JPH03228821A - Production of multiple oxide powder - Google Patents

Production of multiple oxide powder

Info

Publication number
JPH03228821A
JPH03228821A JP2483290A JP2483290A JPH03228821A JP H03228821 A JPH03228821 A JP H03228821A JP 2483290 A JP2483290 A JP 2483290A JP 2483290 A JP2483290 A JP 2483290A JP H03228821 A JPH03228821 A JP H03228821A
Authority
JP
Japan
Prior art keywords
oxide powder
slurry
site
alkali
vapor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2483290A
Other languages
Japanese (ja)
Inventor
Kazumi Okabe
岡部 参省
Yoshifumi Ogino
荻野 吉史
Yukio Sakabe
行雄 坂部
Hiroshi Takagi
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2483290A priority Critical patent/JPH03228821A/en
Publication of JPH03228821A publication Critical patent/JPH03228821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain homogeneous multiple oxide powder contg. no pyrochlore phase by adding alkali to a mixed aq. soln. contg. water soluble compds. of at least two of specified metallic elements, adding a Pb compd. to the resulting slurry and hydrothermally treating this slurry. CONSTITUTION:Alkali is added to a mixed aq. soln. contg. water soluble compds. or hydroxides of at least two of metallic elements B1-Bn (B is a di- to hexavalent element) so as to adjust the pH to 10-12 and the resulting slurry is hydrothermally treated at 150-250 deg.C under satd. vapor pressure to 200kg/cm<2> pressure. A Pb compd. is then added to the treated slurry and this slurry is hydrothermally treated at 150-250 deg.C under satd. vapor pressure to 200 kg/cm<2> pressure to obtain a multiple oxide having multiple perovskite structure represented by the formula (where A is Pb and n >=2).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合ペロブスカイト構造を有する超微細な複合
酸化物粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing ultrafine composite oxide powder having a composite perovskite structure.

(従来の技術) 従来、複合ペロブスカイト構造を有する複合酸化物粉末
の製造法としては、(イ)複合酸化物を構成する各元素
の酸化物や炭酸塩などの原料粉末を所定の組成比で混合
し、その混合物を仮焼した後、粉砕する乾式法、(ロ)
特公昭62−14488号公報、特公昭61−5311
5号公報に記載のように、AサイトあるいはBサイトの
沈澱物を生成し、これにBサイトあるいはAサイトの成
分化合物を添加し、得られた沈澱生成物を乾燥後、高温
で仮焼する方法、(ハ)特公昭63−100001号公
報に記載のように、Aサイト成分およびBサイト成分の
混合物を溶融剤の存在下で仮焼する方法、さらには、(
ニ)構成成分の全てを所定の組成比で含有する混合溶液
を調製し、これにアルカリ等の沈澱剤を添加して共沈物
を生成させ、該共沈物を仮焼する共沈法などが知られて
いる。
(Prior art) Conventionally, the method for manufacturing composite oxide powder having a composite perovskite structure involves (a) mixing raw material powders such as oxides and carbonates of each element constituting the composite oxide in a predetermined composition ratio; (b) A dry method in which the mixture is calcined and then crushed.
Special Publication No. Sho 62-14488, Special Publication No. Sho 61-5311
As described in Publication No. 5, a precipitate of the A site or the B site is generated, a component compound of the B site or the A site is added thereto, and the obtained precipitate product is dried and then calcined at a high temperature. method, (c) a method of calcining a mixture of A site component and B site component in the presence of a melting agent as described in Japanese Patent Publication No. 63-100001;
D) A coprecipitation method in which a mixed solution containing all of the constituent components in a predetermined composition ratio is prepared, a precipitant such as an alkali is added to this to form a coprecipitate, and the coprecipitate is calcined. It has been known.

