JPH03230064A - Laminated type evaporator - Google Patents

Laminated type evaporator

Info

Publication number
JPH03230064A
JPH03230064A JP2685290A JP2685290A JPH03230064A JP H03230064 A JPH03230064 A JP H03230064A JP 2685290 A JP2685290 A JP 2685290A JP 2685290 A JP2685290 A JP 2685290A JP H03230064 A JPH03230064 A JP H03230064A
Authority
JP
Japan
Prior art keywords
refrigerant
tank
ribs
coolant
flat tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2685290A
Other languages
Japanese (ja)
Other versions
JPH0776651B2 (en
Inventor
Nobuyuki Okuda
伸之 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP2685290A priority Critical patent/JPH0776651B2/en
Publication of JPH03230064A publication Critical patent/JPH03230064A/en
Publication of JPH0776651B2 publication Critical patent/JPH0776651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce a pressure loss and improve a heat exchanging performance by a method wherein ribs of molding plate are arranged in parallel to each other toward a flowing direction of coolant and a width in a tank is formed substantially in the same width in the flat pipe. CONSTITUTION:A tube element 1 has an upper tank 8 and a lower tank 9 at both ends. It has further a flat pipe 10 communicating with both tanks at its longitudinal intermediate part. Coolant flowed from a coolant inlet pipe 6 through a header 4 is flowed in a zig-zag form in each of the groups of tube elements and is flowed out of an evaporator from an outlet pipe 7 through an outlet header 5. Ribs 15 of the molding plate 13 are arranged in parallel toward a flowing direction of the coolant. During a heat exchanging operation, the coolant smoothly flows in a coolant passage in the tube element 1 and then a uniform and efficient heat exchanging operation is carried out. A width W2 in the tanks 8, 9 and a width W3 in the flat pipe 10 are made substantially equal to each other so as to reduce a passage resistance and then a flow dividing performance from the tanks 8, 9 to each of the coolant passages 20 and a heat exchanging efficiency is improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、カーエアコン用その他に使用される積層型
蒸発器、即ち冷媒通路を有する複数枚の板状チューブエ
レメントが、相互間にフィンを包含する空気流通間隙を
介して積層された形式の蒸発器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a stacked evaporator used for car air conditioners and other applications, in which a plurality of plate-like tube elements each having a refrigerant passage include fins between them. The present invention relates to evaporators of a stacked type with air circulation gaps interposed therebetween.

従来の技術 この種の積層型蒸発器は、各チューブエレメントの冷媒
通路が連通されることにより、冷媒入口から同出口に至
る冷媒回路が形成され、入口から霧状の液として流入し
た冷媒がこの回路を流れる間に、前記空気流通間隙を流
通する空気と熱交換を行って徐々にガス化し、冷媒出口
から器外へと流出するものとなされている。
Prior Art In this type of stacked evaporator, the refrigerant passages of each tube element are connected to form a refrigerant circuit from the refrigerant inlet to the refrigerant outlet. While flowing through the circuit, the refrigerant exchanges heat with the air flowing through the air circulation gap, gradually becoming gasified, and flowing out of the refrigerant through the refrigerant outlet.

上記のチューブエレメントとしては従来、第7図に示さ
れるように、その一端部に入口タンク部(51)と出口
タンク部(52)とを備え、入口タンク部(51)から
流入した冷媒が他端部側に向かって流れた後、Uターン
して出口タンク部(52)に向かうような冷媒回路を有
する扁平管1 (55)を備えたものが広く使用されて
いる。
As shown in FIG. 7, the above-mentioned tube element conventionally has an inlet tank part (51) and an outlet tank part (52) at one end, so that the refrigerant flowing from the inlet tank part (51) is transferred to the other end. Widely used are those equipped with a flat tube 1 (55) having a refrigerant circuit in which the refrigerant flows toward the end and then makes a U-turn toward the outlet tank (52).

また、扁平管部(55)内での冷媒の流れを撹乱させて
、その撹乱効果に基づく伝熱効率の向上を図るために、
チューブエレメントは、内面に多数のリブ(53)が突
出形成された2枚の皿状成形プレート(54)を前記リ
ブ(53)が内側となるように対向状に重ね合わせて周
端部で接合されることによって製作されている。しかも
、そのリブ(53)は、冷媒の流れ方向に対して斜向状
態に設けられ、かつ両成形プレート(54)を重ね合わ
せた状態において、第7図に実線と破線で示すように両
成形プレート(54)のリブ(53)が互いに交差状態
に接合されるものとなされている。
In addition, in order to disturb the flow of refrigerant within the flat tube part (55) and improve heat transfer efficiency based on the disturb effect,
The tube element is made by stacking two dish-shaped molded plates (54) each having a large number of protruding ribs (53) on the inner surface facing each other so that the ribs (53) are on the inside, and joining them at the peripheral end. It is produced by being made. Furthermore, the ribs (53) are provided obliquely with respect to the flow direction of the refrigerant, and when both molded plates (54) are overlapped, both molded plates (54) are provided as shown by solid lines and broken lines in FIG. The ribs (53) of the plate (54) are joined to each other in a crossing manner.

