JPH0322828A - Harmonic compensation/control method for phase advance capacitor - Google Patents

Harmonic compensation/control method for phase advance capacitor

Info

Publication number
JPH0322828A
JPH0322828A JP1068585A JP6858589A JPH0322828A JP H0322828 A JPH0322828 A JP H0322828A JP 1068585 A JP1068585 A JP 1068585A JP 6858589 A JP6858589 A JP 6858589A JP H0322828 A JPH0322828 A JP H0322828A
Authority
JP
Japan
Prior art keywords
capacitor
harmonic
harmonics
phase advance
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068585A
Other languages
Japanese (ja)
Inventor
Teruo Imura
輝夫 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1068585A priority Critical patent/JPH0322828A/en
Publication of JPH0322828A publication Critical patent/JPH0322828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To eliminate extension of capacitors by connecting a static power converter comprising a high frequency switching element to the source side of a phase advance capacitor and connecting a CT to the source side then injecting current for cancelling the harmonics. CONSTITUTION:Upon occurrence of harmonics in the system, reactive current Iq+Ih containing higher harmonic component Ih (Iq is sinusoidal reactive current) flows into a phase advance capacitor Ca. Harmonics contained in Iq and having a plurality of frequencies are fed, together with Iq, to the operating section 31 in a controller 3 forming a harmonic compensator 1 through a CT1, where only Ih is extracted and operation of -Ih having reverse polarity is carried out. Output current of a static power converter 2 is fed back from a feedback signal CT2 and added to -Ih, then PI control is performed through a regulator 32. The harmonic current -Ih outputted from the power converter 2 is injected through a transformer T2 and a circuit breaker Bi into the power capacitor Ca, where it is cancelled by +Ih, and only Iq is injected to the capacitor Ca. By such arrangement extension of capacitor is not required even if higher harmonics increase due to modification of load.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,送配電系統に接続された進相用コンデンサへ
の高調波流入による異常騒音あるいは加熱・焼損等の異
常現象を防止する進相用コンデンサの高調波補償制御方
法に関する. (従来の技術) 進相用コンデンサは、系統の無効電流を吸収するべく分
岐点の負荷側に接続されて使用されるものである. 例えば、第2図の配電系統図において、電力は上位き電
系から受電変圧器T1を介して下位き電系に配電される
。そして,下位き電系はさらにそれぞれの負荷機器L1
〜Lnへ分岐配電されるように構威されている.また、
同図の下位き電系には、無効電力を吸収するために進相
用コンデンサC1Sが接続される.なお、同図B a 
, B h〜Bn,Bcは遮断器を示している. (発明が解決しようとする課題) ところで、配電系においては系統に高調波が生じること
がある.特に,インパータ等の高調波を生じさせやすい
半導体電力変換装置が普及している今日、該装置の増設
あるいは変更等により過剰な高調波の発生が顕著となっ
ている.このような高調波は、系統を流れる正弦波を歪
ませ,その結果,進相用コンデンサCaには歪んだ波形
の正弦波無効電流が流れる結果となる. このため、高調波に対する措置を講じないときは,該コ
ンデンサCaは異常騒音を発し或いは定格以上に加熱さ
れる結果となり,さらに最悪の場合には進相用コンデン
サCl1の焼損を招くという不都合がある. そこで、従来ではこのような事態の発生を未然に防止す
るため,個々の負荷機器L1〜Lnに高調波フィルタを
新設し,或いはその運転に制限を加えるなどの手段を講
じている.これにより,進相用コンデンサCaの高調波
責務は抑制されるが、フィルタ等の新設は需要家にとっ
て煩わしく、また経済負担も大きくなるという不都合が
ある.また、場合によっては進相用コンデンサCaの取
換えや増強等によるコンデンサ容量の増大を行って上記
事態の防止を図ることも行われる。この場合には,高調
波の増大に応じ.その都度進相用コンデンサCaの取換
え作業が必要となる.また,系統の信頼性を保持するた
めに上記作業を速やかに行なう必要もある.従って,該
作業に要する経済的、時間的な負担が増大し、進相用コ
ンデンサCI1の汎用性に欠けるという不都合があり,
また系統全体の円滑な運転を阻害するという問題があっ
た・ なお、上位き電系において高調波の発生・増加があった
場合にもこれらの高調波は下位のき電系に流入するので
,進相用コンデンサCI1の焼損のおそれや、前記CI
Iの取換え等に起因する不都合や問題点が生ずることに
なる. 本発明は、上記問題点を解決するためになされたもので
あり,進相用コンデンサに流入する無効電流に含まれる
高調波成分を除去し、負荷機器へのフィルタの付股を要
することなく系統全体の円滑な運転を確保できるように
した、汎用性の高い進相用コンデンサの高調波補償制御
方法を提供することを目的とする. (課題を解決するための手段) 本発明は、上記目的を達成するため、まず、高調波補償
装置を高周波スイッチング素子からなる静止形電力変換
装置と制御装置とにより構威して、送配電系統中に設け
られた進相用コンデンサの電源側に前記静止形電力変換
装置の出力端子を接続する.そして,前記制御装置は、
前記出力端子が接続された点より更に電源側に設けられ
た電流検出器を介して前記進相用コンデンサに流入する
無効電流中に含まれる高調波成分を抽出・演算し、次い
で,この演算結果に基づき前記静止形電力変換装置から
前記高調波電流を打ち消す高調波電流を進相用コンデン
サに注入する. (作用) 系統に流れる健全な正弦波電流に高調波成分が重畳され
ると,前記正弦波形に歪が生じる。換言すれば,見掛け
上、正弦波形からは高調波成分が欠落することになる.
本来であれば、この高調波或分が欠落した正弦波形の無
効威分が進相用コンデンサを流れ、該コンデンサは焼損
等に至ることになる. これに対し、本発明では,まず,コンデンサに流入する
無効電流中に含まれる高調波成分,換言すれば波形丘で
は正弦波無効電流から欠落している高調波或分を高調波
補償装置を構或する制御装置により抽出・演算する. そして、この演算結果に基づき制御装置は静止形電力変
換装置を制御する.即ち,該静止形電力変換装置は、進
相用コンデンサに流れ込む無効正弦波電流から欠落して
いる高調波或分を補償するような高調波電流を出力する
ように制御される。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a phase advance capacitor connected to a power transmission and distribution system to prevent abnormal phenomena such as abnormal noise or heating/burning caused by the inflow of harmonics into a phase advance capacitor. Concerning harmonic compensation control method for capacitors. (Prior art) A phase advance capacitor is used by being connected to the load side of a branch point in order to absorb the reactive current of the system. For example, in the power distribution system diagram of FIG. 2, power is distributed from the upper power feeding system to the lower power feeding system via the power receiving transformer T1. The lower feeding system further includes each load device L1.