(発明が解決しようとする課題) しかしながら、伝統的な(イ)の乾式法では、出発原料
である酸化物あるいは炭酸塩粉末の粒径が粗いため、均
一な混合、分散が不可能であり、仮焼工程でパイロクロ
ア相とペロブスカイト相とが混在した複合酸化物粉末し
か得られず、しかも、仮焼後に機械的粉砕によって微粉
末化しているため、0.1μm程度の超微粉末を得るこ
とは不可能であった。また、(イ)および(ニ)の湿式
法では、いづれも乾式法と同様、仮焼および機械的粉砕
を伴うため、0.1μm程度の超微粉末を得ることは不
可能であり、しかも(ニ)の共沈法では、複合酸化物を
構成する各元素の沈澱を生成するpHが異なるため、各
元素の沈澱物の生成に時間的ずれを生じ、分子レベルで
の均一な混合が不可能となり組成にずれを生じ易いとい
う問題があ一 さらに、(ハ)の方法では、融剤として塩化ナトリウム
、塩化カリウムなとの塩化物を用いているため、仮焼後
、これらの融剤を除去する際に塩素イオンが完全に除去
されずに残留し、この塩素イオンが焼成時に複合酸化物
構成元素のpbと反応して高温で揮発性を有するPbC
l2を生成し、蒸発してpbか失われ、組成にずれを生
じ易いという問題があった。
(Problems to be Solved by the Invention) However, in the traditional dry method (a), uniform mixing and dispersion is impossible because the particle size of the starting material oxide or carbonate powder is coarse. In the calcination process, only a composite oxide powder containing a mixture of pyrochlore and perovskite phases can be obtained, and furthermore, since it is pulverized by mechanical crushing after calcination, it is difficult to obtain ultrafine powder of about 0.1 μm. It was impossible. In addition, in the wet methods (a) and (d), like the dry method, both involve calcination and mechanical pulverization, so it is impossible to obtain ultrafine powder of about 0.1 μm. In the co-precipitation method (d), the pH at which the precipitates of each element forming the composite oxide are generated is different, resulting in a time lag in the formation of the precipitates of each element, making it impossible to mix uniformly at the molecular level. In addition, method (c) uses chlorides such as sodium chloride and potassium chloride as fluxes, so these fluxes are removed after calcination. During firing, chlorine ions are not completely removed and remain, and these chlorine ions react with Pb, a component of the composite oxide, during firing, resulting in PbC, which is volatile at high temperatures.
There was a problem in that 12 was produced and PB was lost through evaporation, which tended to cause a deviation in composition.

また、前記いづれの方法においても、パイロクロア型化
合物が生成し易く、これを防止するため、高温で焼成す
ると、PbO等の成分が蒸発してしまい、組成の変動を
生じるという問題がある。
In addition, in any of the above methods, pyrochlore type compounds are likely to be produced, and if baking is performed at a high temperature to prevent this, components such as PbO will evaporate, resulting in compositional fluctuations.

従って、本発明は、仮焼や機械的粉砕さらには高温での
焼成を必要とせず、組成が均一で、0.1μm程度の粒
径を有する複合酸化物粉末を製造することができるよう
にするととを技術的課題とするものである。
Therefore, the present invention makes it possible to produce a composite oxide powder having a uniform composition and a particle size of about 0.1 μm without requiring calcination, mechanical pulverization, or high-temperature calcination. This is a technical issue.

(課題を解決するための手段) 本発明は、前記課題を解決するための手段として、一般
式: A(B、B2−=−Bn)03(但し、AはPb
5B、、B2、・・・・・・Bnはそれぞれ原子価が2
〜6である元素を示し、nは2以上の整数である。)で
示される複合ペロブスカイト構造を有する複合酸化物粉
末の製造方法において、前記一般式のBサイトを構成す
る金属元素の水溶性化合物および水酸化物からなる群か
ら選ばれた少なくとも二つの混合水溶液に、アルカリを
添加してスラリー化し、生成したスラリーを水熱処理し
た後、Aサイトを構成するpb化合物を所定量添加し、
さらに水熱処理することを特徴とする複合酸化物粉末の
製造方法を提供するものである。
(Means for Solving the Problem) The present invention provides, as a means for solving the problem, general formula: A(B, B2-=-Bn)03 (wherein A is Pb
5B,,B2,...Bn each have a valence of 2
-6, where n is an integer of 2 or more. ), in which a mixed aqueous solution of at least two selected from the group consisting of water-soluble compounds and hydroxides of metal elements constituting the B site of the general formula; , after adding an alkali to form a slurry and hydrothermally treating the generated slurry, adding a predetermined amount of a PB compound constituting the A site,
The present invention provides a method for producing a composite oxide powder, which further comprises hydrothermal treatment.