発明が解決しようとする課題 しかしながら、上記のように、偏平管部(55)内の冷
媒回路がUターン状に形成されていると、冷媒が回路内
で偏流され易く、そのために実質的な伝熱面積の減少を
招くという問題が起こる。
Problems to be Solved by the Invention However, as described above, when the refrigerant circuit in the flat tube section (55) is formed in a U-turn shape, the refrigerant tends to flow unevenly in the circuit, and as a result, substantial transmission is reduced. A problem arises in that the thermal area is reduced.

しかも、リブ(53)が冷媒の流れ方向に対して斜向状
態に設けられると共に、互いに交差状態に接合されてい
るので、次のような不具合を生じる。即ち、蒸発器の入
口側に近いチューブエレメント内では冷媒が激しく撹乱
されることよって熱交換が効率良く行われるものの、出
口側に至るに従ってガスの占める割合が大きくなって熱
交換効率が低下してしまうにもかかわらず、出口側に近
いチューブエレメントにおいても入口側と同様に前記リ
ブ(70)によって冷媒が激しく撹乱されるため圧力損
失ばかり増大することになる。このように入口側では集
中的に熱交換が効率良く行われるものの、出口側では効
率が悪いため、熱交換器全体としての熱交換効率はさほ
ど良好なものではなく、しかも圧力損失が大きいものと
なっていた。
Moreover, since the ribs (53) are provided obliquely with respect to the flow direction of the refrigerant and are joined to each other in a crossing manner, the following problems occur. In other words, in the tube element near the inlet side of the evaporator, the refrigerant is violently disturbed and heat exchange is performed efficiently, but as it gets closer to the outlet side, the ratio of gas occupies increases and the heat exchange efficiency decreases. Despite this, the refrigerant is violently disturbed by the ribs (70) in the tube element near the outlet side as well as in the inlet side, so the pressure loss only increases. Although heat exchange is concentrated and efficient on the inlet side, the efficiency is poor on the outlet side, so the heat exchange efficiency of the heat exchanger as a whole is not very good, and the pressure loss is large. It had become.

この発明は、かかる問題点に鑑みてなされたもので、圧
力損失が少なく、それでいて熱交換性能の高い積層型蒸
発器を提供することを目的とする。
The present invention has been made in view of these problems, and an object of the present invention is to provide a stacked evaporator with low pressure loss and high heat exchange performance.

課題を解決するための手段 上記目的において、この発明は、 内面に複数のリブが突出形成された1対の成形プレート
を、前記リブを内側にして対向状に重ね合せて周端部で
接合することにより、偏平管部を有する板状チューブエ
レメントが形成されると共に、このチューブエレメント
が複数枚相互間にフィンを介在させた状態で厚さ方向に
積層されてなる積層型蒸発器において、前記チューブエ
レメントが、偏平管部の両端部に膨出状のタンク部を有
するものに形成されて各チューブエレメントのタンク部
が相互に連通状態に接合される一方、 前記リブが、冷媒の流れ方向に平行状に形成されると共
に、上記流れ方向と直交する方向に列設され、かつ成形
プレートを重ね合せた状態で一方の成形プレートのリブ
間に他方の成形プレートのリブが位置して各リブの先端
部が、対向する成形プレートの平面部に接合されること
によって偏平管部内に両タンク部間を真っ直ぐに延びた
複数の冷媒通路が並設され、 更に、前記タンク部内の幅が偏平管部内の幅と略同一な
いしはそれよりも大きく形成されると共に、この両者間
の領域の両側壁が偏平管部内の両側壁からタンク部内の
両側壁に向かって真っ直ぐ、ないしは外方に拡がる態様
において連続状に延びたものに形成されることによって
、前記複数の冷媒通路の、最外側の冷媒通路を含むすべ
てがタンク部内に真っ直ぐに連通されてなることを特徴
とする積層型蒸発器を要旨とする。
Means for Solving the Problems In order to achieve the above object, the present invention includes: A pair of molded plates each having a plurality of protruding ribs formed on the inner surface are stacked one on top of the other in a facing manner with the ribs on the inside, and are joined at their peripheral edges. As a result, a plate-like tube element having a flat tube portion is formed, and in a stacked evaporator in which a plurality of these tube elements are stacked in the thickness direction with fins interposed between them, the tube The element is formed to have a bulging tank part at both ends of a flat tube part, and the tank parts of each tube element are connected to each other in a state of communication, while the ribs are parallel to the flow direction of the refrigerant. The molded plates are arranged in a direction perpendicular to the flow direction, and when the molded plates are overlapped, the ribs of the other molded plate are located between the ribs of the other molded plate, and the tip of each rib is formed. The parts are joined to the flat parts of the opposing molded plates, so that a plurality of refrigerant passages extending straight between both tank parts are arranged in parallel in the flat tube part, and further, the width of the tank part is equal to that of the flat pipe part. The width is approximately the same as or larger than the width, and both side walls of the area between the two are continuous in such a manner that they extend straight or outward from both side walls in the flat tube part toward both side walls in the tank part. The gist of the stacked evaporator is that it is formed in an elongated shape so that all of the plurality of refrigerant passages, including the outermost refrigerant passage, are communicated straight into the tank part.