~ Ln is configured so that the power is branched and distributed. Also,
A phase advancing capacitor C1S is connected to the lower feeding system in the figure to absorb reactive power. In addition, the figure B a
, Bh~Bn, Bc indicate circuit breakers. (Problem to be solved by the invention) By the way, harmonics may occur in the power distribution system. In particular, today, when semiconductor power conversion devices such as inverters that tend to generate harmonics are becoming widespread, the generation of excessive harmonics has become noticeable due to the addition or modification of such devices. Such harmonics distort the sine wave flowing through the system, and as a result, a sine wave reactive current with a distorted waveform flows through the phase advancing capacitor Ca. Therefore, if measures against harmonics are not taken, the capacitor Ca will generate abnormal noise or be heated beyond its rating, and in the worst case, the phase advance capacitor Cl1 will burn out. .. Conventionally, in order to prevent such a situation from occurring, measures have been taken such as installing new harmonic filters in each of the load devices L1 to Ln or placing restrictions on their operation. Although this suppresses the harmonic duty of the phase advance capacitor Ca, it is inconvenient that installing a new filter etc. is troublesome for the consumer and also increases the economic burden. Further, depending on the case, the capacitor capacity may be increased by replacing or reinforcing the phase advance capacitor Ca to prevent the above-mentioned situation. In this case, as the harmonics increase. In each case, it is necessary to replace the phase advance capacitor Ca. In addition, it is necessary to perform the above operations promptly to maintain the reliability of the system. Therefore, there are disadvantages in that the economic and time burden required for this work increases, and the phase advance capacitor CI1 lacks versatility.
There was also the problem of hindering the smooth operation of the entire system. Furthermore, even if harmonics occur or increase in the upper feeding system, these harmonics will flow into the lower feeding system, so There is a risk of burnout of the phase advancing capacitor CI1, and
Inconveniences and problems will arise due to the replacement of I. The present invention has been made in order to solve the above problems, and eliminates harmonic components contained in the reactive current flowing into the phase advancing capacitor, thereby making it possible to connect the system to the load equipment without the need to attach a filter to the load equipment. The purpose of this paper is to provide a highly versatile harmonic compensation control method for phase advance capacitors that ensures smooth overall operation. (Means for Solving the Problems) In order to achieve the above object, the present invention first constructs a harmonic compensator using a static power converter including a high frequency switching element and a control device, and The output terminal of the static power converter is connected to the power supply side of the phase advancing capacitor provided inside. And the control device is
A harmonic component contained in the reactive current flowing into the phase advance capacitor via a current detector provided on the power supply side from the point where the output terminal is connected is extracted and calculated, and then the calculation result is calculated. Based on this, a harmonic current that cancels the harmonic current is injected from the static power converter into the phase advancing capacitor. (Operation) When harmonic components are superimposed on the healthy sine wave current flowing through the system, distortion occurs in the sine waveform. In other words, harmonic components are apparently missing from the sine waveform.
Normally, the reactive component of the sine waveform with some of the harmonics missing would flow through the phase advance capacitor, causing the capacitor to burn out. In contrast, in the present invention, first, a harmonic compensator is constructed to remove the harmonic components included in the reactive current flowing into the capacitor, in other words, the harmonics missing from the sinusoidal reactive current at the waveform hill. Extracted and calculated by a certain control device. Then, the control device controls the static power converter based on this calculation result. That is, the static power converter is controlled so as to output a harmonic current that compensates for some harmonics missing from the reactive sine wave current flowing into the phase advancing capacitor.

