JPH03229611A - Method for recovering co2 from gas containing thin co2 by psa process - Google Patents

Method for recovering co2 from gas containing thin co2 by psa process

Info

Publication number
JPH03229611A
JPH03229611A JP2024972A JP2497290A JPH03229611A JP H03229611 A JPH03229611 A JP H03229611A JP 2024972 A JP2024972 A JP 2024972A JP 2497290 A JP2497290 A JP 2497290A JP H03229611 A JPH03229611 A JP H03229611A
Authority
JP
Japan
Prior art keywords
gas
adsorption
adsorbed
adsorbent
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024972A
Other languages
Japanese (ja)
Inventor
Takashi Ohama
大浜 隆司
Mitsuya Yamada
山田 光矢
Nobuhiko Okada
信彦 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINKI REINETSU KK
Osaka Gas Co Ltd
Original Assignee
KINKI REINETSU KK
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINKI REINETSU KK, Osaka Gas Co Ltd filed Critical KINKI REINETSU KK
Priority to JP2024972A priority Critical patent/JPH03229611A/en
Publication of JPH03229611A publication Critical patent/JPH03229611A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

PURPOSE:To recover CO2 gas efficiently by using synthetic zeolite as adsorbents and purging adsorbed CO2 using CO2 having been preheated to specific temperature. CONSTITUTION:Part of gas containing thin CO2 produced at a boiler 1 etc., is passed through a line 3 and heat-exchanged at a purge gas preheater 5 and thereafter stored in a cushion tank 7. The combustion gas from the tank 7 is successively cooled and dehumidified at an air fin cooler 9 and dehumidifier 11, pressurized to a predetermined adsorption pressure by means of a booster blower 13 and fed via a valve 15 to an adsorption column 19 loaded with adsorbents 17, where most of the CO2 in the combustion gas and a small quantity of N2 and O2 are adsorbed. Thereafter, CO2 of high purity in a product tank 37 is sent to the column 19, where CO2 is further adsorbed and substituted by M2 and O2. As a result, CO2 recovery efficiency can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、稀薄CO2源からプレッシャースイングアド
ソープション法(以下PSA法という)によりCO□を
回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for recovering CO□ from a dilute CO2 source by pressure swing adsorption (hereinafter referred to as PSA method).

従来技術とその問題点 従来からも、燃焼排ガスなどの稀薄CO2源(CO2O
2濃度8〜冗0 りCO2を回収する試みがなされている。しかしながら
、この方法には、以下の様な問題点があり、未だ実用化
されるには至っていない。
Conventional technology and its problems Conventionally, dilute CO2 sources such as combustion exhaust gas (CO2O
Attempts have been made to capture CO2 at concentrations 8 to 0. However, this method has the following problems and has not yet been put into practical use.

(1)吸着剤のCO2吸着容量が小さいため、大量の吸
着剤を必要とする。
(1) Since the adsorbent has a small CO2 adsorption capacity, a large amount of adsorbent is required.

(2)吸着容量を大きくするためには吸着圧力を高めれ
ば良いが、この場合には、原料ガス中のCO2濃度がも
ともと低いので、過剰の動力が必要となる。
(2) In order to increase the adsorption capacity, it is sufficient to increase the adsorption pressure, but in this case, excessive power is required because the CO2 concentration in the raw material gas is originally low.

(3)動力費を減少させるために、吸着圧力を低下させ
るとともに真空脱着を行なう場合に、吸着剤として例え
ば合成ゼオライトを使用すると、原料ガス中のCO2濃
度が低いため、大量のパージ用CO2を使用する必要が
あり、非効率的なプロセスとなる。
(3) When lowering the adsorption pressure and performing vacuum desorption in order to reduce power costs, for example, if synthetic zeolite is used as the adsorbent, the CO2 concentration in the raw gas is low, so a large amount of purge CO2 is required. It is an inefficient process.

(4)また、吸着容量を増大させるためには、パージ工
程後に吸着剤層温度を高めることにより脱着時の再生度
を高める昇温工程を行なう、いわゆるブレッシャーサー
マルスイングアドソーブション法(PTSA法)の採用
も考えられる。しかしながら、この方法は、昇温工程に
長時間を要するので、サイクルタイムが長くなり、さら
に設置スペースの増大に伴って、イニシャルコストの増
加を招くという問題点がある。
(4) In addition, in order to increase the adsorption capacity, a temperature raising process is performed after the purge process to increase the degree of regeneration during desorption by increasing the temperature of the adsorbent layer. ) may also be considered. However, this method requires a long period of time for the temperature raising process, resulting in a longer cycle time and an increase in the installation space, resulting in an increase in initial cost.