作用 上記積層型蒸発器では、チューブエレメントが偏平管部
の両端部に膨出状のタンク部を有するものに形成されて
いることより、エレメント内で冷媒をUターンさせるタ
イプのもののように冷媒がエレメント内で偏流して実質
的な伝熱面積の減少を招くようなことがなく、かつ圧力
損失も少ないものとなる。
Function: In the stacked evaporator mentioned above, the tube element is formed to have a bulging tank section at both ends of the flat tube section, so that the refrigerant is not allowed to flow inside the element like a type that makes a U-turn. There will be no deviation in the flow within the element, causing a substantial reduction in the heat transfer area, and pressure loss will also be small.

しかも、成形プレートのリブが、冷媒の流れ方向に平行
状に設けられているから、冷媒が冷媒回路内を撹乱され
ることなくスムーズに流通する。従って、圧力損失が少
ないのに加えて、冷媒入口側から出口側に至る間で均等
に熱交換され、全体としての熱交換性能が向上する。
Furthermore, since the ribs of the molded plate are provided parallel to the flow direction of the refrigerant, the refrigerant flows smoothly within the refrigerant circuit without being disturbed. Therefore, in addition to reducing pressure loss, heat is exchanged evenly from the refrigerant inlet side to the outlet side, improving overall heat exchange performance.

更に、複数のリブが流れ方向と直交する方向に列設され
、かつ成形プレートを重ね合せた状態で一方の成形プレ
ートのリブ間に他方の成形形プレートのリブが位置して
各リブの先端部が、対向する成形プレートの平面部に接
合されているから、冷媒の伝熱面積が増大され、熱交換
性能が向上すると共に、画成形プレートを強固に接合す
ることができて耐圧性も向上される。
Furthermore, a plurality of ribs are arranged in a row in a direction perpendicular to the flow direction, and when the molding plates are stacked one on top of the other, the ribs of the other molding plate are located between the ribs of one molding plate, and the tip of each rib is are joined to the flat parts of the opposing molded plates, increasing the heat transfer area of the refrigerant and improving heat exchange performance, as well as making it possible to firmly join the molded plates and improving pressure resistance. Ru.

加えて、タンク部内の幅が偏平管部内の幅と略同一ない
しはそれよりも大きく形成されると共に、この両者間の
領域の両側壁が偏平管部内の両側壁からタンク部内の両
側壁に向かって真っ直ぐ、ないしは外方に拡がる態様に
おいて連続状に延びたものに形成されることによって前
記複数の冷媒通路の、最外側の冷媒通路を含むすべてが
タンク部内に真っ直ぐに連通されていることにより、最
外側の冷媒通路にもタンク部内の冷媒が低い通路抵抗の
下で流入することができると共に、かかる通路内の冷媒
が同じく低い通路抵抗の下でタンク部内に流入するもの
となり、そのため、全体としての通路抵抗が減少され、
更にはタンク部からの冷媒の各冷媒通路への分流性能が
向上され、熱交換効率が向上する。
In addition, the width within the tank portion is approximately the same as or larger than the width within the flat tube portion, and both side walls of the area between the two extend from both side walls within the flat tube portion toward both side walls within the tank portion. All of the plurality of refrigerant passages, including the outermost refrigerant passage, are formed to extend continuously in a straight line or in an outwardly expanding manner, so that all of the plurality of refrigerant passages, including the outermost refrigerant passage, communicate straight into the tank portion. The refrigerant in the tank part can also flow into the outer refrigerant passage under low passage resistance, and the refrigerant in this passage can also flow into the tank part under low passage resistance, so that the overall passage resistance is reduced,
Furthermore, the performance of dividing the refrigerant from the tank portion into each refrigerant passage is improved, and the heat exchange efficiency is improved.