ここで,高調波補償装置は電流帰還系を構或することが
好ましい。また、静止形電力変換装置を構成するスイッ
チング素子としてパワートランジスタ、GTO等の高周
波スイッチングデバイスが使用される.これにより無効
電流に含まれる高調波或分と逆極性の高周波電流が精度
良く生或されて進相用コンデンサに注入されるので,高
速の応答特性が実現される. この結果,進相用コンデンサにはその系統或いは上位系
統からの高調波成分を含む無効電流と、静止形電力変換
装置からの前記高調波と逆極性の高調波とが流れ込み,
高調波成分は相殺される.これにより、・進相用コンデ
ンサ八の高調波或分が欠落した無効電流の流入は見掛け
上無くなり4単に純粋な正弦波の無効分のみが流れるだ
けとなIJ、進相用コンデンサは焼損等の障害なくその
責務を達成できる. (実施例) 以下、本発明の実施例を第1図により説明する.同図に
おいて.Tz、L1〜Ln.Ca.B++,Bt〜Bn
,Bcで示す各要素は第2図において同一符号を付した
各要素と同一であるため、詳述を省略する. この実施例では、高調波補償装置上が進相用コンデンサ
C.を含む末端配電系に接続されており、この高調波補
償装置1は,静止形電力変換装置2と制御装!3とによ
り構威されでいる.本実施例では、静止形電力変換装置
2が高周波トランジスタにより構成されており、また、
制御装置3は演算部31. @節器32及び加算器33
等から構成されている.そして、静止形電力変換装置2
の出力端子は進相用コンデンサCaの電源側に接続され
ており(接続点P)、この接続点Pの更に上位の点(電
源側)には高調波検出用変成器CT1が設けられている
.この検出用変或器CT.からの信号は制御装[3に入
力されている. また,静止形電力変換装置2の出力側には、変圧器Ts
を介して帰還信号用変成器CTzが設けられており、こ
の帰還信号用変成器CTiからの信号は制御装W13内
にフィードバックされている。
Here, it is preferable that the harmonic compensator has a current feedback system. Furthermore, high-frequency switching devices such as power transistors and GTOs are used as switching elements constituting static power converters. As a result, a high-frequency current with a polarity opposite to some of the harmonics contained in the reactive current is generated with high precision and injected into the phase advance capacitor, achieving high-speed response characteristics. As a result, reactive current containing harmonic components from the system or upper system, and harmonics of opposite polarity to the harmonics from the static power converter flow into the phase advancing capacitor.
Harmonic components are canceled out. As a result, the inflow of reactive current with missing harmonics of the phase advance capacitor 8 is apparently eliminated, and only the reactive component of a pure sine wave flows. Able to accomplish his responsibilities without obstacles. (Example) Hereinafter, an example of the present invention will be explained with reference to FIG. In the same figure. Tz, L1-Ln. Ca. B++, Bt~Bn
, Bc are the same as the elements denoted by the same reference numerals in FIG. 2, and detailed description thereof will be omitted. In this embodiment, the phase advancing capacitor C. This harmonic compensator 1 is connected to a terminal power distribution system including a static power converter 2 and a control device! 3. In this embodiment, the static power converter 2 is composed of high-frequency transistors, and
The control device 3 includes a calculation section 31. @Arbitrator 32 and adder 33
It is composed of etc. And static power converter 2
The output terminal of is connected to the power supply side of the phase advance capacitor Ca (connection point P), and a harmonic detection transformer CT1 is provided at a point further above this connection point P (power supply side). .. This detection transformer CT. The signal from is input to the control unit [3]. Further, on the output side of the static power converter 2, a transformer Ts
A feedback signal transformer CTz is provided via the feedback signal transformer CTz, and the signal from the feedback signal transformer CTi is fed back into the control unit W13.

