JPH03228697A - Method for testing drug-sensitivity of cell membrane - Google Patents

Method for testing drug-sensitivity of cell membrane

Info

Publication number
JPH03228697A
JPH03228697A JP2288890A JP2288890A JPH03228697A JP H03228697 A JPH03228697 A JP H03228697A JP 2288890 A JP2288890 A JP 2288890A JP 2288890 A JP2288890 A JP 2288890A JP H03228697 A JPH03228697 A JP H03228697A
Authority
JP
Japan
Prior art keywords
cell
cell membrane
quinone
nad
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2288890A
Other languages
Japanese (ja)
Inventor
Shirou Yamashiyouji
志朗 山庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KING JOZO KK
Original Assignee
KING JOZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KING JOZO KK filed Critical KING JOZO KK
Priority to JP2288890A priority Critical patent/JPH03228697A/en
Publication of JPH03228697A publication Critical patent/JPH03228697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To easily and quickly determine the influence of drug upon a cell membrane by carrying out a coupled reaction of a specific enzyme with an intracellular enzyme group capable of supplying reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H]. CONSTITUTION:An enzymatic reaction system (A) is produced by adding a quinone such as menadione (vitamin K3: 2-methyl-1,4-naphthoquinone) and a cytotoxic substance such as dimethyl sulfoxide to a living cell system such as a yeast suspension containing an NAD(P)H:quinone oxidoreductase of cell membrane and NAD(P)H-supplying enzyme group in the cell. The reaction system A is made to react at about 30 deg.C for about 2 min to generate H2O2 (B). The component B is added with perylene, etc., to effect the emission of fluorescence and the amount of H2O2 is determined at an accuracy of 10<-7> to 10<-3>mol/l by fluorometry. The drug-sensitivity of a cell membrane can be examined by this procedure.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

[産業上の利用分野] 本発明は、生細胞又は生細胞を含む生きた組織、器官等
の細胞膜に対する薬物の影響を迅速に測定する方法に関
する。 (以下余白) [従来の技術] (1)背景 従来から、薬物又は薬剤の毒性試験には主として動物(
殊にマウス、ラッート、モルモット等)を使用する生体
実験が利用されてきた。しかし、動物実験には費用がか
かり、特に再現性の良い純系動物は高価であるから、近
年、動物受層の観点を含め、動物試験に代わる毒性試験
法として、培養動物細胞を用いる毒性試験の有効性が注
目を集めている。かかる試験法の例として、例えば;■
 生物細胞によるコロニー形成率の測定、■ 染色法に
よる生細胞と死細胞の判別と、生残率の測定、 ■ 膜損傷による色素取り込み量の測定、■ 膜損傷に
よる遊離酵素量の測定、 ■ 生細胞のミトコンドリアによる色素還元率の測定、 などがある。 +21  従来技術の問題点 しかし、上記の各既知方法は、定量性(結果の量的精度
)並びに操作の迅速性及び簡便性などの点で優れた方法
とはいえない。即ち、これらの公知方法は、いずれも薬
物等の添加後、数日間インキュベートした後における細
胞の生残率又は死滅率を求めることを原理としているの
で、インキュベーションに時間を要するという事実に変
わりはなく、従って、迅速な測定には不向きである。 [発明が解決しようとする課ml] 本発明は、細胞レベルの薬物毒性試験において、細胞の
インキュベーション時間を大幅に短縮すると共に、かつ
生細胞を死に至らしめない程度の軽度の細胞膜の損傷を
引き起こす薬物の影響を定量的に把握することを可能な
らしめることにより、細胞レベルでの薬物の毒性験を、
迅速かつ精密に実施するための手段を提供するのを目的
とする。
[Industrial Application Field] The present invention relates to a method for rapidly measuring the effect of a drug on the cell membrane of a living cell or a living tissue or organ containing a living cell. (Left below) [Prior art] (1) Background Conventionally, toxicity tests for drugs or drugs have mainly been conducted using animals (
In particular, in vivo experiments using mice, rats, guinea pigs, etc. have been used. However, animal experiments are expensive, especially pure-bred animals with good reproducibility, so in recent years, toxicity testing using cultured animal cells has been promoted as an alternative toxicity testing method, including from the perspective of animal recipients. Effectiveness is attracting attention. Examples of such test methods include;
Measurement of colony formation rate by biological cells, ■ Discrimination between live and dead cells by staining method and measurement of survival rate, ■ Measurement of dye uptake due to membrane damage, ■ Measurement of free enzyme amount due to membrane damage, ■ Viability Measurement of the rate of dye reduction by cell mitochondria, etc. +21 Problems with the Prior Art However, the above-mentioned known methods cannot be said to be excellent in terms of quantitative performance (quantitative accuracy of results), speed and simplicity of operation, etc. That is, all of these known methods are based on the principle of determining the survival rate or mortality rate of cells after incubation for several days after adding a drug, etc., so the fact remains that incubation takes time. , therefore, it is not suitable for rapid measurement. [Problem to be solved by the invention] The present invention significantly shortens cell incubation time in drug toxicity tests at the cellular level, and causes mild damage to cell membranes that does not cause death of living cells. By making it possible to quantitatively understand the effects of drugs, we can investigate drug toxicity at the cellular level.
The purpose is to provide a means for rapid and precise implementation.