実施例 以下、この発明の積層型蒸発器をアルミニウムないしは
その合金製のカークーラー用の蒸発器に適用した実施例
について説明する。
EXAMPLE Hereinafter, an example will be described in which the stacked evaporator of the present invention is applied to an evaporator for a car cooler made of aluminum or its alloy.

第1図ないし第3図において、(1)は垂直状態でかつ
左右方向に積層された複数枚の板状チューブエレメント
、(2)は隣り合うチューブエレメント(1)・・・間
、及び最外側のチューブエレメントの外側に配置された
コルゲートフィン、(3)は最外側のコルゲートフィン
(2)の外側に配置されたサイドプレート、(4)は入
口ヘッダー (5)は出口ヘッダ−(6)は入口管、(
7)は出口管である。これらの蒸発器構成部材は、ろう
付は等により接合一体化されている。
In Figures 1 to 3, (1) indicates a plurality of plate-shaped tube elements stacked vertically and in the left-right direction, and (2) indicates the space between adjacent tube elements (1) and the outermost side. (3) is the side plate placed outside the outermost corrugated fin (2), (4) is the inlet header, (5) is the outlet header, (6) is the Inlet pipe, (
7) is the outlet pipe. These evaporator components are integrally joined by brazing or the like.

チューブエレメント(1)は、長さ方向の両端部に膨出
状の上下タンク部(8)(9)を有すると共に、長さ方
向中間部に両タンク部を連通ずる偏平管部(10)を有
している。そして、各チューブエレメント(1)・・・
の上下タンク部(8)(9)はそれぞれ、その隣り合う
もの同士が接合されると共に、各タンク部の端面に設け
られた冷媒流通用開口(11)・・・を介して相互が連
通、されている。
The tube element (1) has bulging upper and lower tank parts (8) and (9) at both ends in the length direction, and a flat tube part (10) that communicates both tank parts in the middle part in the length direction. have. And each tube element (1)...
The upper and lower tank parts (8) and (9) are connected to each other, and communicate with each other through refrigerant flow openings (11) provided on the end faces of each tank part. has been done.

そして更に、冷媒入口側から、第5番目と第6番目、及
び第14番目と第15番目の上側タンク部(8)、並び
に第10番目と第11番目の下側タンク部(9)の各相
互間の冷媒流通用開口(11)は閉塞され、これにより
、冷媒入口管(6)からヘッダー(4)を介して流入し
た冷媒が、各チューブエレメント群を方向転換して蛇行
状に流れ、出口側ヘッダー(5)を介して出口管(7)
から蒸発器外に流出するものとなされている。
Furthermore, from the refrigerant inlet side, the 5th and 6th, the 14th and 15th upper tank parts (8), and the 10th and 11th lower tank parts (9). The mutual refrigerant flow openings (11) are closed, so that the refrigerant flowing from the refrigerant inlet pipe (6) through the header (4) changes direction through each tube element group and flows in a meandering manner. Outlet pipe (7) via outlet side header (5)
This is assumed to flow out of the evaporator.

前記チューブエレメント(1)は、2枚の皿状成形プレ
ート(13)  (13)をそれらの周端接合面(14
)  (14)において対向状に重ね合わせて、ろう付
は一体化することにより形成されている。なお、この成
形プレート(I3)はプレス加工により形成されたもの
で、その材料として芯材の両面にろう材がクラッドされ
たプレージングシートが用いられている。
The tube element (1) has two dish-shaped molded plates (13) (13) connected to their peripheral end joint surfaces (14).
) In (14), they are stacked facing each other, and the brazing is formed by integrating them. Note that this molded plate (I3) is formed by press working, and its material is a plating sheet in which both sides of a core material are clad with a brazing material.

そして、成形プレート(13)には、熱伝導効率向上の
ため内方突出状態に形成されたリブ(15)・・・と、
上下のタンク部(8)(9)を構成するために外方膨出
状に形成された膨出部(1B)  (1B)とが設けら
れている。
The molded plate (13) has ribs (15) formed to protrude inward to improve heat conduction efficiency.
In order to constitute the upper and lower tank parts (8) and (9), bulging parts (1B) (1B) formed in an outwardly bulging shape are provided.