なお,第1図は系統を単線接続図により示したものであ
り,各構成要素は三相分を記載していないが,実際には
三和分についての制御が行われる。
Note that FIG. 1 shows the system using a single line connection diagram, and although the components for each component are not shown for three phases, control is actually performed for the three phases.

次に、この動作を説明する.今,系統に高調波が発生し
たとすると、高調波成分Ihを含む無効電流Iq+Ih
(Iqは正弦波無効電流)が進相用コンデンサCaに流
入する.ここで.Ihは複数の周波数或分から戊ってい
る.すると、高調波検出用変成器CT.を介して制御装
N3内の演算部31は流入電流中に含まれる高調波成分
Ihを抽出し,該高調波の逆極性の波形一Ihの演算を
行う6言い替えるなら、演算部31は純粋な正弦波無効
電流I9から波形上欠落して見える高調波成分−1hを
冫寅算する. そして,この演算結果が加算器33を介して調節器32
に出力される。加算器33には帰還信号用変或器CT3
からの静止形電力変換装置2の出力電流の実際値がフィ
ードバックされ,調節器32はPI制御等、周知の動作
を行う.そして,静止形電力変換装Ii!2は高調波電
流−Ihを出力し,この高調波電流−1hは変圧器Tx
.遮断器Biを介して進相用コンデンザC●に注入され
る.この起き.静止形電力変換装置2から見た負荷機器
L1〜Lnのインピーダンスは高く,進櫂用コンデンサ
CI1のインピーダンスは低いので高調波−1hは進相
用コンデンサCIIのみに流入する.そして,系統側か
ら流入する無効電流にもともと含まれていた高調波成分
Ihと−Ihとは打ち消し合う.この結果,進相用コン
デンサCaには純粋な正弦波無効電流工9のみが流れる
ので、進相用コンデンサCIIは,容量の増加等を必要
とせずにその責務を達成することができる。
Next, we will explain this operation. Now, if harmonics occur in the grid, the reactive current Iq + Ih containing the harmonic component Ih
(Iq is a sine wave reactive current) flows into the phase advancing capacitor Ca. here. Ih has multiple frequencies. Then, the harmonic detection transformer CT. The calculation unit 31 in the control device N3 extracts the harmonic component Ih contained in the inflow current, and calculates the waveform Ih of the opposite polarity of the harmonic. In other words, the calculation unit 31 is a pure Calculate the harmonic component -1h that appears to be missing on the waveform from the sine wave reactive current I9. Then, this calculation result is sent to the adjuster 32 via the adder 33.
is output to. The adder 33 includes a feedback signal transformer CT3.
The actual value of the output current of the static power converter 2 is fed back from the controller 32, and the regulator 32 performs well-known operations such as PI control. And static power converter Ii! 2 outputs harmonic current -Ih, and this harmonic current -1h is connected to transformer Tx.
.. It is injected into the phase advancing capacitor C● via the circuit breaker Bi. This happened. The impedance of the load devices L1 to Ln seen from the static power converter 2 is high, and the impedance of the advancing capacitor CI1 is low, so the harmonic -1h flows only into the advancing capacitor CII. Then, the harmonic components Ih and -Ih originally included in the reactive current flowing in from the grid side cancel each other out. As a result, only the pure sinusoidal reactive current 9 flows through the phase advance capacitor Ca, so that the phase advance capacitor CII can fulfill its duty without requiring an increase in its capacity.

