス
を使用したものは、従来の超硬合金製のダイスで伸線を
行ったものより光沢があった。
Furthermore, the surface of the wire drawn using the die of the present invention was more glossy than that drawn using a conventional cemented carbide die.

実施例2 穴径が3飾に加工された超硬合金製(タングステンカー
バイドを95%、コバルトを3%、炭素を2%含有する
)伸線ダイスに実施例lと同様の前処理を行った後、第
3図に示した装置を用いて硬質炭素膜の蒸着を行った。
Example 2 A wire drawing die made of cemented carbide (containing 95% tungsten carbide, 3% cobalt, and 2% carbon) with a three-shaped hole was subjected to the same pretreatment as in Example 1. Thereafter, a hard carbon film was deposited using the apparatus shown in FIG.

蒸着の条件は原料ガスに純メタンをもちい、圧力1 0
−’Torr、加速電圧600V、基材温度300’C
,イオン電流2.3mA/cfflでおこなった。蒸着
が不要な部分はマスクをつけて硬質炭素膜が付着しない
ようにした。
The conditions for vapor deposition were to use pure methane as the source gas and a pressure of 10.
-'Torr, acceleration voltage 600V, base material temperature 300'C
, and an ionic current of 2.3 mA/cffl. A mask was placed on areas where vapor deposition was not required to prevent the hard carbon film from adhering.

この様にして作った伸線ダイスを用いて直径3mの銅線
の伸線をおこなったところ、6 0 0 0kgの伸線
が可能であった。比較のために従来の超硬合金製ダイス
で伸線を行うと800kgで劣化した。
When a copper wire with a diameter of 3 m was drawn using the wire drawing die made in this manner, it was possible to draw 6,000 kg of wire. For comparison, when wire was drawn using a conventional cemented carbide die, the wire deteriorated at 800 kg.

また、伸線された線の表面についても、ダイスを使用し
たものは、従来の超硬合金製のダイスで伸線を行ったも
のより光沢があった。
Furthermore, the surface of the wire drawn using a die was more glossy than that drawn using a conventional cemented carbide die.

(発明の効果) 以上説明した様に本発明に従い、超硬合金製の伸線ダイ
スに硬質炭素膜を形戒することにより、低コストで耐摩
耗性のすぐれたダイスの製造が可能になり、その結果、
金属材料の伸線上程の経費が大幅に改善される。
(Effects of the Invention) As explained above, according to the present invention, by applying a hard carbon film to a wire drawing die made of cemented carbide, it is possible to manufacture a die with excellent wear resistance at low cost. the result,
The cost of drawing metal materials is greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、硬質炭素膜11を設けた伸線ダイスの断面図
である。 第2図は、硬質炭素膜が蒸着されていない通常の伸線ダ
イスの断面図である。 第3図は、イオン化蒸着装置の概略図である。 3l:基材伸線ダイス、32:グリッド、33:フィラ
メント、34:電磁石、35:ガス導入管。 第1図 第2図 第3図
FIG. 1 is a sectional view of a wire drawing die provided with a hard carbon film 11. FIG. 2 is a cross-sectional view of a normal wire drawing die on which a hard carbon film is not deposited. FIG. 3 is a schematic diagram of the ionization vapor deposition apparatus. 3l: base wire drawing die, 32: grid, 33: filament, 34: electromagnet, 35: gas introduction tube. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1) 超硬合金製の伸線ダイスの穴の内面に硬質炭素
膜を設けてなる伸線ダイス。
(1) A wire drawing die made of cemented carbide with a hard carbon film provided on the inner surface of the hole.
(2) 超硬合金製の伸線ダイスの穴の内面に気相法に
より硬質炭素膜を蒸着することを特徴とする伸線ダイス
の製造方法。
(2) A method for manufacturing a wire drawing die, which comprises depositing a hard carbon film on the inner surface of a hole of a wire drawing die made of cemented carbide by a vapor phase method.
JP15873389A 1989-06-21 1989-06-21 Die for wire drawing and its manufacture Pending JPH0323010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15873389A JPH0323010A (en) 1989-06-21 1989-06-21 Die for wire drawing and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15873389A JPH0323010A (en) 1989-06-21 1989-06-21 Die for wire drawing and its manufacture

Publications (1)

Publication Number Publication Date
JPH0323010A true JPH0323010A (en) 1991-01-31

Family

ID=15678144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15873389A Pending JPH0323010A (en) 1989-06-21 1989-06-21 Die for wire drawing and its manufacture

Country Status (1)

Country Link
JP (1) JPH0323010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501232A (en) * 2006-08-18 2010-01-21 レニショウ パブリック リミテッド カンパニー Neurosurgery device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501232A (en) * 2006-08-18 2010-01-21 レニショウ パブリック リミテッド カンパニー Neurosurgery device

Similar Documents

Publication Publication Date Title
EP1598441B1 (en) Amorphous carbon film and process for producing the same
JPS6319590B2 (en)
US5541003A (en) Articles having diamond-like protective thin film
CN108385066B (en) Preparation method of hydrogen-free metal doped diamond-like coating and product thereof
US5707717A (en) Articles having diamond-like protective film
US5827613A (en) Articles having diamond-like protective film and method of manufacturing the same
JPH1149506A (en) Ornamental member
US5824367A (en) Method for the deposition of diamond film on an electroless-plated nickel layer
JP2689146B2 (en) Hard carbon film coating method
US5262202A (en) Heat treated chemically vapor deposited products and treatment method
JPH05146820A (en) Wire drawing die and manufacture thereof
US4873152A (en) Heat treated chemically vapor deposited products
JPH0323010A (en) Die for wire drawing and its manufacture
CN108441825B (en) Preparation method of doped metal diamond-like coating and product thereof
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
JP3205363B2 (en) Mold with diamond-like protective film
JPH05117087A (en) Article having diamond-like thin film as protection film
JP2003247006A (en) Super hard film coated member and its manufacturing method
JP3130094B2 (en) Mold with diamond-like protective film
JPH0445287A (en) Material coated with hard carbon film and production thereof
JP3260157B2 (en) Method for producing diamond-coated member
JPH03166370A (en) Hard carbon film coating method
JPH06191993A (en) Method for production diamond-coated member
JP2686970B2 (en) Membrane diamond manufacturing method
JPH04341558A (en) Article with diamondlike protective film and its production