上記リブ(15)・・・は、第4図ないし第6図に示さ
れるように、成形プレート(13)にその−側縁側に偏
在した状態で冷媒の流れ方向、即ち成形プレート(13
)の長さ方向と平行状にその略全長に亘って所定間隔お
きに設けられて、2枚の成形プレート(13)  (1
3)が重ね合わされることで一方の成形プレート(13
)のリブ(15)・・・と他方の成形プレート(13)
のリブ(15)・・・とが交互配置の状態となるように
され、更に各リブ(15)の先端部が、対向する成形プ
レート(13)のリブ(15)・・・相互間の平面部(
19)に当接されるものとなされている。このような構
成によって、チューブエレメント(1)内に、上側タン
ク部(8)から下側タンク部(9)に向かって真っ直ぐ
に延びた複数の冷媒通路(20)・・・が形成されるも
のとなされている。
As shown in FIGS. 4 to 6, the ribs (15) are unevenly distributed on the negative side edge of the molding plate (13) in the flow direction of the refrigerant, that is, the molding plate (13).
) are provided at predetermined intervals over substantially the entire length thereof in parallel with the length direction of the molded plates (13) (1
3) are overlapped to form one molded plate (13).
) rib (15)... and the other molded plate (13)
The ribs (15) of the opposing molding plate (13) are arranged alternately, and the tip of each rib (15) is connected to the plane between the ribs (15) of the opposing molding plate (13). Department (
19). With such a configuration, a plurality of refrigerant passages (20) extending straight from the upper tank part (8) toward the lower tank part (9) are formed in the tube element (1). It is said that

なお、上記リブ(15)は、冷媒通路断面積をできるだ
け広く確保するため、第6図に示されるように、その幅
(Wl)が成形プレート(13)の板厚(tl)の2〜
4倍の範囲に設定されるのが好ましい。
In addition, in order to ensure the cross-sectional area of the refrigerant passage as wide as possible, the width (Wl) of the rib (15) is 2 to 2 times the thickness (tl) of the molded plate (13), as shown in FIG.
It is preferable to set the range to 4 times.

また、成形プレート(13)は、第5図に示されるよう
に、タンク部(8)(9)内の幅(W2)と偏平管部(
10)内の幅(W3)とが略同一となるように形成され
、かつこの両者間の領域の両側壁(21)  (21)
が、偏平管部(10)内の両側壁からタンク部(8)(
9)内の両側壁に向かって真っ直ぐに連続状に延びたも
のに形成され、それによって上記のような複数の冷媒通
路(20)の、最外側の冷媒通路(20a )  (2
0a)を含むすべての通路がタンク部(8)(9)内に
真っ直ぐに連通されるものとなされている。
In addition, as shown in FIG.
10) are formed so that their widths (W3) are substantially the same, and both side walls (21) of the area between the two (21)
However, the tank part (8) (
The outermost refrigerant passage (20a) (20a) of the plurality of refrigerant passages (20) as described above is formed so as to extend straight and continuously toward both side walls of the refrigerant passage (20).
All passages including 0a) communicate straight into the tank parts (8) and (9).

上記蒸発器では、冷媒が入口管(6)から出口管(7)
に至る冷媒通路を流通し、その間に、チューブエレメン
ト(1)・・・間に形成された、コルゲートフィン(2
)を含む空気流通間隙を流通する空気と熱交換を行うが
、チューブエレメント(1)の上下両端にタンク部(8
)(9)が設けられ、しかも成形プレート(13)のリ
ブ(15)・・・が冷媒の流れ方向に対して平行状に設
けられていることにより、熱交換中、冷媒は、チューブ
エレメント(1)の内部の冷媒通路を、偏流したり、撹
乱したりすることなくスムーズに流通するものとなり、
全冷媒通路を通じて均等にかつ効率良く熱交換が行なわ
れる。
In the above evaporator, the refrigerant flows from the inlet pipe (6) to the outlet pipe (7).
The corrugated fins (2) formed between the tube elements (1)...
) at both the upper and lower ends of the tube element (1).
) (9), and the ribs (15) of the molded plate (13) are provided parallel to the flow direction of the refrigerant, so that during heat exchange, the refrigerant flows through the tube element ( 1) The refrigerant flows smoothly through the internal refrigerant passage without drifting or being disturbed.
Heat exchange is performed evenly and efficiently through the entire refrigerant passage.