上記(1)〜(4)の様な問題点が存在するので、CO
2含有排ガスからPSA法またはPTSA法によりCO
2を回収する技術は、比較的高濃度(25〜30%程度
)のCO2を含有する製鉄排ガス(高炉ガス)などに適
用されているのみであり、CO2濃度の低い燃焼排ガス
については実用化されるには至っていない。
Since problems such as (1) to (4) above exist, CO
2-containing exhaust gas using the PSA method or PTSA method.
The technology to recover CO2 has only been applied to steelmaking exhaust gas (blast furnace gas), etc., which contains a relatively high concentration of CO2 (approximately 25 to 30%), and has not been put into practical use for combustion exhaust gas with a low CO2 concentration. It has not yet been reached.

問題点を解決するための手段 本発明者は、上記の如き技術の現状を背景として、燃焼
排ガスなどの稀薄CO2源から効率良く回収する方法を
見出すべく種々研究を重ねた結果、予め40〜60℃に
予熱しておいたCO2をパージ工程で使用する場合には
、パージ用CO2の使用量を低減し得ること、また、パ
ージ終了時の吸着剤層温度を高めることができるので、
脱着時の回収製品量当たりのの動力削減と吸着剤の再生
度の向上(延いては吸着容量の増大)とが可能となるこ
とを見出した。
Means for Solving the Problems Against the backdrop of the current state of technology as described above, the present inventor has conducted various studies in order to find a method for efficiently recovering CO2 from a dilute CO2 source such as combustion exhaust gas. When CO2 preheated to ℃ is used in the purge step, the amount of CO2 used for purging can be reduced, and the temperature of the adsorbent layer at the end of purging can be increased.
We have discovered that it is possible to reduce the power per unit of recovered product during desorption and improve the regeneration degree of the adsorbent (and thus increase the adsorption capacity).

すなわち、本発明は、下記のCO2回収方法を提供する
ものである: 「稀薄CO2源ガスからプレッシャースイングアドソー
ブション法によりCO2を回収する方法において、吸着
剤として合成セオライトを使用するとともに、40〜6
0℃に予熱したCO2により吸着CO2のパージを行な
うことを特徴とするCO2を回収する方法。」 以下に図面を参照しつつ、本発明を各工程毎にさらに詳
細に説明する。
That is, the present invention provides the following CO2 recovery method: "In a method of recovering CO2 from a dilute CO2 source gas by a pressure swing adsorption method, synthetic theolite is used as an adsorbent, and 6
A method for recovering CO2, characterized in that adsorbed CO2 is purged with CO2 preheated to 0°C. ” The present invention will be explained in more detail for each step with reference to the drawings.

第1図は、本発明方法の実施の一例を示すフローチャー
トである。
FIG. 1 is a flowchart showing an example of implementing the method of the present invention.

1、吸着工程 まず、ボイラー(1)などのCO2発生源で発生した稀
薄CO2源ガス(以下燃焼排ガスをもって代表させる)
の一部は、ライン(3)を経てパージガス予熱器(5)
で熱交換(冷却)された後、クツションタンク(7)に
収容される。次いで、クツションタンク(7)からの燃
焼排ガスは、エアフィンクーラー(9)および脱湿器(
11)において順次冷却および脱湿され、昇圧ブロワ(
13)で所定の吸着圧力(通常0. 1 kg/clI
i−G程度)まで昇圧された後、バルブ(15)を経て
吸着剤(17)を充填された第1.の吸着塔(19)に
送入される。ここで燃焼排ガス中のCO2の大部分と少
世のN2および02が吸着剤に共吸着される。吸着剤と
しては、吸着能力などの観点から、合成ゼオライトが特
に好適である。
1. Adsorption process First, diluted CO2 source gas generated from a CO2 source such as a boiler (1) (hereinafter referred to as combustion exhaust gas)
A part of the gas passes through the line (3) to the purge gas preheater (5).
After being subjected to heat exchange (cooling) at , it is stored in a cushion tank (7). Next, the combustion exhaust gas from the cushion tank (7) is passed through the air fin cooler (9) and the dehumidifier (
11), it is sequentially cooled and dehumidified, and then the booster blower (
13) at a predetermined adsorption pressure (usually 0.1 kg/clI
After the pressure is increased to about i-G), the first pipe is filled with adsorbent (17) through a valve (15). adsorption tower (19). Here, most of the CO2 and small amounts of N2 and 02 in the combustion exhaust gas are co-adsorbed by the adsorbent. As the adsorbent, synthetic zeolite is particularly suitable from the viewpoint of adsorption capacity.

■、加熱CO□によるパージ工程 次いで、製品タンク(37)内の高純度CO2(通常9
9.7%程度)が、パージブロワ(27)で昇圧(通常
0..1kg/cd・G程度まで)され、ライン(29
)を経てパージガス予熱器(5)に送られ、ライン(3
)を通る燃焼排ガスとの熱交換により予熱された後、バ
ルブ(31)を経て、吸着工程を終えた第1の吸着塔(
19)に送入される。
■Purge process with heated CO□ Next, high-purity CO2 in the product tank (37) (usually 9
9.7%) is boosted by the purge blower (27) (usually to about 0.1 kg/cd・G), and the line (29
) to the purge gas preheater (5), and then to the line (3
) After being preheated by heat exchange with the combustion exhaust gas passing through the valve (31), the first adsorption tower (
19).

ここでCO2分圧の差によって吸着平衡が上昇するので
、CO2がさらに吸着されて、バルクのN2および02
ならびに共吸着されたN2および02と置換する。置換
されたガスは、バルブ(39)を経てオフガスとして排
出される。その結果、吸着塔(19)内の吸着剤(17
)は実質的にすべてCO2を吸着した状態となる。
Here, the adsorption equilibrium increases due to the difference in CO2 partial pressure, so more CO2 is adsorbed, and the bulk N2 and 02
and co-adsorbed N2 and 02. The displaced gas is discharged as off-gas through the valve (39). As a result, the adsorbent (17
) is in a state where substantially all CO2 is adsorbed.

パージに使用する高純度CO2の予熱は、他の排熱源に
より行なっても良いが、上記の様に燃焼排ガスとの熱交
換により行なうことが、コスト削減のために、最も好ま
しい。
The high-purity CO2 used for purging may be preheated by other exhaust heat sources, but it is most preferable to preheat by exchanging heat with the combustion exhaust gas as described above in order to reduce costs.

■、真空脱着工程 次いで、吸着塔(19)内の吸着剤(17)に吸着され
たCO2は、バルブ(33)を経て真空ポンプ(35)
により通常40〜60ト一ル程度で真空脱着され、製品
タンク(37)に送入される。
(2) Vacuum desorption process Next, the CO2 adsorbed by the adsorbent (17) in the adsorption tower (19) is transferred to the vacuum pump (35) via the valve (33).
The product is desorbed under vacuum, usually at a pressure of about 40 to 60 torr, and then sent to the product tank (37).

第1図に示す装置においては、3つの吸着塔(19)、
(21)および(23)を使用するので、それぞれの吸
着塔でのサイクルを下表に示すように、順次切り替える
ことにより、装置全体として一ヒ記■〜■の工程を連続
的に行うことができる。
In the apparatus shown in FIG. 1, three adsorption towers (19),
Since (21) and (23) are used, by sequentially switching the cycles in each adsorption tower as shown in the table below, it is possible to continuously perform steps ① to ① for the entire device. can.

第1の吸着塔(19)・・・I−II−m第2の吸着塔
(21)・・・m−■−n第3の吸着塔(23)・・・
n−m−rなお、第1図においては、3つの吸着塔を使
用する装置の概要を示したか、本発明方法は、4つ以上
の吸着塔を使用しても実施することが出来る。
First adsorption tower (19)...I-II-m Second adsorption tower (21)...m-■-n Third adsorption tower (23)...
Although FIG. 1 schematically shows an apparatus using three adsorption towers, the method of the present invention can also be carried out using four or more adsorption towers.

実用的には、3〜4個の吸着塔を使用する場合か最も有
利である。
Practically, it is most advantageous to use 3 to 4 adsorption towers.

本発明によれば、公知のPSA法或いはPTSA法に比
して、下記の様な顕著な効果が達成される。
According to the present invention, the following remarkable effects can be achieved compared to the known PSA method or PTSA method.

(イ)パージ用CO□使用量が削減される。(a) The amount of CO□ used for purging is reduced.

(ロ)CO□パージ工程終了時の吸着剤層温度の全体的
上昇により、CO2脱着工程時の回収製品歯当たりの動
力が削減される。
(b) Due to the overall increase in the temperature of the adsorbent bed at the end of the CO□ purge step, the power applied to the teeth of the recovered product during the CO2 desorption step is reduced.

(ハ)吸着剤の再生度が向上するので、CO2吸着容貴
が増大して吸着剤必要量が減少するとともに、CO2回
収率が向上する。
(c) Since the degree of regeneration of the adsorbent is improved, the CO2 adsorption capacity is increased, the required amount of adsorbent is reduced, and the CO2 recovery rate is improved.

(ハ)上記(イ)乃至(ハ)の総合的な結果として、従
来実用化されていなかった稀薄CO2源からのCO2回
収が可能となった。
(c) As a comprehensive result of the above (a) to (c), it has become possible to recover CO2 from a dilute CO2 source, which has not been put to practical use in the past.

(ニ)したがって、本発明方法は、地球温暖化抑制のた
めに現在検討されつつあるCO2の排出量規制に対処す
る手段としても、有用である。
(d) Therefore, the method of the present invention is also useful as a means for dealing with CO2 emission regulations that are currently being considered in order to suppress global warming.

実施例 以下に実施例および比較例を示し、本発明の特徴とする
ところをより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

実施例1 第1図に示す形式の装置を使用し、合成ゼオライト(商
標“MS13X”  トーソー(株)製)を吸着剤とし
て、燃焼排ガス(CCh濃度11.8%)からCO2を
回収した。
Example 1 Using a device of the type shown in FIG. 1, CO2 was recovered from combustion exhaust gas (CCh concentration 11.8%) using synthetic zeolite (trademark "MS13X" manufactured by Toso Corporation) as an adsorbent.

吸着工程、パージ工程および脱着工程における操作条件
並びに結果は、下記第1表に示す通りである。
The operating conditions and results in the adsorption step, purge step and desorption step are shown in Table 1 below.

比較例I CO□濃度12.8%の燃焼排ガスを原料とし、且つパ
ージガス温度を20℃とする以外は実施例1と同様にし
てCO2を回収した。
Comparative Example I CO2 was recovered in the same manner as in Example 1, except that combustion exhaust gas with a CO□ concentration of 12.8% was used as a raw material and the purge gas temperature was set to 20°C.

吸着工程、パージ工程および脱着工程における操作条件
並びに結果は、下記第1表に併せて示す通りである。
The operating conditions and results in the adsorption step, purge step and desorption step are also shown in Table 1 below.

第1表 実施例1 !着!匣(’C)        201!圧力 (k
g/cJG)           0.08吸着時S
V   (h−’)          670 〜7
00吸着時LV   (cm/see  )     
 9.3 〜9.7パージ時SV  (h −’)  
        110 〜120バージ時LV  (
cm/see  )      1.6 〜1.7バー
ジガス温度  (℃)             40
脱着時圧力  (Torr)            
4 0脱着時回収率 (%)            
 75.8比1着量 (wt%)          
    2. 7比較例1 0 0.08 670〜700 9.3〜9.7 110〜120 1.6〜1.7 0 0 68.3 2.4 第1表に示す結果から、本発明方法の優れたCO2回収
効果が明らかである。
Table 1 Example 1! Arrived! Box ('C) 201! Pressure (k
g/cJG) 0.08 S at adsorption
V (h-') 670 ~7
00 adsorption LV (cm/see)
9.3 to 9.7 SV at purge (h -')
LV at 110-120 barge (
cm/see) 1.6 ~1.7 Barge gas temperature (℃) 40
Pressure during attachment/desorption (Torr)
4 Recovery rate at 0 desorption (%)
75.8 ratio (wt%)
2. 7 Comparative Example 1 0 0.08 670-700 9.3-9.7 110-120 1.6-1.7 0 0 68.3 2.4 From the results shown in Table 1, the method of the present invention was superior. The CO2 recovery effect is clear.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の実施の一例を示すフローチャー
トである。 (1)・・・CO2源(例えばボイラー)(5)・・・
パージガス予熱器 (7)・・・クツションタンク (9)・・・エアフィンクーラー (11)・・・脱湿器 (13)・・・昇圧ブロワ (15)・・・バルブ (17)・・・吸着剤 (19)・・・吸着塔 (21)・・・吸着塔 (23)・・・吸着塔 (27)・・・パージブロワ (31)・・・バルブ (33)・・・バルブ (35)・・・真空ポンプ (37)・・・製品タンク (以 上)
FIG. 1 is a flowchart showing an example of implementing the method of the present invention. (1)...CO2 source (e.g. boiler) (5)...
Purge gas preheater (7)...Cushion tank (9)...Air fin cooler (11)...Dehumidifier (13)...Boosting blower (15)...Valve (17)...・Adsorbent (19)...Adsorption tower (21)...Adsorption tower (23)...Adsorption tower (27)...Purge blower (31)...Valve (33)...Valve (35 )...Vacuum pump (37)...Product tank (and above)