【発明の構成】[Structure of the invention]

[課題を解決するための手段] 以上の課題を解決するため、本発明に係る薬物感受性試
験方法は、細胞膜のNAD(P)H:キノン酸化還元酵
素と細胞内のNAD(P)H供給酵素群との共役反応を
利用することを特徴とする。 以下、発明の構成に関連する諸事項につき説明する。 (1)キノン 本発明におけるキノンは、ベンゾキノン、ナフトキノン
、ジフェノキノン、アントラキノン等のキノン類及びそ
れらの誘導体を包含するが、キノン基以外の易酸化性部
分を有しないものが好ましい、上記の代表的なキノン類
は全て発明目的に利用できるが、生理物質である点で特
に好適と思われるのは、ビタミンに、として知られる2
−メチル1.4−ナフトキノン(メナジオン)である。 (2)過酸化水素の定量 本発明において、還元型キノンの生成は公知の種々の分
析技術により測定できるが、現時点で指摘と思われるの
は、還元型キノンと溶存酸素との反応により生成する過
酸化水素を定量することである。反応系中生成した過酸
化水素は、例えばシュウ酸のアリールエステルのような
励起源物質と反応して1.2−ジオキセタンジオンの如
き励起物質に変化し、後者は、例えばペリレンのような
π電子に富む蛍光物質のエネルギー準位を高めることに
より、これを発光させる。励起源物質としてシュウ酸ジ
フェニルエステルを、蛍光物質としてペリレンを使用し
たときの反応は下式により概示される。 (1,2 ジオキセタンジオン) −0 (式中Φはフェニル基を示す。) 反応系中に添加されたキノンは、キノンは酸化型から還
元型、還元型から酸化型へと循環的に変化し、過酸化水
素の生成触媒として作用する。 以上の発光反応による過酸化水素の定量精度は、10−
7〜10−3モル/リットルであって、所要時間は約1
0秒である。一方細胞による過酸化水素の生成所要時間
は、個々の細胞の生理状態に依存するが、例えば酵母(
10μg/m)gでは30秒で検出可能な過酸化水素が
生成する。故に、計約40秒以内に酵母の生細胞数及び
活力を測定することが可能である。 (3)測定の対象 本発明に係る細胞感受性測定法は、以下の[作用]項中
述べるように、生細胞外の基質中に存在する酸化型キノ
ンが、細胞膜内のNAD(P)H:キノン酸化還元酵素
と細胞内のNAD(P)H供給酵素群との共役反応によ
り還元型キノンに変化すると共に、かかる変化が、細胞
膜の透過性乃至は活力により変化するという現象を基礎
とするものである。従って、薬物による細胞膜の透過性
変化又は細胞質自体の変化が測定の対象となり、かかる
還元型キノンの生成を客観的に測定しうる手段が測定目
的に利用されうる。しかし現時点において、精度、簡便
性等の見地で還元型キノンの生成により生成する過酸化
水素の発光反応による定量が好適であることは上述の通
りである。 [作用] NAD(P)H(還元型ニコチン酸アミドアデニンジヌ
クレオチド(リン酸)):キノン酸化還元酵素は、細胞
質中にに存在しており、酸化型キノンを無毒なジオール
型キノンに還元することによって、溶存酸素からの有毒
な活性酸素(02やH20□)の生成を防止する作用を
果たしていることが知られている。 ところが、本発明者は研究の結果、外部から加えたキノ
ンが、細胞膜中の未だ同定されないNAD(P)H:キ
ノン酸化還元酵素と反応して細胞外にH2O2の生成を
もたらすと同時に、細胞外の酸化還元指示薬の還元を促
進すること、及び、このキノン添加物時におけるH2O
2の生成量や酸化還元指示薬の還元率が、細胞の活力、
即ち、N A D (P)H供給能力と相関している事
実を発見した。従って、この現象は、特開平1−160
499 (特願昭62319677 )による生細胞数
の測定法や、特願平1−96176による細胞のストレ
ス感受性測定法にも応用できる。更に、細胞膜に損傷を
与える薬物を添加すると、当該損傷の程度″に応じてH
2O2生成量や、酸化還元指示薬の還元率が鋭敏に変動
するので、この変動を測定することによって、細胞膜の
損傷及び膜タンパク質の変性を惹す薬物の毒性を検査す
ることができる。 [実施例コ 以下、実施例により発明実施の態様を述べるが、例示は
単に説明用のもので、発明思想の限定を意図したもので
はない。 実 例1(過酸  素の 量 アセトニトリル100−に60mgのTCP○(ビス(
1,4,6−)リクロロフェニル)オキサレート)と1
0mgのとレンとを溶解し、これを発光反応液とした。 このTCPO液に1r11に試料液1−を混合し、5秒
間の発光カウントを測定した。 2(ジメチルスルホキシドの毒性: )2.5 XIO
’個/−の酵母懸濁液(溶媒: 20mMイミダゾール
・硝酸pH7,0)に種々の濃度になるようにジメチル
スルホキシドを添加し、30℃て15分間インキュベー
トした。その後メナジオンを0.5mMになるように添
加し、30℃で2分間インキュベートした後、発生した
過酸化水素を定量した。 添付第1図に見られるように、ジメチルスルホキシドの
濃度が高くなるにつれて、過酸化水素の生成が指数関数
的に阻害された。 3 コン ナバリンAの  ) 2.5 Xl06個/dの酵母プロトプラストの懸濁液
(溶媒: 1.2Mソルビトール+25mMイミダゾー
ル+硝wipH7,0)にコンカナバリンA(ナタマメ
由来のT細胞有糸分裂促進物質の一種)を添加し、30
℃で10分間インキュベートした後、発生した過酸化水
素を定量した。 第2図に見られるように、コンカナバリンAは、過酸化
水素の生成を促進する効果を持っていた。 本例において、コンカナバリンAは、細胞膜表面に露出
した糖タンパク質の糖鎖区部分に結合することによって
膜構造を変化させ、メナジオンの触媒作用又はNAD(
P)H:キノン酸化還元酵素を活性化していると考えら
五る。 4 ドデシル  ナトリウムの 響) 106個/dの酵母懸濁液(溶媒30mMイミダゾール
・硝酸pH7,0)にドデシル硫酸ナトリウムを添加し
、33℃で2分間インキュベートした後、発生した過酸
化水素を定量した。 第3図に見られるように、ドデシル硫酸ナトリウムは、
5m14まで過酸化水素の生成を促進し、それ以上にな
ると逆に抑制作用を示した。 ドデシル硫酸ナトリウムは、周知の通すアニオン型の界
面活性剤で、タンパク質の変性に利用されているが、鎖
国3は、本物質が膜構造と膜タンパク質構造に変化をも
たらす作用を有することを示している。 例5(ナイスタチンの 響) 106個/−の酵母懸濁液(溶媒301Mイミダゾール
・硝酸(pH7,0))にナイスタチン(Str、no
urseiの産生ずる抗生物質)を添加し、33℃で1
時間インキュベートした。 その後、メナジオンを0.5鵬Mになるように添加し、
33℃で2分間インキュベートした後、発生した過酸化
水素を定量した。 第4図に見られるように、ナイスクチンは過酸化水素の
生成を阻害した。 ナイスクチンは、カンジダ等の細胞膜中のステロールと
反応して詰腹に穿孔を生じさせ、細胞の内容物を流出さ
せる性質を有することが知られている。従って、このよ