前記水溶性化合物には、Bサイト構成元素の硝酸塩その
他の無機酸塩、アルコキシド、および酢酸塩、修酸塩な
どの有機酸塩などが含まれるが、水溶液にした際、CI
イオン、S04イオンなどのアニオンを生成する塩酸塩
や硫酸塩などの化合物は排除される。これらの水溶性化
合物もしくは水酸化物は、目的とするセラミックスの組
成に応じて2種以上を混合して使用すれば良く、また、
これらの化合物は必ずしも同種の化合物を原料として用
いる必要はない。
The water-soluble compounds include nitrates and other inorganic acid salts of B-site constituent elements, alkoxides, and organic acid salts such as acetates and oxalates, but when made into an aqueous solution, CI
Compounds such as hydrochlorides and sulfates that produce ions and anions such as S04 ions are excluded. These water-soluble compounds or hydroxides may be used in combination of two or more types depending on the composition of the intended ceramics, and
These compounds do not necessarily need to be of the same type as raw materials.

なお、アルコキシドには、一般式・(RO)nM(RO
はアルコキシ基、Mはバリウム、チタン、ジルコニウム
、鉛、マグネシウム、希土類元素などの金属、nは正の
整数である。)で表される総ての化合物が含まれるが、
炭素数15以下、好ましくは、8以下のアルコキシ基を
有するものが望ましい。
In addition, the alkoxide has the general formula ・(RO)nM(RO
is an alkoxy group, M is a metal such as barium, titanium, zirconium, lead, magnesium, or a rare earth element, and n is a positive integer. ) includes all compounds represented by
It is desirable to have an alkoxy group having 15 or less carbon atoms, preferably 8 or less carbon atoms.

Aサイトを構成するpb化合物としては、硝酸塩その他
の無機酸塩、アルコキシド、および酢酸塩、修酸塩など
の有機酸塩などが含まれるが、水溶液にした際、C1イ
オン、S04イオンなどのアニオンを生成する塩酸塩や
硫酸塩などの化合物は排除される。
The PB compounds constituting the A site include nitrates and other inorganic acid salts, alkoxides, and organic acid salts such as acetates and oxalates, but when made into an aqueous solution, anions such as C1 ions and S04 ions Compounds such as hydrochlorides and sulfates that produce

アルカリには、アルカリ金属の水酸化物の水溶液および
アンモニア水が含まれる。スラリーを生成させる場合、
そのpHを10〜14にするのが好ましい。
Alkali includes aqueous solutions of alkali metal hydroxides and aqueous ammonia. When generating slurry,
Preferably, the pH is between 10 and 14.

水熱処理は、温度か150〜250℃、蒸気圧が飽和蒸
気圧〜200kg/cm2の範囲の条件下で行うのが好
まし、い。
The hydrothermal treatment is preferably carried out at a temperature of 150 to 250° C. and a vapor pressure of saturated vapor pressure to 200 kg/cm 2 .

(作用) 本発明においては、Bサイトを構成する元素の水溶性化
合物および/または水酸化物の溶液をアルカリを加えて
水熱反応させると、Bサイトのアモルファス状化合物が
生成し、これにAサイト構成元素の熱分解性の水溶性化
合物を添加した後、水熱反応させることにより複合ペロ
ブスカイト構造を有する超微粒子の複合酸化物粉末が生
成される。
(Function) In the present invention, when an alkali is added to a solution of a water-soluble compound and/or hydroxide of an element constituting the B site and a hydrothermal reaction is performed, an amorphous compound of the B site is generated, and this is combined with the amorphous compound of the A site. After adding the thermally decomposable water-soluble compound of the site constituent element, a hydrothermal reaction is performed to produce an ultrafine composite oxide powder having a composite perovskite structure.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

(実施例1) Nb(OH)50.2モル、Mg(CH3COO)2・
4H7OO,1モルを純水200m1に分散、溶解させ
、ホモミキサーで激しく撹拌しなからNaOH水溶液を
加え、pHを12に調製した。この水溶液をオートクレ
ーブに入れ、250℃、飽和蒸気圧の条件下で5時間、
水熱処理を行い、冷却後、生成した酸化物スラリーにP
b(NO3)20.3モル加え、オートクレーブ中、1
50℃、飽和蒸気圧の条件下で5時間、水熱処理を行っ
た。
(Example 1) 50.2 mol of Nb(OH), Mg(CH3COO)2.
1 mol of 4H7OO was dispersed and dissolved in 200 ml of pure water, stirred vigorously with a homomixer, and then an aqueous NaOH solution was added to adjust the pH to 12. This aqueous solution was placed in an autoclave and kept at 250°C and saturated vapor pressure for 5 hours.
After hydrothermal treatment and cooling, the generated oxide slurry contains P.
b(NO3) 20.3 mol added, in autoclave, 1
Hydrothermal treatment was performed for 5 hours at 50° C. and saturated vapor pressure.

冷却後、生成物を純水で洗浄してナトリウムイオンを完
全に除去し、次いでアセトンで洗浄した後、乾燥させて
複合ペロブスカイト型酸化物粉末を得た。
After cooling, the product was washed with pure water to completely remove sodium ions, then washed with acetone, and then dried to obtain a composite perovskite oxide powder.

得られた粉末のX線回折分析を行ったところ、Pb(M
g+/3Nb、z3)03の回折ピークのみで、複合ペ
ロブスカイト型酸化物であることが確認された。また、
この複合ペロブスカイト型酸化物粉末をTEMにより測
定したところ、粒径が0.1〜0.12μmで、極めて
粒度分布が狭い粉末であることが確認された。
X-ray diffraction analysis of the obtained powder revealed that Pb(M
Only the diffraction peak of g+/3Nb, z3)03 confirmed that it was a composite perovskite type oxide. Also,
When this composite perovskite type oxide powder was measured by TEM, it was confirmed that the powder had a particle size of 0.1 to 0.12 μm and an extremely narrow particle size distribution.

次に、前記複合ペロブスカイト型酸化物粉末に酢酸ビニ
ル系バインダを6重量%加え、造粒した後、直径10m
m、厚さ1mmの円板状に成型し、1200°Cで2時
間焼成して、円板磁器を得た。
Next, 6% by weight of vinyl acetate binder was added to the composite perovskite type oxide powder, and after granulation,
m, and was molded into a disc shape with a thickness of 1 mm, and fired at 1200°C for 2 hours to obtain a disc porcelain.

この磁器の両面に銀ペーストを塗布し、800°Cで3
0分の条件下で焼き付けてAg電極を形成し、その誘電
体損失(tanδ)、比誘電率(εr)およびキュリー
点(Tc)を測定した。その結果を下に示す。なお、各
測定値は10個の試料についての平均値である。
Coat silver paste on both sides of this porcelain and heat it at 800°C for 3
An Ag electrode was formed by baking under conditions of 0 minutes, and its dielectric loss (tan δ), relative dielectric constant (εr), and Curie point (Tc) were measured. The results are shown below. Note that each measured value is an average value for 10 samples.

tanδ:0.1% εr  :  13000 (IKHz、室温)Tc 
 :  −15°C (実施例2) Mg(CH3COO)2・4H200,1モル、Nb(
OH)50.2モル、T I (OC3H?)40.0
0526モルを純水200m1に分散、溶解し、実施例
1と同様にして同条件下で水熱処理を行った。冷却後、
生成したスラリーにPb(NO3)20.30526モ
ル加え、オートクレーブ中、250℃、飽和蒸気圧の条
件下で5時間、水熱処理を行った。冷却後、実施例1と
同様にして水洗、アセトン洗浄、乾燥させて複合ペロブ
スカイト型酸化物粉末を得た。
tan δ: 0.1% εr: 13000 (IKHz, room temperature) Tc
: -15°C (Example 2) Mg(CH3COO)2.4H200, 1 mol, Nb(
OH) 50.2 mol, T I (OC3H?) 40.0
0,526 mol was dispersed and dissolved in 200 ml of pure water, and hydrothermal treatment was performed in the same manner as in Example 1 under the same conditions. After cooling,
20.30526 mol of Pb(NO3) was added to the resulting slurry, and hydrothermal treatment was performed in an autoclave at 250° C. and saturated vapor pressure for 5 hours. After cooling, the mixture was washed with water, washed with acetone, and dried in the same manner as in Example 1 to obtain a composite perovskite oxide powder.

得られた粉末のX線回折分析を行ったところ、P 1)
(Mg +/3N b 2/!l) o、s9g、5T
 10.01117503の回折しか検出されず、複合
ペロブスカイト型酸化物であることか確認された。また
、この複合ペロブスカイト型酸化物粉末の粒度は01〜
0.13μmの範囲であった。
When the obtained powder was analyzed by X-ray diffraction, P1)
(Mg +/3N b 2/!l) o, s9g, 5T
Only diffraction of 10.01117503 was detected, confirming that it was a composite perovskite type oxide. Moreover, the particle size of this composite perovskite type oxide powder is 01~
It was in the range of 0.13 μm.

前記複合ペロブスカイト型酸化物粉末を用い、実施例1
と同様にして円板磁器を得、その電気的特性を測定した
。その結果を下に示す。
Example 1 using the composite perovskite oxide powder
A porcelain disc was obtained in the same manner as above, and its electrical properties were measured. The results are shown below.

tanδ:0.2% εr  :  12000  (IKHz、室温)Tc
  :  12.0°C (発明の効果) 以上の説明から明らかなように、本発明によれば、水熱
反応によりBサイトの酸化物を生成させ、これにAサイ
ト構成元素の水溶性化合物を添加した後、さらに水熱反
応させることにより01μm程度の超微粒子の複合酸化
物粉末を製造できる。
tan δ: 0.2% εr: 12000 (IKHz, room temperature) Tc
: 12.0°C (Effect of the invention) As is clear from the above explanation, according to the present invention, an oxide of the B site is generated by a hydrothermal reaction, and a water-soluble compound of the constituent elements of the A site is added to the oxide of the B site. After addition, by further carrying out a hydrothermal reaction, a composite oxide powder with ultrafine particles of about 0.1 μm in size can be produced.

しかも、製造過程で仮焼や機械的粉砕を必要とせず、パ
イロクロア相を含まない均質な複合ペロブスカイト構造
を有する複合酸化物粉末を得ることができる。また、製
造過程で、鉛成分が蒸発したリ、溶解度の相違に起因す
る洗浄時の組成の変動がないので、所望の組成の複合ペ
ロブスカイト型酸化物粉末を製造できる、など優れた効
果を奏する。
Furthermore, a composite oxide powder having a homogeneous composite perovskite structure containing no pyrochlore phase can be obtained without requiring calcining or mechanical pulverization during the manufacturing process. In addition, since there is no change in composition during cleaning due to evaporation of lead components or differences in solubility during the manufacturing process, excellent effects such as the ability to manufacture composite perovskite-type oxide powder with a desired composition are achieved.

Claims (3)

【特許請求の範囲】[Claims] (1)一般式:A(B_1B_2・・・・B_n)O_
3(但し、AはPb、B_1、B_2、・・・・・・B
_nはそれぞれ原子価が2〜6である元素を示し、nは
2以上の整数である。)で示される複合ペロブスカイト
構造を有する複合酸化物粉末の製造方法において、前記
一般式のBサイトを構成する金属元素の水溶性化合物お
よび水酸化物からなる群から選ばれた少なくとも二つの
混合水溶液に、アルカリを添加してスラリー化し、生成
したスラリーを水熱処理した後、Aサイトを構成するP
b化合物を所定量添加し、さらに水熱処理することを特
徴とする複合酸化物粉末の製造方法。
(1) General formula: A(B_1B_2...B_n)O_
3 (However, A is Pb, B_1, B_2,...B
_n each represents an element having a valence of 2 to 6, and n is an integer of 2 or more. ), in which a mixed aqueous solution of at least two selected from the group consisting of water-soluble compounds and hydroxides of metal elements constituting the B site of the general formula; , after adding an alkali to form a slurry and hydrothermally treating the resulting slurry, the P constituting the A site is
A method for producing a composite oxide powder, which comprises adding a predetermined amount of compound b and further hydrothermal treatment.
(2)前記熱分解性化合物の水溶液のpHが10〜12
になるようにアルカリを加える請求項1記載の複合酸化
物粉末の製造方法。
(2) The pH of the aqueous solution of the thermally decomposable compound is 10 to 12.
2. The method for producing a composite oxide powder according to claim 1, wherein the alkali is added so that
(3)前記水熱処理を、温度が150〜250℃、蒸気
圧が飽和蒸気圧〜200kg/cm^2の条件下でおこ
なう請求項1または2記載の複合酸化物粉末の製造方法
(3) The method for producing a composite oxide powder according to claim 1 or 2, wherein the hydrothermal treatment is performed at a temperature of 150 to 250°C and a vapor pressure of saturated vapor pressure to 200 kg/cm^2.
JP2483290A 1990-02-02 1990-02-02 Production of multiple oxide powder Pending JPH03228821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2483290A JPH03228821A (en) 1990-02-02 1990-02-02 Production of multiple oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2483290A JPH03228821A (en) 1990-02-02 1990-02-02 Production of multiple oxide powder

Publications (1)

Publication Number Publication Date
JPH03228821A true JPH03228821A (en) 1991-10-09

Family

ID=12149172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2483290A Pending JPH03228821A (en) 1990-02-02 1990-02-02 Production of multiple oxide powder

Country Status (1)

Country Link
JP (1) JPH03228821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523960B1 (en) * 2002-05-24 2005-10-26 임대영 Method for preparing (Pb(Fe1/2Nb1/2)O3) powders using liquid columbite under supercritical fluid condition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523960B1 (en) * 2002-05-24 2005-10-26 임대영 Method for preparing (Pb(Fe1/2Nb1/2)O3) powders using liquid columbite under supercritical fluid condition

Similar Documents

Publication Publication Date Title
JP3062497B1 (en) Method for producing flaky titanate
JPS6214489B2 (en)
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH03228821A (en) Production of multiple oxide powder
US11404720B2 (en) Method for producing lithium titanium phosphate
JPS63248719A (en) Production of powder as starting material for multicomponent ceramic
Guo et al. Synthesis of zirconium-rich PZT ceramics by hydroxide coprecipitation under hot-press
Ando et al. Preparation of Pb (Mg1/3Nb2/3) O3-PbTiO3 powder by a wet chemical process
JPH0321487B2 (en)
KR20210118146A (en) Manufacturing method of lithium titanium phosphate
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JPH0328109A (en) Production of compound oxide powder
JPH03205316A (en) Production of perovskite type compound oxide powder
JPH01167227A (en) Production of titanium-based perovskite-type ceramic material
KR20030090936A (en) Method for the preparation of multielement-based metal oxide powders
JPS63222014A (en) Production of oxide fine powder of perovskite type
JPS6284B2 (en)
JP3309467B2 (en) Method for producing lead-containing composite oxide powder
JP3412195B2 (en) Method for producing composite perovskite oxide powder
JPS6243929B2 (en)
JPH03153527A (en) Peroxyniobic acid sol and its production
Piagai et al. Preparation of Magnesium‐Calcium Titanate Powders by Alkoxide Precursor Method
JPH0416408B2 (en)
JP3451678B2 (en) Method for producing zinc oxide powder and method for producing magnetic oxide powder
JP3616363B2 (en) Method for producing metal titanate compound having specific shape