しかも、対向する成形プレート(13)  (13)の
リブ(15)・・・が、冷媒流れ方向と直交する方向に
交互配置に設けられ、各リブ(15)の先端部が対向す
る成形プレートの平面部(19)に当接接合されている
ことにより、リブの先端部同士を当接接合する場合のよ
うにプレート相互のずれに伴う接合不良を生ずるおそれ
がなく、そのためチューブエレメント(1)の組立作業
をラフに行うことができ、それていて画成形プレート相
互が確実に接合された強度に優れたチューブエレメント
を有する積層型蒸発器に製作することができる。しかも
、このような構造とすることにより、冷媒の伝熱面積を
広く確保でき、ひいては熱交換効率の向上を図りうる。
Moreover, the ribs (15) of the opposing forming plates (13) (13) are arranged alternately in a direction perpendicular to the refrigerant flow direction, and the tip of each rib (15) is connected to the opposing forming plate. Since the tube element (19) is abutted to the flat part (19), there is no risk of poor bonding due to mutual misalignment of the plates, unlike when the tips of the ribs are abutted to each other. Assembling work can be carried out easily, yet a laminated evaporator can be manufactured that has tube elements with excellent strength in which the image forming plates are reliably joined to each other. Moreover, by adopting such a structure, a large heat transfer area for the refrigerant can be ensured, and the heat exchange efficiency can be improved.

加えて、チューブエレメント(1)は、上記したように
、タンク部(8)(9)内の幅(W2)と偏平管部(1
0)内の幅(W3)とが略同一となるように形成され、
かつこの両者間の領域の両側壁(21)  (21)が
偏平管部(10)内の両側壁から、タンク部(8)(9
)内の両側壁に向かって真っ直ぐに連続状に延びたもの
に形成され、それによって上記のような複数の冷媒通路
(20)の、最外側の冷媒通路(20a )  (20
a)を含むすべての通路がタンク部(8)(9)内に真
っ直ぐに連通されるものとなされている。
In addition, as described above, the tube element (1) has a width (W2) in the tank portions (8) and (9) and a flat tube portion (1).
0) is formed so that the width (W3) in the inside is substantially the same,
In addition, both side walls (21) (21) in the area between the two are connected from both side walls in the flat tube part (10) to the tank parts (8) (9).
) is formed so as to extend straight and continuously toward both side walls of the refrigerant passages (20
All passages including a) are designed to communicate straight into the tank parts (8) and (9).

従って、最外側の冷媒通路(20a )  (20a 
)にもタンク部(8)内の冷媒が低い通路抵抗の下て流
入することができると共に、かかる冷媒通路内の冷媒(
20a )  (20a )が同じく低い通路抵抗の下
でタンク部(9)に流入するものとなり、そのため、全
体としての通路抵抗を減少することができ、更にはタン
ク部(8)(9)からの冷媒の各通路(20)への分流
性能が向上され、熱交換効率の向上を図ることができる
Therefore, the outermost refrigerant passage (20a) (20a
), the refrigerant in the tank part (8) can flow under low passage resistance, and the refrigerant in the refrigerant passage (
20a) (20a) flows into the tank part (9) under the same low passage resistance, so that the passage resistance as a whole can be reduced, and furthermore, the passage resistance from the tank parts (8) and (9) can be reduced. The performance of dividing the refrigerant into each passage (20) is improved, and the heat exchange efficiency can be improved.

発明の効果 この発明は、上述の次第で、チューブエレメントが偏平
管部の両端部に膨出状のタンク部を有するものに形成さ
れ、しかも成形プレートのリブが冷媒の流れ方向に平行
状に設けられているから、熱交換中、冷媒がチューブエ
レメント内を偏流したり、撹乱したりすることなくスム
ーズに流通する。従って、全冷媒通路を通じて均等にか
つ効率良く熱交換がなされ、ひいては蒸発器全体として
の熱交換性能を向上しつる。
Effects of the Invention As described above, the present invention is characterized in that the tube element is formed to have bulging tank portions at both ends of the flat tube portion, and the ribs of the molded plate are provided parallel to the flow direction of the refrigerant. During heat exchange, the refrigerant flows smoothly within the tube element without drifting or being disturbed. Therefore, heat is exchanged evenly and efficiently through all the refrigerant passages, thereby improving the heat exchange performance of the evaporator as a whole.

しかも、複数のリブが流れ方向と直交する方向に列設さ
れ、かつ成形プレートを重ね合せた状態で一方の成形プ
レートのリブ間に他方の成形プレートのリブが位置して
各リブの先端部が、対向する成形プレートの平面部に接
合されているから、リブの先端部同士を接合する場合の
ようにプレートのずれに伴う接合不良を生ずるおそれを
なくすことができ、組立作業をラフに行うことができ、
それでいて画成形プレート相互が確実に接合された強度
に優れたチューブエレメントを有する積層型蒸発器を提
供することができる。しかも、このような構造とするこ
とにより、冷媒の伝熱面積を広く確保することができ、
ひいては熱交換効率の向上を図ることができる。
Moreover, a plurality of ribs are arranged in a row in a direction perpendicular to the flow direction, and when the molding plates are stacked one on top of the other, the ribs of the other molding plate are located between the ribs of one molding plate, and the tip of each rib is Since it is joined to the flat parts of the opposing molded plates, it is possible to eliminate the risk of joint failure due to plate misalignment, which occurs when joining the tip ends of ribs, and the assembly work can be carried out roughly. is possible,
Still, it is possible to provide a stacked evaporator having tube elements with excellent strength, in which the image forming plates are reliably joined to each other. Moreover, by adopting such a structure, a large heat transfer area for the refrigerant can be secured,
As a result, it is possible to improve heat exchange efficiency.

