JPH03229113A - Distance measuring instrument - Google Patents

Distance measuring instrument

Info

Publication number
JPH03229113A
JPH03229113A JP2564290A JP2564290A JPH03229113A JP H03229113 A JPH03229113 A JP H03229113A JP 2564290 A JP2564290 A JP 2564290A JP 2564290 A JP2564290 A JP 2564290A JP H03229113 A JPH03229113 A JP H03229113A
Authority
JP
Japan
Prior art keywords
measured
light
actuator
distance
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2564290A
Other languages
Japanese (ja)
Inventor
Tetsuya Saito
哲哉 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2564290A priority Critical patent/JPH03229113A/en
Publication of JPH03229113A publication Critical patent/JPH03229113A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the distance to a body to be measured under proper conditions at all times by leading the detection signal of a position detecting element to a focus adjusting means when the distance is measured, and adjusting an irradiation light beam automatically so that the beam is correctly put in focus on a measurement area of the body to be measured. CONSTITUTION:When the position of the body 5 to be measured is measured, the body 5 to be detected is irradiated with irradiation light 4 from a semiconductor laser 11 while a projection lens 12 and, therefore, an actuator 8 is set at a standard position, and the detection signal outputted by the position detector 13 of a signal processing part 3 is inputted to a driving circuit 9 in this state through the position detecting element 22 of a photodetection part 2. The driving circuit 9 drives the movable bobbin of the actuator 8 so that the irradiation light 4 is focused in a minimum- diameter spot 6 on the surface of the body 5 to be measured. When the body 5 to be measured is displaced and the irradiation light 4 comes to out of focus, the exciting current supplied from the driving circuit 9 to the actuator 8 varies to move and correct the position of the projection lens 12, so that the distance is measured while the minimum-diameter light spot 6 is formed on the surface of the body 5 to be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ変位計として知られた充電式の測距装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rechargeable distance measuring device known as a laser displacement meter.

〔従来の技術〕[Conventional technology]

頭記の測距装置として、投光部より投光レンズを通じて
被測定物に向けて照射したレーザビームナトの光ビーム
の反射光を受光レンズを通じて半導体装置検出素子の受
光面上に結像させ、さらに位置検出素子の検出信号を演
算処理して被測定物までの距離、ないしその変位を測定
するようにしたものがレーザ変位計として例えば特開昭
55−119006号公報などでよく知られており、製
品の加工、検査工程などの距離、変位センサとして各種
用途に広く応用されている。
The above-mentioned distance measuring device focuses the reflected light of the light beam of a laser beam irradiated from a light projecting unit toward the object to be measured through a light projecting lens, and forms an image on the light receiving surface of a semiconductor device detection element through a light receiving lens. Furthermore, a device that measures the distance to the object to be measured or its displacement by processing the detection signal of the position detection element is well known as a laser displacement meter, for example, as disclosed in Japanese Patent Laid-Open No. 119006/1983. It is widely used as a distance and displacement sensor in product processing and inspection processes.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記した測距装置ではその使用面で次記のよ
うな問題点がある。すなわち、被測定物上に定めた測定
領域のターゲットが極小面積であるのに対し、投光部か
ら被測定物に向けて照射される光ビームのスポット径が
前記ターゲットよりも大である場合には、ターゲット以
外の領域に照射した反射光も位置検出素子の受光面に分
布して受光されることになる。このためにターゲットか
らの反射光のエネルギー重心が正確に検出できず、結果
として高精度な測定が不可能となる。つまり投光部から
投光レンズを通じて照射した光ビームの焦点が被測定物
の面上に結ばない、いわゆるアウトフォーカスの状態で
測定した場合には、位置検出素子の受光面に結像する反
射光スポットが一点に集中せずに拡がりをもつようにな
るため距離。
By the way, the distance measuring device described above has the following problems in terms of its use. In other words, when the target of the measurement area defined on the object to be measured has an extremely small area, but the spot diameter of the light beam irradiated from the light projector toward the object to be measured is larger than the target. In this case, the reflected light irradiated onto a region other than the target is also distributed and received on the light receiving surface of the position detection element. For this reason, the energy center of gravity of the reflected light from the target cannot be detected accurately, and as a result, highly accurate measurement becomes impossible. In other words, when measuring in a so-called out-of-focus state, in which the focus of the light beam irradiated from the light projecting unit through the light projecting lens is not focused on the surface of the measured object, reflected light that forms an image on the light receiving surface of the position detection element Distance because the spots are spread out instead of concentrating on one point.

変位量の測定精度が低下する。The measurement accuracy of displacement amount decreases.

したがって、測定精度を高めるには被測定物に照射する
光ビームのスポット径が最小となるように、つまり投光
レンズを透過した光ビームが被測定物のターゲツト面上
に焦点を結ぶようにした条件て測定する必要がある。し
かして、従来における測距装置では、投光部の投光レン
ズが固定的に装備されていて光源との相対距離が一定な
固定焦点方式で構成されている。このために被測定物の
位置が標準位置から外れた位置に変位すると、被測定物
の表面に照射された光ビームがアウトフォーカスとなっ
て光スポツト径が大となり、前記のような測定精度低下
の問題が発生する。
Therefore, to improve measurement accuracy, it is important to minimize the spot diameter of the light beam irradiating the object to be measured, that is, to ensure that the light beam that passes through the projection lens is focused on the target surface of the object to be measured. It is necessary to measure the conditions. Conventional distance measuring devices are constructed using a fixed focus system in which the light projecting lens of the light projecting section is fixedly mounted and the relative distance to the light source is constant. For this reason, if the position of the object to be measured deviates from the standard position, the light beam irradiated onto the surface of the object becomes out of focus and the diameter of the light spot increases, resulting in a decrease in measurement accuracy as described above. problem occurs.

本発明は上記の点にかんがみなされたものであり、測定
に際して照射光ビームが被測定物の測定領域に正しく焦
点を結ぶように自動調整することにより、常に適正条件
で精度よく被測定物の距離。
The present invention was conceived in consideration of the above points, and the distance to the object to be measured is always accurately determined under appropriate conditions by automatically adjusting the irradiation light beam to correctly focus on the measurement area of the object to be measured during measurement. .

変位量を測定できるようにした測距装置を提供すること
を目的とする。
It is an object of the present invention to provide a distance measuring device capable of measuring the amount of displacement.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の測距装置において
は、投光レンズに対し該レンズを光軸に沿って移動操作
する焦点調整手段を備え、かつ測定時に位置検出素子の
検出信号を焦点調整手段に取り込み、これを基に投光レ
ンズの位置を修正して光ビームが被測定物の表面に焦点
を結ぶよう構成するものとする。
In order to solve the above problems, the distance measuring device of the present invention is provided with a focus adjustment means for moving the projection lens along the optical axis, and the detection signal of the position detection element is focused at the time of measurement. The light beam is taken into the adjusting means and the position of the projection lens is corrected based on this so that the light beam is focused on the surface of the object to be measured.

〔作用〕[Effect]

上記構成における投光レンズの焦点調整手段は、投光レ
ンズをその先軸方向に移動させる例えば電磁式のアクチ
エータと、該アクチエータの駆動回路とからなる。また
、投光部からの照射ビームが被測定物上に正しく焦点を
結んだ測定条件での被測定物の距離、変位量に対応する
位置検出素子の検出信号とアクチエータの駆動電流との
関係が前記駆動回路に付設したROMテーブルにあらか
じめ格納されている。
The focusing means for the light projecting lens in the above configuration includes, for example, an electromagnetic actuator that moves the light projecting lens in its front axis direction, and a drive circuit for the actuator. In addition, the relationship between the detection signal of the position detection element corresponding to the distance and displacement of the object to be measured and the drive current of the actuator under measurement conditions in which the irradiation beam from the light projector is correctly focused on the object to be measured is It is stored in advance in a ROM table attached to the drive circuit.

そして、実際の測定時の当初に受光部の位置検出素子よ
り出力する検出信号をアクチエータの駆動回路に取り込
み、前記のROMテーブルを参照して投光ビームの焦点
が被測定物の表面上に正しく結んでいるか否かを判定し
た上で、アウトフォーカスである場合にはアクチエータ
を介して投光レンズを光軸方向に修正移動するよう制御
する。
Then, at the beginning of actual measurement, the detection signal output from the position detection element of the light receiving section is input into the actuator drive circuit, and the focus of the projected beam is correctly aligned on the surface of the object to be measured by referring to the ROM table mentioned above. After determining whether or not the light is connected, if the light is out of focus, the light projecting lens is controlled to be corrected and moved in the optical axis direction via the actuator.

これにより、照射光ビームが被測定物上に焦点を正しく
結んでここに形成される光スポットが最小径となる。こ
の状態になれば被測定物からの反射光が位置検出装置素
子の受光面上で一点に集中して受光される。したがって
、かかる測定条件を確立した上で、位置検出素子の検出
信号を後段の信号処理部にて位置、変位量に演算処理す
ることにより、例え被測定物の測定領域ターゲットが極
小面積であっても常に高い測定精度で測定することがで
きる。
As a result, the irradiation light beam is correctly focused on the object to be measured, and the light spot formed there has the smallest diameter. In this state, the reflected light from the object to be measured is concentrated and received at one point on the light receiving surface of the position detection device element. Therefore, after establishing such measurement conditions, the detection signal of the position detection element is processed into the position and displacement amount in the subsequent signal processing section. can always be measured with high measurement accuracy.

〔実施例〕〔Example〕

以下本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

まず、第1図は測距装置全体の構成ブロック図である0
図においてlは投光部、2は受光部、3は信号処理部で
あり、投光部lの半導体レーザ11より出射した照射光
4は投光レンズ12を通じて被測定物5に照射され、そ
の表面に光スポット6を形成する。また、被測定物5の
表面で反射した光スポット6の反射光7は、受光部2の
受光レンズ21を経て半導体装置検出素子(PSD)2
2の受光面上に結像する。なお、この位置検出素子22
は拡散型のPINホオトダイオードであり、その左右両
端の電極より受光面上での結像位置に対応した電流11
+ Igを出力する。この出力電流1.、1gは信号処
理部3の位置検出器31に入力して変換処理され、前記
位置検出素子22の結像位置を表す検出信号を演算器3
2に出力する。また、演算器32は検出信号をサンプリ
ングホールドした後に所定の演算処理を行い、被測定物
5との間の距離、ないし変位量を表す測定信号をアナロ
グ量ないしディジタル量として出力する。なお、33は
半導体レーザ11のドライバ、34は半導体レーザのド
ライバ33.および前記演算器32にクロック信号を与
える発振器である。また、受光部2については、受光レ
ンズ21゜位置検出素子22が投光部lとの間の光学系
でいわゆるシャインプルーグ条件を満足するように設置
されているものとする。
First, Figure 1 is a block diagram of the entire distance measuring device.
In the figure, l is a light projecting section, 2 is a light receiving section, and 3 is a signal processing section, and the irradiation light 4 emitted from the semiconductor laser 11 of the light projecting section l is irradiated onto the object to be measured 5 through the projecting lens 12. A light spot 6 is formed on the surface. Further, the reflected light 7 of the light spot 6 reflected on the surface of the object to be measured 5 passes through the light receiving lens 21 of the light receiving section 2 and passes through the semiconductor device detection element (PSD) 2.
The image is formed on the light receiving surface of 2. Note that this position detection element 22
is a diffused type PIN photodiode, and a current 11 corresponding to the image formation position on the light receiving surface is generated from the electrodes at both the left and right ends of the diode.
+ Output Ig. This output current 1. .
Output to 2. Further, the computing unit 32 performs predetermined arithmetic processing after sampling and holding the detection signal, and outputs a measurement signal representing the distance or displacement amount from the object to be measured 5 as an analog quantity or a digital quantity. Note that 33 is a driver for the semiconductor laser 11, and 34 is a driver 33. for the semiconductor laser. and an oscillator that provides a clock signal to the arithmetic unit 32. As for the light receiving section 2, it is assumed that the optical system between the light receiving lens 21 and the position detecting element 22 and the light projecting section 1 is installed so as to satisfy the so-called Scheimpflug condition.

ここまでの構成は従来の測距装置と同一であるが、本発
明により決起の部品が新た追加装備されている。すなわ
ち、投光部lには投光レンズ12を担持し、核レンズを
光軸に沿って前後に移動操作するアクチエータ8が装備
されており、該アクチエータ8を制御するアクチエータ
駆動回路9が信号処理部3に組み込まれている。ここで
、アクチエータ8の構造を第2図に示す、すなわち、ア
クチエータ8は磁石81を備えて磁気回路を構成する固
定ヨーク82と、光軸と平行な支軸83にガイド支持し
てヨーク82に組合わせた可動ボビン84と、可動ボビ
ン84に巻装した駆動コイル85と、一端を固定して可
動ボビン84に連結したばね部材86とからなり、可動
ボビン84に完配した投光レンズ12が取付けてあり、
またコイル85に流す励磁電流がアクチエータ駆動回路
9より与えられる。
The configuration up to this point is the same as that of the conventional distance measuring device, but new parts have been newly added according to the present invention. That is, the light projecting unit 1 is equipped with an actuator 8 that supports a light projecting lens 12 and moves the nuclear lens back and forth along the optical axis, and an actuator drive circuit 9 that controls the actuator 8 performs signal processing. It is incorporated in part 3. Here, the structure of the actuator 8 is shown in FIG. 2. That is, the actuator 8 includes a fixed yoke 82 that includes a magnet 81 and constitutes a magnetic circuit, and is guided and supported by a support shaft 83 parallel to the optical axis and attached to the yoke 82. It consists of a combined movable bobbin 84, a drive coil 85 wound around the movable bobbin 84, and a spring member 86 fixed at one end and connected to the movable bobbin 84. It is installed,
Further, an excitation current to be passed through the coil 85 is provided from the actuator drive circuit 9.

かかる構成で、コイル85を励磁すると、固定側の磁気
回路との間に働く電磁力により可動ボビン84が投光レ
ンズ12と一緒に支軸83に沿って駆動され、その電磁
力とばね部材86のばね力とが釣り合った位置に静止す
る。ここでコイル85に流す励磁電流の大きさを変える
ことにより、可動ボビン84゜したがって投光レンズ1
2の静止位置も変化することになる。
With this configuration, when the coil 85 is excited, the movable bobbin 84 is driven along the support shaft 83 together with the light projecting lens 12 due to the electromagnetic force acting between it and the fixed side magnetic circuit, and the electromagnetic force and the spring member 86 It comes to rest at a position where the spring force is balanced. By changing the magnitude of the excitation current flowing through the coil 85, the movable bobbin 84° and therefore the light emitting lens 1
The resting position of 2 will also change.

そして、実際に被測定物5の位置を測定する際には、あ
らかじめ投光レンズ12.シたがってアクチエータ8を
標準位置に設定した状態で、投光レンズ12を通じて半
導体レーザ11より出射し1こ照射光4を被測定物5に
向けて照射し、この状態で受光部2の位置検出素子22
を介して信号処理部3の位置検出器31から出力する検
出信号を駆動回路9に取り込む、これにより駆動回路9
は、投光部1から投光レンズ12を通じて投光した照射
光4の焦点が被測定物5の表面に結んで最小径の光スポ
ット6を形成させるに要する励磁電流を発生してアクチ
エータ8の可動ボビン84を駆動する。この動作を第3
図(a)、(b)に表す、すなわち、第3図(a)は被
測定物5が例えば標準位置にあり、投光レンズ11を透
過した照射光4の焦点が被測定物5の表面に結んでここ
に最小径の光スポット6が形成されている測定状態を示
している。一方、被測定物5が変位して第3図(ロ)の
ように距離が増大した場合には、投光レンズ12が照準
位置のままであると照射光4の焦点が合わず、アウトフ
ォーカスとなって被測定物5に形成される光スポット6
が径大となる。この場合には後記のように駆動回路9よ
りアクチエータ8に与える励磁電流が変わって投光レン
ズ12の位置が修正移動され、投光レンズ12を透過し
た照射光4は(a)図と同様に焦点が被測定物5に結ん
で最小径の光スポット6を形成するようになる。
When actually measuring the position of the object to be measured 5, the projection lens 12. Therefore, with the actuator 8 set at the standard position, one irradiation light 4 emitted from the semiconductor laser 11 is emitted from the semiconductor laser 11 through the projection lens 12 toward the object 5 to be measured, and in this state, the position of the light receiving section 2 is detected. Element 22
The detection signal output from the position detector 31 of the signal processing section 3 is taken into the drive circuit 9 via the drive circuit 9.
The actuator 8 generates an excitation current necessary for focusing the irradiation light 4 projected from the light projecting unit 1 through the light projecting lens 12 onto the surface of the object to be measured 5 to form a light spot 6 with the minimum diameter. The movable bobbin 84 is driven. Repeat this action in the third
In FIG. 3(a), the object to be measured 5 is at the standard position, and the focus of the irradiation light 4 transmitted through the projection lens 11 is on the surface of the object to be measured 5. This shows a measurement state in which a light spot 6 with the smallest diameter is formed. On the other hand, when the object to be measured 5 is displaced and the distance increases as shown in FIG. As a result, a light spot 6 is formed on the object to be measured 5.
becomes larger in diameter. In this case, as will be described later, the excitation current applied from the drive circuit 9 to the actuator 8 is changed, the position of the light projection lens 12 is corrected and moved, and the irradiation light 4 transmitted through the light projection lens 12 is as shown in FIG. The focus is on the object to be measured 5 to form a light spot 6 with the smallest diameter.

すなわち、アクチエータ駆動回路9はROMテーブルを
備えており、被測定物5の位置、f:位置に対応するア
クチエータ8の適正な励磁電流と、この測定条件で位置
検出素子22を介して位置検出器31より出力される信
号との関係データをあらかじめROMテーブルに格納し
ておく、そして実際の測定に際しては当初のアクチエー
タ励磁電流。
That is, the actuator drive circuit 9 is equipped with a ROM table, and the actuator 8 is supplied with an appropriate excitation current corresponding to the position of the object to be measured 5, f: position, and the position detector is detected via the position detection element 22 under these measurement conditions. Data related to the signal output from 31 is stored in advance in a ROM table, and during actual measurement, the initial actuator excitation current is used.

およびその条件で得られた検出信号とROMテーブルの
データ内容とを比較して照射光4の焦点が被測定物5の
位置と一致しているか否かを判定し、ここでアウトフォ
ーカスであると判定されれば投光レンズ12を新たな位
置に修正移動して照射光4の焦点が被測定物5に正しく
結ぶようにアクチエータ8の励磁電流を増減制御する。
The detection signal obtained under these conditions is compared with the data contents of the ROM table to determine whether the focus of the irradiation light 4 matches the position of the object to be measured 5, and it is determined that the focus is out of focus. If it is determined, the projection lens 12 is corrected and moved to a new position, and the excitation current of the actuator 8 is controlled to increase or decrease so that the irradiation light 4 is correctly focused on the object to be measured 5.

そして、照射光4の焦点が被測定物5に正しく結んだこ
とが確認された条件で、位置検出器31の検出信号を基
に演算器32より測定信号を出力する。
Then, under conditions in which it is confirmed that the focus of the irradiation light 4 is correctly focused on the object to be measured 5, a measurement signal is output from the computing unit 32 based on the detection signal of the position detector 31.

これにより、被測定物5の距離、変位量の変動に関係な
く、照射光4が被測定物5の表面に焦点を結んで最小径
の光スポット6を形成した条件で測定でき、これにより
全測定範囲で常に高い測定精度が得られる。
As a result, measurement can be performed under conditions in which the irradiation light 4 is focused on the surface of the object to be measured 5 to form a light spot 6 with the minimum diameter, regardless of changes in the distance and displacement of the object to be measured. High measurement accuracy is always achieved within the measurement range.

〔発明の効果〕〔Effect of the invention〕

本発明による測距装置は、以上説明したように構成され
ているので、決起の効果を奏する。
Since the distance measuring device according to the present invention is configured as described above, it exhibits an outstanding effect.

(1)測距装置の全測定範囲で、被測定物の位置。(1) The position of the object to be measured within the entire measurement range of the distance measuring device.

変位量の如何に関係なく投光レンズを透過して投光され
る照射光が被測定物上で最小径の光スポットを形成する
ように、焦点隣整手段を介して投光レンズの焦点合わせ
を行うことができる。
Focusing of the projection lens is performed using a focusing means so that the irradiation light transmitted through the projection lens forms a light spot with the minimum diameter on the object to be measured, regardless of the amount of displacement. It can be performed.

C2)シたがって、被測定物の距離、変位が常に最適な
測定条件で測定され、これにより例えば測定領域のター
ゲットが小面積である場合でも、高い測定精度で測定す
ることができる。
C2) Therefore, the distance and displacement of the object to be measured are always measured under optimal measurement conditions, and thereby, for example, even if the target in the measurement area is small, measurement can be performed with high measurement accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構成を示すブロック図、第2図
は第1図におけるアクチエータの構成斜視図、第3図(
a)、(b)は焦点合わせの動作説明図である0図にお
いて、 1:投光部、11:半導体レーザ(光源)、12:投光
レンズ、2:受光部、21:受光レンズ、22:位置検
出素子、3:信号処理部、4:照射光、被測定物、 6:光スポット、 :反射光、 !P10 2 第2図 ((1) 第3
Figure 1 is a block diagram showing the configuration of an embodiment of the present invention, Figure 2 is a perspective view of the configuration of the actuator in Figure 1, and Figure 3 (
In Figure 0, which is an explanatory diagram of focusing operation, a) and (b) are as follows: 1: Light projecting section, 11: Semiconductor laser (light source), 12: Light projecting lens, 2: Light receiving section, 21: Light receiving lens, 22 : Position detection element, 3: Signal processing section, 4: Irradiation light, object to be measured, 6: Light spot, : Reflected light, ! P10 2 Figure 2 ((1) 3rd

Claims (1)

【特許請求の範囲】[Claims] 1)光源より投光レンズを通じて被測定物に光ビームを
照射する投光部と、被測定物からの反射光を受光レンズ
を通じて位置検出素子の受光面に結像させる受光部と、
前記位置検出素子の検出信号を基に被測定物までの距離
ないし変位を算出する信号処理部とからなる測距装置に
おいて、前記投光レンズに対し該レンズを光軸に沿って
移動操作する焦点調整手段を備え、かつ測定時に位置検
出素子の検出信号を焦点調整手段に取り込み、これを基
に投光レンズの位置を修正して光ビームが被測定物の表
面に焦点を結ぶよう構成したことを特徴とする測距装置
1) a light projecting section that irradiates a light beam from a light source to a measured object through a light projecting lens; a light receiving section that forms an image of reflected light from the measured object on a light receiving surface of a position detection element through a light receiving lens;
In a distance measuring device comprising a signal processing section that calculates the distance or displacement to the object to be measured based on the detection signal of the position detection element, a focal point for moving the lens along the optical axis with respect to the projection lens; The apparatus is equipped with an adjustment means, and is configured such that the detection signal of the position detection element is taken into the focus adjustment means during measurement, and the position of the light projection lens is corrected based on this, so that the light beam is focused on the surface of the object to be measured. A distance measuring device featuring:
JP2564290A 1990-02-05 1990-02-05 Distance measuring instrument Pending JPH03229113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2564290A JPH03229113A (en) 1990-02-05 1990-02-05 Distance measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2564290A JPH03229113A (en) 1990-02-05 1990-02-05 Distance measuring instrument

Publications (1)

Publication Number Publication Date
JPH03229113A true JPH03229113A (en) 1991-10-11

Family

ID=12171491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2564290A Pending JPH03229113A (en) 1990-02-05 1990-02-05 Distance measuring instrument

Country Status (1)

Country Link
JP (1) JPH03229113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159347A (en) * 1993-10-08 1995-06-23 Elpatronic Ag Method for excluding and separating bottle which can be returned and recovered from flow of circulating process
JP2012007961A (en) * 2010-06-24 2012-01-12 Panasonic Corp Shape measuring apparatus and shape measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159347A (en) * 1993-10-08 1995-06-23 Elpatronic Ag Method for excluding and separating bottle which can be returned and recovered from flow of circulating process
JP2012007961A (en) * 2010-06-24 2012-01-12 Panasonic Corp Shape measuring apparatus and shape measuring method

Similar Documents

Publication Publication Date Title
JP2006317428A (en) Face position detector
JPH03229113A (en) Distance measuring instrument
JPH1147970A (en) Laser welding machine with automatic focusing device
JP2003207323A (en) Optical displacement measuring instrument
JP3668129B2 (en) Optical dimension measuring method and apparatus
JP3840619B2 (en) Displacement meter
JP2001304831A (en) Optical angle measuring apparatus
JP2004101438A (en) Laser generator, image reading apparatus and image inspection apparatus
JPH05164556A (en) Focusing type non-contact displacement gage
JPS61153502A (en) Height detecting device
JP3602437B2 (en) Method for determining laser beam focal point position, laser beam focal point position determining device, and hologram laser assembling device
JPS61223604A (en) Gap measuring instrument
JP2698446B2 (en) Interval measuring device
JP2573673B2 (en) Optical displacement measuring device of triangulation method
JP2529049B2 (en) Optical displacement meter
JP2004239646A (en) Optical measuring unit
JPH08145625A (en) Optical displacement measuring apparatus
JPH02259711A (en) Method for controlling autofocusing
JP2003279307A (en) Surface displacement measuring apparatus and measuring method using the same
JPH0227606B2 (en) ICHISOKUTEISOCHI
JPS6283612A (en) Displacement transducer
JPH05280947A (en) Optical apparatus for measurement
JP2020119665A (en) Scanning electron microscope
JPH05107273A (en) Voltage detector
JPS6250603A (en) Position measuring instrument