JPH03229854A - Ion implanting method - Google Patents

Ion implanting method

Info

Publication number
JPH03229854A
JPH03229854A JP2213890A JP2213890A JPH03229854A JP H03229854 A JPH03229854 A JP H03229854A JP 2213890 A JP2213890 A JP 2213890A JP 2213890 A JP2213890 A JP 2213890A JP H03229854 A JPH03229854 A JP H03229854A
Authority
JP
Japan
Prior art keywords
carbon
ion
ions
cathode
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2213890A
Other languages
Japanese (ja)
Inventor
Kenji Sugiyama
賢司 杉山
Jun Sasaki
純 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2213890A priority Critical patent/JPH03229854A/en
Publication of JPH03229854A publication Critical patent/JPH03229854A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously and easily implant the ions of group IVa, Va or VIa metals and carbon on the surface of a cathode material consisting of the above- mentioned metals and carbon by evaporating and ionizing the material by an arc discharge and accelerating and drawing out the ions with a grid electrode. CONSTITUTION:The cathode 1 material is evaporated and ionized by the arc discharge between the cathode 1 and an anode 2 in an ion source 4 which is internally evacuated. The ions are accelerated by the grid electrode 3 impressed with a high voltage and are drawn out as an ion beam B. The ion beam B is introduced into a treating chamber 6 where the material 7 is irradiated and the above-mentioned ions are implanted into the surface thereof. The compd. or mixture composed of one kind of the group IVa, Va, VIa metals of the periodic table and the carbon is used as the cathode material in the above-mentioned ion implantation method. The above-mentioned metal and carbon are implanted double into the surface layer of the material 7 in a short period of time. The depth distributions of both the elements are preferably approximated by stepwise or continuously dropping the ion acceleration voltage at the time of ending of the ion implantation to 10 to 70% of the value at the start. The characteristics, such as wear resistance, of the material 7 are improved in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐摩耗性等の緒特性向上を目的としたイオン注
入方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion implantation method for improving mechanical properties such as wear resistance.

〔従来の技術〕[Conventional technology]

チタン、タンタル等の金属イオンと炭素イオンを二重に
注入することにより金属材料の耐摩耗性が大きく改善さ
れることが既に知られている(例えばPOPE、 L、
ε、  et al、、 ;”εffect of I
on Implan−tation 5pecies 
on the Tribological Re5po
nseof 5tainless 5teel 5ur
faces”、 J、 of Materialsfo
r Energy Systems、 Vol、7. 
No、1 (1985)) oこの場合従来−船釣に用
いられるイオン注入装置は、生成される複数種のイオン
の中から磁場による質量分離によって目的とする一種の
イオンを選別して引出し注入する方式のものである。こ
のような質量分離を行う方式の装置で二種類以上のイオ
ンを同一材料基板に注入する時は、それぞれのイオンを
別々に順次注入する必要があり、運転条件の切り替えに
手間が掛かることもあり注入に長時間を要している。
It is already known that the wear resistance of metal materials is greatly improved by doubly implanting metal ions such as titanium, tantalum, etc. and carbon ions (for example, POPE, L,
ε, et al, ;”εeffect of I
on Implan-tation 5 pieces
on the Tribological Re5po
nseof 5tainless 5teel 5ur
faces”, J, of Materialsfo
r Energy Systems, Vol. 7.
No. 1 (1985)) In this case, conventional ion implantation equipment used for boat fishing selects, extracts and injects the desired type of ion from among the multiple types of ions generated by mass separation using a magnetic field. It is a method. When using such a mass separation system to implant two or more types of ions into the same material substrate, it is necessary to implant each ion separately and sequentially, which can take time and effort to switch operating conditions. Injection takes a long time.

一方、真空中でアーク放電を起こしてカソード材料を蒸
発・イオン化し高電圧を印加したグリッド電極により加
速し、てイオンビームとして引き出す方式のイオンビー
ム発生装置が知られている。
On the other hand, an ion beam generator is known in which the cathode material is evaporated and ionized by causing an arc discharge in a vacuum, accelerated by a grid electrode to which a high voltage is applied, and extracted as an ion beam.