うな細胞膜に対する強力な生化学破壊力を持つ物質も、
細胞膜に障害を与えて過酸化水素の生成を鋭敏に阻害す
ることが判る。
[Means for Solving the Problems] In order to solve the above problems, the drug sensitivity testing method according to the present invention uses NAD(P)H:quinone oxidoreductase in the cell membrane and NAD(P)H supplying enzyme in the cell. It is characterized by the use of conjugate reactions with groups. Below, various matters related to the configuration of the invention will be explained. (1) Quinone The quinone in the present invention includes quinones such as benzoquinone, naphthoquinone, diphenoquinone, anthraquinone, and derivatives thereof, but it is preferable that the quinone does not have an easily oxidizable moiety other than a quinone group. All quinones can be used for inventive purposes, but quinones, known as vitamins, are particularly suitable as physiological substances.
-Methyl 1,4-naphthoquinone (menadione). (2) Quantification of hydrogen peroxide In the present invention, the production of reduced quinone can be measured by various known analytical techniques, but what seems to be pointed out at this point is that it is produced by the reaction between reduced quinone and dissolved oxygen. It is to quantify hydrogen peroxide. The hydrogen peroxide generated in the reaction system reacts with an excitation source material such as an aryl ester of oxalic acid and changes into an excited material such as 1,2-dioxetanedione, and the latter is converted into an excited material such as 1,2-dioxetanedione, which is converted into an excited material such as perylene with π electrons. By raising the energy level of a fluorescent substance rich in phosphors, it emits light. The reaction when oxalic acid diphenyl ester is used as an excitation source material and perylene is used as a fluorescent material is summarized by the following formula. (1,2 dioxetanedione) -0 (In the formula, Φ represents a phenyl group.) Quinone added to the reaction system changes cyclically from oxidized form to reduced form and from reduced form to oxidized form. , acts as a hydrogen peroxide production catalyst. The quantitative accuracy of hydrogen peroxide by the above luminescent reaction is 10-
7 to 10-3 mol/liter and the required time is about 1
It is 0 seconds. On the other hand, the time required for hydrogen peroxide production by cells depends on the physiological state of each individual cell, but for example yeast (
At 10 μg/m) g, detectable hydrogen peroxide is produced in 30 seconds. Therefore, it is possible to measure the number of live cells and vitality of yeast within about 40 seconds in total. (3) Target of measurement In the cell sensitivity measurement method according to the present invention, as described in the [Effect] section below, oxidized quinone present in the matrix outside living cells is used to detect NAD(P)H in the cell membrane. It is based on the phenomenon that quinone oxidoreductase and intracellular NAD(P)H-supplying enzymes convert into reduced quinone through a coupled reaction, and that this change changes depending on the permeability or vitality of the cell membrane. It is. Therefore, changes in cell membrane permeability or changes in the cytoplasm itself due to drugs are the subject of measurement, and means that can objectively measure the production of such reduced quinones can be used for measurement purposes. However, as mentioned above, at present, from the viewpoint of accuracy and simplicity, it is preferable to quantify hydrogen peroxide produced by the production of reduced quinone using a luminescent reaction. [Action] NAD(P)H (reduced nicotinamide adenine dinucleotide (phosphate)): Quinone oxidoreductase is present in the cytoplasm and reduces oxidized quinone to non-toxic diol quinone. It is known that this serves to prevent the production of toxic active oxygen (02 and H20□) from dissolved oxygen. However, as a result of research, the present inventor found that externally added quinone reacts with an as-yet-unidentified NAD(P)H:quinone oxidoreductase in the cell membrane, resulting in the production of H2O2 outside the cell. to promote the reduction of the redox indicator, and when this quinone additive H2O
The amount of 2 produced and the reduction rate of the redox indicator determine the vitality of the cell,
That is, we have discovered that there is a correlation with N A D (P) H supply ability. Therefore, this phenomenon is
499 (Japanese Patent Application No. 62319677) and the method for measuring stress sensitivity of cells according to Japanese Patent Application No. 1-96176. Furthermore, when a drug that damages cell membranes is added, H
Since the amount of 2O2 produced and the reduction rate of the redox indicator fluctuate sharply, by measuring these fluctuations, it is possible to test the toxicity of drugs that cause damage to cell membranes and denaturation of membrane proteins. [Example] Hereinafter, embodiments of the invention will be described using examples, but the examples are merely for explanation and are not intended to limit the idea of the invention. Example 1 (amount of peroxygen 60 mg of TCP○ (bis(
1,4,6-)lichlorophenyl)oxalate) and 1
A luminescent reaction solution was prepared by dissolving 0 mg of olefin. Sample solution 1- was mixed in 1r11 with this TCPO solution, and the luminescence count was measured for 5 seconds. 2 (Toxicity of dimethyl sulfoxide: )2.5 XIO
Dimethyl sulfoxide was added to a yeast suspension (solvent: 20mM imidazole/nitric acid pH 7.0) at various concentrations and incubated at 30°C for 15 minutes. Thereafter, menadione was added at a concentration of 0.5 mM, and after incubation at 30°C for 2 minutes, the generated hydrogen peroxide was quantified. As seen in the accompanying Figure 1, as the concentration of dimethyl sulfoxide increased, the production of hydrogen peroxide was inhibited exponentially. Concanavalin A (a T-cell mitogen derived from sea cucumber) was added to a suspension of 2.5 Xl06 yeast protoplasts/d (solvent: 1.2 M sorbitol + 25 mM imidazole + nitric acid pH 7.0). 30