なお、上記実施例では、下位のき電系統における分岐点
のうち最下位に静止形電力変換装置2を設け、このすぐ
上位の分岐点に進相用コンデンサCaを接続して説明し
たが、本発明は第1図に示した進相用コンデンサCaや
静止形電力変換装置2,高調波検出用変成器C T 1
等の配置にはなんら限定されず,例えば、第1図におい
て,進相用コンデンサCIIの電源側に静止形電力変換
装e12を接続し、その更に電源側に高調波検出用変或
器C T zを接続して高調波を補償することにしても
よい。
In the above embodiment, the static power converter 2 is provided at the lowest branch point in the lower feeding system, and the phase advancing capacitor Ca is connected to the immediately higher branch point. The invention is based on the phase advancing capacitor Ca, the static power converter 2, and the harmonic detection transformer C T 1 shown in FIG.
For example, in FIG. 1, the static power converter e12 is connected to the power supply side of the phase advancing capacitor CII, and the harmonic detection transformer C T is further connected to the power supply side. z may be connected to compensate for harmonics.

更に、上記実施例は配電系統に設けられる進相用コンデ
ンサの高調波補償制御方法について説明したが,本発明
は送電系統の進相用コンデンサについても適用可能であ
る. (発明の効果) 以上のように本発明によれば、進相用コンデンサに流入
する無効電流に含まれる高調波或分と逆極性の高調波電
流を補償制御装置により該コンデンサに注入することに
したので、系統に接続される負荷の増設或いは変更等に
より糸航の高調波が増加しても進相用コンデンサに流入
する無効電流波形は正弦波となる。従って、負荷機器に
併設された進相用コンデンサの異常騒音或いは異常加熱
や焼損等を防止することができる.また、負荷機器への
高調波フィルタの新設や負荷機器の運転制限等の需要家
への負担が軽減される他、進相用コンデンサの取換えや
増強等によるコンデンサ容量の増大を図る必要もないの
で,進相用コンデンサの汎用性が高くなり系統の信頼性
が向上する.更に、本発明に用いる高調波補償装置は高
速応答のものとしてあるので、従来、過渡的な負荷変動
等に起因する系統のインダクタンスとコンデンサ容量と
の共振による過渡振動を抑制でき、ひいては配電系統の
安定性向上に寄与することができる.
Furthermore, although the above embodiment describes a harmonic compensation control method for a phase advance capacitor provided in a power distribution system, the present invention is also applicable to a phase advance capacitor in a power transmission system. (Effects of the Invention) As described above, according to the present invention, harmonic current having a polarity opposite to the harmonics included in the reactive current flowing into the phase advance capacitor can be injected into the capacitor by the compensation control device. Therefore, even if the harmonics of the line increase due to the addition or change of loads connected to the system, the waveform of the reactive current flowing into the phase advancing capacitor becomes a sine wave. Therefore, it is possible to prevent abnormal noise, abnormal heating, and burnout of the phase advancing capacitor installed in the load equipment. In addition, the burden on consumers such as installing new harmonic filters on load equipment and restricting the operation of load equipment is reduced, and there is no need to increase capacitor capacity by replacing or reinforcing phase advance capacitors. Therefore, the versatility of the phase advance capacitor increases and the reliability of the system improves. Furthermore, since the harmonic compensator used in the present invention has a high-speed response, it is possible to suppress transient vibrations due to resonance between the inductance and capacitance of the power grid, which is caused by transient load fluctuations, etc. This can contribute to improving stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための高調波補償
装置が接続された配電系統図,第2図は従来技術を説明
するための進相用コンデンサが接続された配電系統図で
ある.
Fig. 1 is a power distribution system diagram in which a harmonic compensator is connected to explain an embodiment of the present invention, and Fig. 2 is a power distribution system diagram in which a phase advance capacitor is connected to explain the prior art. be.