第1図はその様な装置の1例としてBROWN、 I、
 G、 ;”The Metal Vapor Vac
uum Arc(MEVVA) High Curre
ntJon 5ource 、 IEEE Trans
、 on Nuclear 5cience。
Figure 1 shows an example of such a device, BROWN, I,
G, ;”The Metal Vapor Vac
uum Arc(MEVVA) High Curre
ntJon 5source, IEEE Trans
, on Nuclear 5science.

Vol、N5−32. No、5 (1985)ヤ特開
昭63−276858号公報に記載されている装置であ
り、!JEVVA (MetalVapor Vacu
um Arc)型イオンビーム発生装置と呼ばれている
。この装置において、真空中でカソードとアノードの間
にアーク放電が起こされるとカソード材料が蒸発しイオ
ン化される。グリッド電極に高電圧を印加することによ
り前記イオンが加速されビームとして引き出される。こ
の装置をイオン源として用いてイオン注入を行えば従来
のイオン注入装置と比べより簡単に金属イオンの注入を
行うことが出来るが、2種類以上のイオンの注入を行う
場合は途中でカソード材料を交換して順次注入を行う必
要があった。
Vol, N5-32. No. 5 (1985) This is the device described in Japanese Patent Application Laid-Open No. 63-276858, and! JEVVA (Metal Vapor Vacuum)
um Arc) type ion beam generator. In this device, when an arc discharge is generated between the cathode and the anode in a vacuum, the cathode material is evaporated and ionized. By applying a high voltage to the grid electrode, the ions are accelerated and extracted as a beam. If this device is used as an ion source for ion implantation, metal ions can be implanted more easily than with conventional ion implanters, but when implanting two or more types of ions, the cathode material must be removed midway through the implantation. It was necessary to replace and inject sequentially.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記問題点を解決し、2種類以上のイオン、
例えば金属イオンと炭素イオンの二重注入を材料の表面
層に短時間で簡単に行う方法を提供するものである。
The present invention solves the above problems and uses two or more types of ions,
For example, it provides a method for double-implanting metal ions and carbon ions into the surface layer of a material in a short time and easily.

〔課題を解決するための手段〕[Means to solve the problem]

上記IA E V V A型イオンビーム発生装置は本
来単体金属をカソード材料として用い、金属イオンビー
ムを引き出す為の装置であるが、本発明者らは2種類以
上の元素の化合物または混合物をカソードに用いること
により、カソードを構成する複数元素のイオンを同時に
取り出せることを見いだした。
The above IA E V V A type ion beam generator is originally a device for extracting a metal ion beam using a single metal as a cathode material, but the present inventors have developed a method using a compound or mixture of two or more elements as a cathode material. It was discovered that by using this method, ions of multiple elements constituting the cathode can be extracted simultaneously.

また材料表面にイオンビーム照射を行い、実際にそれら
複数元素が材料に注入されることを確認した。
Furthermore, by irradiating the material surface with an ion beam, it was confirmed that these multiple elements were actually implanted into the material.