加えて、タンク部内の幅が偏平管部内の幅と略同一ない
しはそれよりも大きく形成されると共に、この両者間の
領域の両側壁が偏平管部内の両側壁からタンク部内の両
側壁に向かって真っ直ぐ、ないしは外方に拡がる態様に
おいて連続状に延びたものに形成されることによって、
前記複数の冷媒通路の、最外側の冷媒通路を含むすべて
がタンク部内に真っ直ぐに連通されているから、最外側
の冷媒通路にもタンク部内の冷媒が低い通路抵抗の下で
流入することができると共に、かかる通路内の冷媒が同
じく低い通路抵抗の下でタンク部内に流入するものとな
り、そのため、全体としての通路抵抗を減少することが
でき、更にはタンク部からの冷媒の各冷媒通路への分流
性能が向上され、熱交換効率の向上を図ることができる
In addition, the width within the tank portion is approximately the same as or larger than the width within the flat tube portion, and both side walls of the area between the two extend from both side walls within the flat tube portion toward both side walls within the tank portion. By being formed in a continuous manner in a straight or outwardly expanding manner,
Since all of the plurality of refrigerant passages, including the outermost refrigerant passage, are communicated straight into the tank part, the refrigerant in the tank part can also flow into the outermost refrigerant passage under low passage resistance. At the same time, the refrigerant in these passages will flow into the tank section under similarly low passage resistance, so that the passage resistance as a whole can be reduced, and furthermore, the refrigerant from the tank section to each refrigerant passage can be reduced. Diversion performance is improved, and heat exchange efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図はこの発明の積層型蒸発器の位置実
施例を示すもので、第1図はサイドプレート、コルゲー
トフィン、チューブエレメントを分離分解状態で示す斜
視図、第2図は蒸発器の正面図、第3図は蒸発器の平面
図、第4図はチューブエレメントの平面図、第5図は成
形プレートの内面の平面図、第6図は第2図のVI−V
I線断面図である。 第7図は従来の蒸発器のチューブエレメント構成部材で
ある成形プレートの内面の平面図である。 (1)・・・チューブエレメント、(2)・・・コルゲ
ートフィン、(8)(9)・・・タンク部、(10)・
・・偏平管部、(13)・・・成形プレート、(14)
・・・周端接合面、(15)・・・リブ、(19)・・
・平面部、(20)・・・冷媒通路、(20a)・・・
最外側の冷媒通路。 以上 第7図
Figures 1 to 6 show a positional example of the stacked evaporator of the present invention. Figure 1 is a perspective view showing the side plate, corrugated fin, and tube element in a separated and disassembled state, and Figure 2 is an evaporator. Fig. 3 is a plan view of the evaporator, Fig. 4 is a plan view of the tube element, Fig. 5 is a plan view of the inner surface of the molding plate, and Fig. 6 is a diagram VI-V of Fig. 2.
It is an I line sectional view. FIG. 7 is a plan view of the inner surface of a molded plate that is a tube element component of a conventional evaporator. (1)...Tube element, (2)...Corrugate fin, (8)(9)...Tank part, (10)...
...Flat tube part, (13) ... Molded plate, (14)
... Peripheral joint surface, (15) ... Rib, (19) ...
・Plane part, (20)... Refrigerant passage, (20a)...
outermost refrigerant passage. Figure 7 above

Claims (1)