Claims (1)

【特許請求の範囲】[Claims] (1)稀薄CO_2源ガスからプレッシャースイングア
ドソープション法によりCO_2を回収する方法におい
て、吸着剤として合成ゼオライトを使用するとともに、
40〜60℃に予熱したCO_2により吸着CO_2の
パージを行なうことを特徴とするCO_2を回収する方
法。
(1) In the method of recovering CO_2 from dilute CO_2 source gas by pressure swing adsorption method, synthetic zeolite is used as an adsorbent, and
A method for recovering CO_2, characterized in that adsorbed CO_2 is purged with CO_2 preheated to 40 to 60°C.
JP2024972A 1990-02-02 1990-02-02 Method for recovering co2 from gas containing thin co2 by psa process Pending JPH03229611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024972A JPH03229611A (en) 1990-02-02 1990-02-02 Method for recovering co2 from gas containing thin co2 by psa process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024972A JPH03229611A (en) 1990-02-02 1990-02-02 Method for recovering co2 from gas containing thin co2 by psa process

Publications (1)

Publication Number Publication Date
JPH03229611A true JPH03229611A (en) 1991-10-11

Family

ID=12152887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024972A Pending JPH03229611A (en) 1990-02-02 1990-02-02 Method for recovering co2 from gas containing thin co2 by psa process

Country Status (1)

Country Link
JP (1) JPH03229611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531808A (en) * 1994-12-23 1996-07-02 The Boc Group, Inc. Removal of carbon dioxide from gas streams
JP2004202393A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Carbon dioxide desorption method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531808A (en) * 1994-12-23 1996-07-02 The Boc Group, Inc. Removal of carbon dioxide from gas streams
JP2004202393A (en) * 2002-12-25 2004-07-22 Tokyo Electric Power Co Inc:The Carbon dioxide desorption method

Similar Documents

Publication Publication Date Title
US4986835A (en) Process for separating and recovering carbonic acid gas from gas mixture by adsorption
CA2077176C (en) Gas separation process and unit therefor
US4073863A (en) Regeneration of absorbent solutions used for removing gaseous acid impurities from gaseous mixtures
US4283212A (en) Treatment of gas streams
CN102083512A (en) Carbon dioxide recovery
JP2012503593A (en) Multi-stage process for purifying carbon dioxide to produce sulfuric acid and nitric acid
JPS62136222A (en) Method for adsorbing and separating specific gas from gaseous mixture
JP2017189750A (en) Method for separating and recovering carbon dioxide from blast furnace gas and method for utilizing blast furnace gas
EP0416127B1 (en) Process for efficiently recovering adsorbable gas from gas which contains adsorbable gas at low concentration
JP2009226257A (en) Process for separation of blast furnace gas, and system of separating blast furnace gas
JP2018071894A (en) Method for separating and recovering hydrogen from blast furnace gas, method for producing hydrogen, and separation and recovery system of hydrogen from blast furnace gas
US2578674A (en) Nitric oxide recovery system
US8128735B1 (en) Process for CO2 capture using zeolites from high pressure and moderate temperature gas streams
US4020117A (en) Adsorptive recovery system for methyl chloride and methylene chloride
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
JP5665120B2 (en) Argon gas purification method and purification apparatus
JPH03229611A (en) Method for recovering co2 from gas containing thin co2 by psa process
CN108367230A (en) Temp.-changing adsorption method
JPH01176416A (en) Purifying method for combustion exhaust gas
JPH01126203A (en) Production of high-purity gaseous hydrogen
JPH07746A (en) Production of carbon dioxide and hydrogen from methanol and hydrogen producing equipment
JPH0422415A (en) Method for adsorbing and removing carbon dioxide
JPS62292602A (en) Method for recovering hydrogen
JPH01148703A (en) Recovery of gaseous argon
JPS6022918A (en) Method and apparatus for separating component of mixed gas