すなわち、本発明は真空中でアーク放電を起こしてカソ
ード材料を蒸発・イオン化し高電圧を印加したグリッド
電極により加速してイオンビームとして引き出すイオン
注入方法に於て、カソード材料として周期律表第IVa
、Va、VIa族金属の1種と炭素の化合物または混合
物を用いて前記金属と炭素を材料の表面層に二重に注入
することを特徴とするイオン注入方法であり、上記方法
に於て金属として・チタンまたはタンタルを用い鉄鋼材
料へイオン注入を行う時に、カソード材料の金属と炭素
の組成比をl:2′〜3:1の範囲の値とすること、ま
た、金属とし、てチタンまたはタンタルを用い鉄鋼材料
以外の材料へイオン注入を行う時に、金属と炭素の組成
比をl=1〜1:3の範囲の値とすること、さらにまた
、上記各方法に於てイオン注入終了時のイオンの加速電
圧を、開始時の値の10〜70%の範囲の値に段階的に
、または連続的に下げることを特徴とす−るイオン注入
方法である。
That is, the present invention is an ion implantation method in which cathode materials are evaporated and ionized by causing arc discharge in a vacuum, accelerated by a grid electrode to which a high voltage is applied, and extracted as an ion beam.
This is an ion implantation method characterized by doubly implanting the metal and carbon into the surface layer of the material using a compound or mixture of carbon and one of group metals Va and VIa. When performing ion implantation into steel materials using titanium or tantalum, the composition ratio of metal to carbon in the cathode material should be in the range of 1:2' to 3:1, and titanium or tantalum should be used as the metal. When performing ion implantation into materials other than steel materials using tantalum, the composition ratio of metal and carbon should be in the range of l = 1 to 1:3, and furthermore, in each of the above methods, at the end of ion implantation, This ion implantation method is characterized in that the acceleration voltage of ions is lowered stepwise or continuously to a value in the range of 10 to 70% of the initial value.

〔作 用〕[For production]

カソード材料を周期律表第1Va、Va、VIa族金属
の1種と炭素の化合物または混合物に限定した理由は、
これらΦ金属と炭素の2重注入で材料の耐摩耗性向上効
果が大きいためである。以下、イオン発生源どしてME
 V V^型ビイオンビーム発生装置用いて鉄鋼材料に
炭素とチタンを注入する場合を例に説明する。
The reason why the cathode material was limited to a compound or mixture of one of Group 1 Va, Va, and VIa metals of the periodic table and carbon is as follows.
This is because the double injection of these Φ metals and carbon greatly improves the wear resistance of the material. Below, the ion source is ME.
The case where carbon and titanium are implanted into a steel material using a VV^ type bio-ion beam generator will be explained as an example.

第1図はMEVVA型イオンビイオンビーム発生装置、
この図において、チタンと炭素の化合物または混合物を
カソード材料として用いたカソード1とアノード2の間
に、真空中でアーク放電を起こしてカソード材料を蒸発
せしめ、チタンと炭素を共にイオン化Aする。グリッド
電極3に高電圧を印加することにより上記のチタンイオ
ンと炭素イオンが共に加速されビームBとして引き出さ
れる。
Figure 1 shows the MEVVA type ion beam generator,
In this figure, an arc discharge is generated in vacuum between a cathode 1 using a compound or mixture of titanium and carbon as a cathode material and an anode 2 to evaporate the cathode material and ionize both titanium and carbon. By applying a high voltage to the grid electrode 3, both the titanium ions and carbon ions are accelerated and extracted as a beam B.

第2図に示すのは第1図のMEVVA型イオンビイオン
ビーム発生装置源4として用いたイオン注入装置の例で
ある。イオン源4からのイオンビームBを処理チャンハ
ロ中の材料7の表面に照射することによりチタンと炭素
のイオンが同時に注入される。従って従来の質量分離を
行う方式の装置を用いる場合の様にイオン種を替える時
の手間も必要なく、処理時間も半分以下で済む。ここで
カソード材料としては炭化チタン、チタン、炭素の内−
種以上の物質の微粉末を均一に混ぜ合わせ、整形後焼き
固めたものを用いるのが良い。整形・焼き固める為の方
法としては例えばHIPを用いることが出来るが他の方
法でも良い。
FIG. 2 shows an example of an ion implantation device used as the source 4 of the MEVVA type ion beam generator shown in FIG. By irradiating the surface of the material 7 in the processing chamber with the ion beam B from the ion source 4, titanium and carbon ions are simultaneously implanted. Therefore, unlike when using a conventional mass separation type device, there is no need to take the trouble of changing ion species, and the processing time can be cut in half or less. Here, the cathode material is titanium carbide, titanium, or carbon.
It is best to use a product that is made by uniformly mixing fine powders of substances larger than seeds, shaping them, and then baking them. For example, HIP can be used as a method for shaping and baking, but other methods may also be used.

ところでカソード材料としてチタンと炭素の組成比がl
:1の化学量論組成の炭化チタンを用いた場合イオンビ
ーム中のチタンと炭素の組成比はヘチタンイオンを注入
する場合、雰囲気中の残留炭素が基板中に取り込まれる
ことが知られている。
By the way, as for the cathode material, the composition ratio of titanium and carbon is l.
When using titanium carbide with a stoichiometric composition of :1, the composition ratio of titanium to carbon in the ion beam is .

基板に注入されるチタンと炭素の組成比が1:1から外
れても耐摩耗性等の向上は得られるが、より優れた特性
を得るためには1:1に近いことが望ましくそのために
はカソード材料中のチタンと炭素の組成比を適切な値に
選ぶ必要がある。チタンと炭素の二重注入についてはこ
の値は1:2から3:1の範囲である。
Even if the composition ratio of titanium and carbon injected into the substrate deviates from 1:1, improvements in wear resistance etc. can be obtained, but in order to obtain better characteristics, it is desirable that it be close to 1:1. It is necessary to select an appropriate composition ratio of titanium and carbon in the cathode material. For dual titanium and carbon implants, this value ranges from 1:2 to 3:1.

また、チタンと炭素を一定の加速電圧で注入した場合、
原子量の違いから炭素の方がチタンより材料表面から深
くまで注入される。この場合でも耐摩耗性等の向上には
効果があるが、注入された両元素の深さ分布がより近い
ほうが特性改善の効果もさらに大きくなる。そのために
は高電圧で注入を開始し、途中で段階的に、または連続
的に電圧を下げることが望ましい。炭化チタンの場合に
は最終電圧を開始電圧の10〜70%の範囲の値とする
のが適切である。
Also, when titanium and carbon are implanted at a constant acceleration voltage,
Due to the difference in atomic weight, carbon is implanted deeper into the material surface than titanium. Although this case is also effective in improving wear resistance, etc., the closer the depth distributions of both implanted elements are, the greater the effect of improving characteristics becomes. For this purpose, it is desirable to start injection at a high voltage and lower the voltage stepwise or continuously during the process. In the case of titanium carbide, it is appropriate for the final voltage to be in the range of 10 to 70% of the starting voltage.

以上チタンと炭素の二重注入の場合を基に説明を行った
が、タンタルと炭素の二重注入についてもカソード材料
の組成比の選び方はタンタル:炭素−1:2〜3:1で
良い。加速電圧の変更の仕方も同じである。
The above explanation has been made based on the case of double implantation of titanium and carbon, but even in the case of double implantation of tantalum and carbon, the composition ratio of the cathode material may be selected from tantalum:carbon-1:2 to 3:1. The method of changing the acceleration voltage is also the same.

また鉄鋼材料以外の非鉄金属、セラミクス、プラスチッ
ク等の材料へチタンまたはタンタルと炭素を二重に注入
する場合は、鉄鋼材料の場合の様な雪囲気中の残留炭素
の取り込みが起こらないため、カソード材料の組成比は
チタンまたはタンタル:炭素−1:1〜1:3の範囲の
値とするのが良い。
Also, when doubly injecting titanium or tantalum and carbon into materials such as non-ferrous metals, ceramics, and plastics, the cathode The composition ratio of the materials is preferably titanium or tantalum:carbon-1:1 to 1:3.

二実施例〕 実施例1 表面を鏡面研磨したSUS 304の平板状の材料にチ
タン:炭素−2:1の組成のカソードを用いてチタンと
炭素を注入した。注入量はI XIO”個/c[11で
ある。加速電圧は注入開始時は80KVであり、5 x
lO”個/c[11注入した時点で30KVに変更した
Two Examples] Example 1 Titanium and carbon were injected into a flat SUS 304 material whose surface was mirror-polished using a cathode having a composition of titanium:carbon-2:1. The injection amount is I
The voltage was changed to 30 KV when 10"/c[11 were injected.

このサンプルに注入されたチタンと炭素の深さ分布のG
 D S (Glow Discharge 5pec
troscopy)分析による測定結果を第3図に示す
。チタンと炭素の深さ分布が良い一致を示している。
G of the depth distribution of titanium and carbon implanted in this sample
D S (Glow Discharge 5pec
The measurement results obtained by troscopy analysis are shown in FIG. The depth distributions of titanium and carbon show good agreement.

実施例2 表面を鏡面研磨したアルミニウムの平板状の材料にチタ
ン:炭素= 1 : L 5の組成のカソードを用いて
チタンと炭素を注入した。注入量は1.5×1017個
/ cutである。加速電圧は注入開始時は70KVで
あり、7.5 Xl016個/Cll1注入した時点テ
20KV!、:変更した。このサンプルに注入されたチ
タンと炭素の深さ分布のGD3分析による測定結果を第
4図に示す。実施例1と同様にチタンと炭素の深さ分布
が良い一致を示している。
Example 2 Titanium and carbon were injected into a flat aluminum material whose surface was mirror-polished using a cathode having a composition of titanium:carbon=1:L5. The injection amount was 1.5 x 1017 pieces/cut. The accelerating voltage was 70KV at the start of injection, and 20KV when 7.5Xl016/Cll1 was injected! ,:changed. Figure 4 shows the measurement results of the depth distribution of titanium and carbon injected into this sample by GD3 analysis. As in Example 1, the depth distributions of titanium and carbon show good agreement.

〔発明の効果〕〔Effect of the invention〕

この様に本発明によるイオン注入方法によれば金属イオ
ンと炭素イオンの二重注入を同時に行うことができるの
で、従来の質量分離を行う方式の装置によるイオン注入
と比べて注入に必要な時間手間共半分以下にすることが
できる。
As described above, according to the ion implantation method of the present invention, double implantation of metal ions and carbon ions can be performed at the same time, so the time and effort required for implantation is lower than that of ion implantation using conventional mass separation type equipment. Both can be reduced by half or less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明におけるMEVVA型イオンビイオンビ
ーム発生装置面側面図、第2図は本発明においけるイオ
ン注入装置の概略断面側面図、第3図は実施例1におい
て得られたサンプルに注入されたイオンの深さ分布を示
すグラフ、第4図は実施例2において得られたサンプル
に注入されたイオンの深さ分布を示すグラフである。 1・・・カソード、    2・・・アノード、3・・
・グリッド電極、  4・・・イオン源、5・・・ケー
トバルブ、 6・・・処理チャンバ、7・・・材料。 第 図 第 図
Fig. 1 is a side view of the MEVVA type ion beam generator according to the present invention, Fig. 2 is a schematic cross-sectional side view of the ion implantation apparatus according to the present invention, and Fig. 3 is an implantation into the sample obtained in Example 1. FIG. 4 is a graph showing the depth distribution of ions implanted into the sample obtained in Example 2. 1...Cathode, 2...Anode, 3...
- Grid electrode, 4... Ion source, 5... Kate valve, 6... Processing chamber, 7... Material. Figure Figure

Claims (4)

【特許請求の範囲】[Claims] 1.真空中でアーク放電を起こしてカソード材料を蒸発
・イオン化し高電圧を印加したグリッド電極により加速
してイオンビームとして引き出すイオン注入方法に於て
、カソード材料として周期律表第IVa、Va、VIa族金
属の1種と炭素の化合物または混合物を用いて前記金属
と炭素を材料の表面層に二重に注入することを特徴とす
るイオン注入方法。
1. In the ion implantation method, the cathode material is evaporated and ionized by an arc discharge in a vacuum, accelerated by a grid electrode to which a high voltage is applied, and extracted as an ion beam. An ion implantation method characterized by doubly implanting the metal and carbon into a surface layer of a material using a compound or a mixture of one kind of metal and carbon.
2.金属としてチタンまたはタンタルを用い鉄鋼材料へ
イオン注入を行う時に、カソード材料の金属と炭素の組
成比を1:2〜3:1の範囲の値とすることを特徴とす
る請求項1記載のイオン注入方法。
2. The ion according to claim 1, characterized in that when ion implantation is carried out into a steel material using titanium or tantalum as the metal, the composition ratio of the metal to carbon of the cathode material is set to a value in the range of 1:2 to 3:1. Injection method.
3.金属としてチタンまたはタンタルを用い鉄鋼材料以
外の材料へイオン注入を行う時に、金属と炭素の組成比
を1:1〜1:3の範囲の値とすることを特徴とする請
求項1記載のイオン注入方法。
3. The ion according to claim 1, characterized in that when titanium or tantalum is used as the metal and ion implantation is performed into a material other than steel, the composition ratio of metal to carbon is set to a value in the range of 1:1 to 1:3. Injection method.
4.イオン注入終了時のイオンの加速電圧を、開始時の
値の10〜70%の範囲の値に段階的に、または連続的
に下げることを特徴とする請求項1、2または3記載の
イオン注入方法。
4. The ion implantation according to claim 1, 2 or 3, characterized in that the ion acceleration voltage at the end of the ion implantation is lowered stepwise or continuously to a value in the range of 10 to 70% of the value at the start. Method.
JP2213890A 1990-02-02 1990-02-02 Ion implanting method Pending JPH03229854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213890A JPH03229854A (en) 1990-02-02 1990-02-02 Ion implanting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213890A JPH03229854A (en) 1990-02-02 1990-02-02 Ion implanting method

Publications (1)

Publication Number Publication Date
JPH03229854A true JPH03229854A (en) 1991-10-11

Family

ID=12074526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213890A Pending JPH03229854A (en) 1990-02-02 1990-02-02 Ion implanting method

Country Status (1)

Country Link
JP (1) JPH03229854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269931B2 (en) 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US8946864B2 (en) 2011-03-16 2015-02-03 The Aerospace Corporation Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same
US9324579B2 (en) 2013-03-14 2016-04-26 The Aerospace Corporation Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8269931B2 (en) 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US9048179B2 (en) 2009-09-14 2015-06-02 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US8946864B2 (en) 2011-03-16 2015-02-03 The Aerospace Corporation Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same
US9324579B2 (en) 2013-03-14 2016-04-26 The Aerospace Corporation Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates

Similar Documents

Publication Publication Date Title
DE2823876A1 (en) PROCESS FOR EVAPORATING MATERIAL IN A VACUUM EVAPORATION SYSTEM
Günzel et al. Plasma source ion implantation of oxygen and nitrogen in aluminum
JPS57201527A (en) Ion implantation method
EP0404973A1 (en) Process and apparatus for coating substrates
JPH03229854A (en) Ion implanting method
DE102016116762B4 (en) Method for depositing a layer by means of a magnetron sputtering device
RU2686975C1 (en) Method of ion-plasma nitriding of articles from titanium or titanium alloy
Parascandola et al. Nitriding stainless steels at moderate temperature: Time-and depth-resolved characterization of the near surface composition during the nitriding process
Oks Generation of multiply-charged metal ions in vacuum arc plasmas
Ryabchikov et al. The Raduga multipurpose ion/plasma source for surface modification of construction materials
Ryabchikov et al. Sources and methods of repetitively pulsed ion/plasma material treatment
Brown et al. The MEVVA ion source for high current metal ion implantation
KR20030014146A (en) Apparatus for implanting an ion on a target and method for the same
JP2888660B2 (en) Ion implantation method
SU1412517A1 (en) Method of ion implantation
Churkin et al. Powerful source of accelerated atoms for surface modification
Steshov et al. Trap with Crossed E× H Fields as Source of Atomic Fluxes for Surface Treatment
JPS60218464A (en) Manufacturing apparatus of thin film
RU2177275C1 (en) Method for cleaning tooth metal prostheses in vacuum chamber before covering them with protective decorative ion plasma coating
RU2087586C1 (en) Method of ion implantation
JPS60262964A (en) Device for vapor-depositing compound thin film
Nikolaev et al. Beam current density distribution of a vacuum arc ion source
RU95110393A (en) Method of and device for ion beam production
SU1382297A1 (en) Blast-emission source
Churkin et al. Complex surface treatment by powerful source of multi-component atomic fluxes