After incubation for 10 minutes at 0C, the hydrogen peroxide generated was quantified. As seen in FIG. 2, concanavalin A had the effect of promoting the production of hydrogen peroxide. In this example, concanavalin A changes the membrane structure by binding to the sugar chain region of the glycoprotein exposed on the cell membrane surface, and induces the catalytic action of menadione or NAD (
P)H: It is thought to activate quinone oxidoreductase. Sodium dodecyl sulfate was added to a yeast suspension of 106 cells/d (solvent 30mM imidazole/nitric acid pH 7.0), and after incubation at 33°C for 2 minutes, the generated hydrogen peroxide was quantified. . As seen in Figure 3, sodium dodecyl sulfate is
It promoted the production of hydrogen peroxide up to 5m14, and on the contrary showed a suppressive effect above that. Sodium dodecyl sulfate is a well-known anionic surfactant that is used to denature proteins, but Sakoku 3 shows that this substance has the effect of causing changes in membrane structure and membrane protein structure. There is. Example 5 (Nystatin Hibiki) Nystatin (Str, no.
ursei (an antibiotic produced by C. ursei) was added and incubated at 33℃ for 1 hour.
Incubated for hours. Then, menadione was added to a concentration of 0.5M,
After incubation for 2 minutes at 33°C, the hydrogen peroxide generated was quantified. As seen in FIG. 4, Nyscutin inhibited the production of hydrogen peroxide. Nyscutin is known to have the property of reacting with sterols in cell membranes of Candida and the like to cause perforation in the abdominal cavity, causing cell contents to flow out. Therefore, substances with strong biochemical destructive power against cell membranes,
It is found that it damages cell membranes and acutely inhibits the production of hydrogen peroxide.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明は、生細胞の膜に対する薬物
の影響の測定を簡便かつ迅速に実施する手段を提供しえ
たことにより、化粧品、シャンプー、医薬品(例えば目
薬)等における薬物の毒性及び刺激性の研究を迅速化し
うろことを通じて、新製品開発に寄与する。
As explained above, the present invention provides a means for easily and quickly measuring the effect of drugs on the membranes of living cells, thereby improving the toxicity and irritation of drugs in cosmetics, shampoos, pharmaceuticals (e.g. eye drops), etc. Contribute to new product development through scales and speed up research on sex.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ジメチルスルホキシドの濃度と過酸化水素発
生量との関係を示すグラフ、第2図は、コンカナバリン
Aの濃度と過酸化水素の発生量との関係を示すグラフ、
第3図は、ドデシル硫酸ナトリウムの濃度と過酸化水素
の発生量との関係を示すグラフ、第4図は、ナイスクチ
ンの濃度と過酸化水素の発生量との関係を示すグラフで
ある。 第2 図 フンカナパ1ルA(PH7暑) ドデシル硫酸ナトリウム(eM) ナイスタチン(アト10゛
FIG. 1 is a graph showing the relationship between the concentration of dimethyl sulfoxide and the amount of hydrogen peroxide generated, and FIG. 2 is a graph showing the relationship between the concentration of concanavalin A and the amount of hydrogen peroxide generated.
FIG. 3 is a graph showing the relationship between the concentration of sodium dodecyl sulfate and the amount of hydrogen peroxide generated, and FIG. 4 is a graph showing the relationship between the concentration of Nyscutin and the amount of hydrogen peroxide generated. Figure 2 Funcanapal 1 A (PH7) Sodium dodecyl sulfate (eM) Nystatin (Ato 10゛)

Claims (1)

【特許請求の範囲】 1 細胞膜のNAD(P)H:キノン酸化還元酵素と細
胞内のNAD(P)H供給酵素群との共役反応を利用す
ることを特徴とする薬物感受性試験方法。 2 キノンとしてメナジオンを用いる請求項1記載の試
験法。 3 過酸化水素を発光法により定量する請求項1又は2
記載の方法。
[Scope of Claims] 1. A drug sensitivity testing method characterized by utilizing a coupled reaction between a cell membrane NAD(P)H:quinone oxidoreductase and an intracellular NAD(P)H supplying enzyme group. 2. The test method according to claim 1, wherein menadione is used as the quinone. 3. Claim 1 or 2, wherein hydrogen peroxide is determined by a luminescence method.
Method described.
JP2288890A 1990-01-31 1990-01-31 Method for testing drug-sensitivity of cell membrane Pending JPH03228697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2288890A JPH03228697A (en) 1990-01-31 1990-01-31 Method for testing drug-sensitivity of cell membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2288890A JPH03228697A (en) 1990-01-31 1990-01-31 Method for testing drug-sensitivity of cell membrane

Publications (1)

Publication Number Publication Date
JPH03228697A true JPH03228697A (en) 1991-10-09

Family

ID=12095211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2288890A Pending JPH03228697A (en) 1990-01-31 1990-01-31 Method for testing drug-sensitivity of cell membrane

Country Status (1)

Country Link
JP (1) JPH03228697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092938A (en) * 2006-09-12 2008-04-24 National Institute Of Advanced Industrial & Technology Method for measuring activity of eukaryotic microorganism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092938A (en) * 2006-09-12 2008-04-24 National Institute Of Advanced Industrial & Technology Method for measuring activity of eukaryotic microorganism

Similar Documents

Publication Publication Date Title
Di Gleria et al. Homogeneous ferrocene-mediated amperometric immunoassay
Winterbourn The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells
Campanella et al. New biosensor for superoxide radical used to evidence molecules of biomedical and pharmaceutical interest having radical scavenging properties
Schäferling et al. Luminescent probes for detection and imaging of hydrogen peroxide
Peel The catalysis of the auto-oxidation of 2-mercaptoethanol and other thiols by vitamin B12 derivatives. Polarographic and other investigations
Sato et al. An arginine/histidine exchange transport system in vacuolar-membrane vesicles of Saccharomyces cerevisiae.
JPH0630628B2 (en) Method for measuring the number of viable cells and vitality
Hassan et al. Mediated bioelectrochemical system for biosensing the cell viability of Staphylococcus aureus
Campanella et al. Comparison of fluorimetric, voltammetric and biosensor methods for the determination of total antioxidant capacity of drug products containing acetylsalicylic acid
Chen et al. Direct nitric oxide imaging in cultured hippocampal neurons with diaminoanthraquinone and confocal microscopy
US5306624A (en) Process of quantifying cell number
EP3990900A1 (en) Oxidase-based chemiluminescence assay of phagocytic leukocytes in whole blood and body fluids applicable to point-of-care (poc) diagnostic testing point-of-care (poc) measurement of absolute neutrophil function (anf)
JPH03228697A (en) Method for testing drug-sensitivity of cell membrane
CN114478513B (en) Glutathione fluorescent probe and application thereof
Shi et al. The study of Nafion/xanthine oxidase/Au colloid chemically modified biosensor and its application in the determination of hypoxanthine in myocardial cells in vivo
Campanella et al. Determination of hydroperoxides in nonaqueous solvents or mixed solvents, using a biosensor with two antagonist enzymes operating in parallel
Lane et al. A highly sensitive colorimetric microplate ferrocyanide assay applied to ascorbate-stimulated transplasma membrane ferricyanide reduction and mitochondrial succinate oxidation
JP3468312B2 (en) Method for detecting alkaline phosphatase
O'Sullivan et al. Development of an ATP-independent bioluminescent probe for detection of extracellular hydrogen peroxide
JP2890128B2 (en) Yeast viable cell count method
JP2883149B2 (en) Viable cell counting method
Yao et al. Possible mechanism for nitric oxide and oxidative stress induced pathophysiological variance in acute myocardial infarction development: a study by a flow injection–chemiluminescence method
Swintek et al. Cell type-dependent release of nitric oxide and/or reactive nitrogenoxide species from intracellular SIN-1: effects on cellular NAD (P) H
Rahimi et al. Application of cyclic biamperometry to viability and cytotoxicity assessment in human corneal epithelial cells
Inaba et al. Determination of D-and L-alanine concentrations using a pyruvic acid sensor