Claims (1)

【特許請求の範囲】 高調波補償装置を高周波スイッチング素子からなる静止
形電力変換装置と制御装置とにより構成し、 送配電系統中に設けられた進相用コンデンサの電源側に
前記静止形電力変換装置の出力端子を接続し、 前記制御装置は、前記出力端子が接続された点より更に
電源側に設けられた電流検出器を介して前記進相用コン
デンサに流入する無効電流中に含まれる高調波成分を抽
出・演算し、次いで、この演算結果に基づき、前記静止
形電力変換装置から前記高調波成分を打ち消す高調波電
流を前記進相用コンデンサに注入することを特徴とする
進相用コンデンサの高調波補償制御方法。
[Claims] A harmonic compensator is constituted by a static power converter including a high-frequency switching element and a control device, and the static power converter is connected to the power supply side of a phase advance capacitor provided in a power transmission and distribution system. An output terminal of the device is connected to the control device, and the control device detects harmonics contained in the reactive current flowing into the phase advance capacitor via a current detector provided on the power supply side further from the point where the output terminal is connected. A phase advancing capacitor characterized in that a wave component is extracted and calculated, and then, based on the calculation result, a harmonic current that cancels out the harmonic component is injected from the stationary power converter into the phase advancing capacitor. harmonic compensation control method.
JP1068585A 1989-03-20 1989-03-20 Harmonic compensation/control method for phase advance capacitor Pending JPH0322828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068585A JPH0322828A (en) 1989-03-20 1989-03-20 Harmonic compensation/control method for phase advance capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068585A JPH0322828A (en) 1989-03-20 1989-03-20 Harmonic compensation/control method for phase advance capacitor

Publications (1)

Publication Number Publication Date
JPH0322828A true JPH0322828A (en) 1991-01-31

Family

ID=13378018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068585A Pending JPH0322828A (en) 1989-03-20 1989-03-20 Harmonic compensation/control method for phase advance capacitor

Country Status (1)

Country Link
JP (1) JPH0322828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238839B1 (en) 1999-08-26 2001-05-29 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238839B1 (en) 1999-08-26 2001-05-29 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor

Similar Documents

Publication Publication Date Title
Arevalo et al. Control and implementation of a matrix-converter-based AC ground power-supply unit for aircraft servicing
US8410790B2 (en) Apparatus for testing transformers
US20100172166A1 (en) Plug-in neutral regulator for 3-phase 4-wire inverter/converter system
US5397927A (en) Active filter for reducing non-fundamental currents and voltages
US5656924A (en) System and method for providing harmonic currents to a harmonic generating load connected to a power system
US20070274115A1 (en) Harmonics attenuator using combination feedback controller
JPH03183324A (en) Voltage variation and harmonic wave suppressor
US4639846A (en) Method and compensating device for compensating current oscillations
US20230107678A1 (en) Active rectifier harmonics compensator
Thomas et al. Performance evaluation of three phase three and four wire active filters
KR100459000B1 (en) Three-phase four-wire active power filter control divice
JPH0471331A (en) Active filter device
Sannino et al. A series-connected voltage source converter for voltage sag mitigation using vector control and a filter compensation algorithm
Chen et al. Series and shunt active power conditioners for compensating distribution system faults
Singh et al. An improved hybrid filter for compensation of current and voltage harmonics for varying rectifier loads
JPH0322828A (en) Harmonic compensation/control method for phase advance capacitor
US5780939A (en) Method and apparatus for determining orders of non-characteristic harmonic currents, and for compensation of the noncharacteristic harmonic currents
Zubiaga et al. Reactive power boundaries for a MV STATCOM with harmonic active filter capability
Babu et al. Design of unified power quality conditioner (UPQC) to improve the power quality problems by using PQ theory
Benyettou et al. Comparative study of different methods of active power compensation
JPH07135735A (en) Active filter device
JPH0382338A (en) Higher harmonic voltage suppressing apparatus
Chavan et al. Active Power Filters to Reduce Harmonics and Improve Power Quality.
JP3128985B2 (en) Control circuit of harmonic compensator
JPH08340637A (en) Method of compensating reactive power, etc., of power system having generator facilities