【特許請求の範囲】 内面に複数のリブが突出形成された1対の成形プレート
を、前記リブを内側にして対向状に重ね合せて周端部で
接合することにより、偏平管部を有する板状チューブエ
レメントが形成されると共に、このチューブエレメント
が複数枚相互間にフィンを介在させた状態で厚さ方向に
積層されてなる積層型蒸発器において、 前記チューブエレメントが、偏平管部の両端部に膨出状
のタンク部を有するものに形成されて各チューブエレメ
ントのタンク部が相互に連通状態に接合される一方、 前記リブが、冷媒の流れ方向に平行状に形成されると共
に、上記流れ方向と直交する方向に列設され、かつ成形
プレートを重ね合せた状態で一方の成形プレートのリブ
間に他方の成形プレートのリブが位置して各リブの先端
部が、対向する成形プレートの平面部に接合されること
によって偏平管部内に両タンク部間を真っ直ぐに延びた
複数の冷媒通路が並設され、 更に、前記タンク部内の幅が偏平管部内の幅と略同一な
いしはそれよりも大きく形成されると共に、この両者間
の領域の両側壁が偏平管部内の両側壁からタンク部内の
両側壁に向かって真っ直ぐ、ないしは外方に拡がる態様
において連続状に延びたものに形成されることによって
、前記複数の冷媒通路の、最外側の冷媒通路を含むすべ
てがタンク部内に真っ直ぐに連通されてなることを特徴
とする積層型蒸発器。
[Claims] A plate having a flat tube portion is obtained by stacking a pair of molded plates each having a plurality of protruding ribs on the inner surface facing each other with the ribs inside and joining them at their peripheral ends. In a stacked evaporator in which a plurality of tube elements are formed and stacked in the thickness direction with fins interposed between them, the tube elements are arranged at both ends of the flat tube section. The tank portions of each tube element are formed to have a bulging tank portion, and the tank portions of each tube element are connected to each other in a communicating state, while the ribs are formed parallel to the flow direction of the refrigerant and When the molded plates are arranged in a row in a direction perpendicular to the above direction, and the molded plates are stacked one on top of the other, the ribs of the other molded plate are located between the ribs of one molded plate, and the tip of each rib is aligned with the plane of the opposing molded plate. By being joined to the flat tube section, a plurality of refrigerant passages extending straight between both tank sections are arranged in parallel within the flat tube section, and further, the width inside the tank section is approximately the same as or larger than the width inside the flat tube section. At the same time, both side walls of the area between the two are formed to extend continuously from both side walls in the flat tube part to both side walls in the tank part in a straight or outwardly expanding manner. A stacked evaporator, characterized in that all of the plurality of refrigerant passages, including the outermost refrigerant passage, are communicated straight into the tank portion.
JP2685290A 1990-02-06 1990-02-06 Multilayer evaporator Expired - Fee Related JPH0776651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2685290A JPH0776651B2 (en) 1990-02-06 1990-02-06 Multilayer evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2685290A JPH0776651B2 (en) 1990-02-06 1990-02-06 Multilayer evaporator

Publications (2)

Publication Number Publication Date
JPH03230064A true JPH03230064A (en) 1991-10-14
JPH0776651B2 JPH0776651B2 (en) 1995-08-16

Family

ID=12204807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2685290A Expired - Fee Related JPH0776651B2 (en) 1990-02-06 1990-02-06 Multilayer evaporator

Country Status (1)

Country Link
JP (1) JPH0776651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838641A2 (en) 1996-10-24 1998-04-29 Showa Aluminum Corporation Evaporator
US6868696B2 (en) * 2003-04-18 2005-03-22 Calsonic Kansei Corporation Evaporator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838641A2 (en) 1996-10-24 1998-04-29 Showa Aluminum Corporation Evaporator
US6868696B2 (en) * 2003-04-18 2005-03-22 Calsonic Kansei Corporation Evaporator

Also Published As

Publication number Publication date
JPH0776651B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
WO1998025093A1 (en) Heat exchanger
JPS61262593A (en) Heat exchanger
JPH0315117B2 (en)
US20020153129A1 (en) Integral fin passage heat exchanger
US5373895A (en) Heat exchanger
JPH0545336B2 (en)
JP3028461B2 (en) Stacked heat exchanger
JPH03230064A (en) Laminated type evaporator
JP3393392B2 (en) Heat exchanger
JP2533197B2 (en) Multilayer evaporator for air conditioner
JP7197899B2 (en) Heat exchanger and manufacturing method thereof
JPS6273095A (en) Lamination type heat exchanger
JPH0443739Y2 (en)
JP2518234B2 (en) Method for producing plate fin type heat exchanger
JP2003130566A (en) Flat tube for heat exchanger and heat exchanger using it
JPH10332224A (en) Lamination type evaporator
JP3409350B2 (en) Stacked heat exchanger
JP2752481B2 (en) Manufacturing method of laminated heat exchanger
JPH01217195A (en) Heat exchanger
JP2002147983A (en) Laminated heat exchanger
JPS62225894A (en) Heat exchanger
JPH08159687A (en) Heat exchanger
JPH0539346Y2 (en)
JP2023163331A (en) Plate fin lamination type heat exchanger
JPH11142073A (en) Aluminum oil cooler-containing radiator tank

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees