JPH03228215A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH03228215A
JPH03228215A JP2299290A JP2299290A JPH03228215A JP H03228215 A JPH03228215 A JP H03228215A JP 2299290 A JP2299290 A JP 2299290A JP 2299290 A JP2299290 A JP 2299290A JP H03228215 A JPH03228215 A JP H03228215A
Authority
JP
Japan
Prior art keywords
base film
magnetic
film
magnetic tape
shrinkage rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2299290A
Other languages
Japanese (ja)
Inventor
Satoru Fukiage
吹上 悟
Nariyuki Hosoo
細尾 成之
Takeshi Shibata
柴田 剛士
Tsuyoshi Nishiguchi
西口 強志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2299290A priority Critical patent/JPH03228215A/en
Publication of JPH03228215A publication Critical patent/JPH03228215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic tape having excellent heat resistance by providing a magnetic layer on a specified base film and specifying the total thickness. CONSTITUTION:Such a base film showing thermal shrinkage of <=0.4% in the longitudinal direction and <=0.3% in width direction when heated at 80 deg.C for 60 minutes is used. A magnetic layer is provided on this base film to obtain <=10 mum total thickness. As for the base film, a plastic film satisfying the requirements is used, for example, polyethyleneterephthalate film or polyethylenenaphthalate film. Thereby, thermal shrinkage of the base film is suppressed and heat resistance of the magnetic recording medium is improved, which effectively prevents omission in reproduction signals due to thermal deformation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気テープなどの磁気記録媒体に関し、さら
に詳しくは、全厚が10μm以下の耐熱性に優れた磁気
テープなどの磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium such as a magnetic tape, and more particularly to a magnetic recording medium such as a magnetic tape having a total thickness of 10 μm or less and excellent heat resistance.

〔従来の技術〕[Conventional technology]

近年、特に磁気テープ等においてはカートリッジケース
に組み込んだ際の記録、再生時間をできるだけ長くする
ため、磁気テープの厚みを可及的に薄くすることが試み
られているが、磁気テープの厚みを薄くすると機械的強
度が弱くなり、記録再生時に磁気ヘッドとの接触状態が
悪化して電磁変換特性に支障をきたしたり、磁気テープ
のエツジ部がガイド部材等の磁気テープ規制用鍔縁に接
して座屈を生じたり、折損したりする場合がある。また
、カールやしわも生じ易(なる。
In recent years, attempts have been made to make the thickness of magnetic tape as thin as possible in order to extend the recording and playback time as much as possible when it is incorporated into a cartridge case. This weakens the mechanical strength, causing poor contact with the magnetic head during recording and playback, which may impede electromagnetic conversion characteristics, or cause the edge of the magnetic tape to come into contact with the magnetic tape regulating flange of the guide member, etc. It may bend or break. It also tends to cause curls and wrinkles.

このため、ポリエチレンテレフタレートフィルムなどの
プラスチックフィルム製造時に、高熱下で長手方向およ
び幅方向に延伸して強化したプラスチック強化フィルム
を、磁気テープのベースフィルムに使用するなどして、
厚みを薄クシた磁気テープの機械的強度を補強すること
が行われている。
For this reason, when manufacturing plastic films such as polyethylene terephthalate film, reinforced plastic films that are strengthened by stretching them in the longitudinal and width directions under high heat are used as base films for magnetic tapes.
Efforts have been made to strengthen the mechanical strength of magnetic tapes with thinner combs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、長手方向および幅方向に延伸強化したポリエ
チレンテレフタレートフィルムをベースフィルムに使用
した磁気テープは、カートリッジケースに組み込んで、
たとえば、真夏の太陽で加熱された車のダツシュボード
等に放置すると、再生信号が欠落するという難点があり
、特にこの再生信号の欠落は磁気テープ巻芯近くではな
はだしく、多く巻かれているリール側のところが多くて
、磁気テープが薄くなるほどひど(なる。
However, magnetic tapes that use a polyethylene terephthalate film that has been stretched and strengthened in the longitudinal and width directions as a base film can be assembled into a cartridge case.
For example, if the magnetic tape is left on the dash board of a car heated by the midsummer sun, the playback signal will be lost.This loss of playback signal is especially noticeable near the core of the magnetic tape, and on the reel side where the magnetic tape is wound a lot. However, the thinner the magnetic tape, the worse it becomes.

[課題を解決するための手段] この発明者らはかかる現状に鑑み、再生信号欠落の原因
について鋭意研究を行った結果、従来の長手方向および
幅方向に延伸強化したポリエチレンテレフタレートフィ
ルムは、高熱下で延伸強化する工程において内部ひずみ
が生じており、磁気テープを組み込んだカートリッジケ
ースを高熱下にさらしたりすると、延伸強化工程で生じ
た内部ひずみが緩和されて磁気テープが熱収縮し、これ
が原因で磁気テープ巻芯部が巻きしまり、ひいては再生
信号欠落につながるためであることが判明した。
[Means for Solving the Problems] In view of the current situation, the inventors conducted intensive research into the cause of reproduction signal loss and found that the conventional polyethylene terephthalate film, which is stretched and strengthened in the longitudinal and width directions, does not work well under high heat. Internal strain occurs during the stretching and strengthening process, and when a cartridge case incorporating a magnetic tape is exposed to high heat, the internal strain generated during the stretching and strengthening process is relaxed and the magnetic tape shrinks due to heat. It turns out that this is because the magnetic tape winding core becomes tightly wound, which in turn leads to playback signal loss.

この発明はかかる知見に基づいてさらに検討を行った結
果なされたもので、80°Cで60分間加熱後の長手方
向の熱収縮率が0.4%以下で幅方向の熱収縮率が0.
3%以下のベースフィルムを用い、このベースフィルム
上に磁性層を設けて全厚を10μm以下にすることによ
って、ベースフィルムの熱収縮を抑制し、磁気記録媒体
の耐熱性を向上させて、熱変形による再生信号の欠落な
どを効果的に防止したものである。
This invention was made as a result of further studies based on this knowledge, and after heating at 80°C for 60 minutes, the heat shrinkage rate in the longitudinal direction is 0.4% or less, and the heat shrinkage rate in the width direction is 0.4% or less.
By using a base film of 3% or less and providing a magnetic layer on this base film to have a total thickness of 10 μm or less, thermal shrinkage of the base film is suppressed and the heat resistance of the magnetic recording medium is improved. This effectively prevents loss of reproduced signals due to deformation.

この発明において使用されるベースフィルムは、80°
Cで60分間加熱後の長手方向の熱収縮率が0.4%以
下で、かつ幅方向の熱収縮率が0.3%以下であること
が好ましく、80°Cで60分間加熱後の長手方向およ
び幅方向の熱収縮率がこれより大きいベースフィルムを
用いて、この上に磁性層を形成すると、比較的高温下に
放置されたときベースフィルムが熱収縮して耐熱性が改
善されず、熱変形が生じて再生信号の欠落が生じる。
The base film used in this invention is 80°
It is preferable that the heat shrinkage rate in the longitudinal direction after heating at 80°C for 60 minutes is 0.4% or less, and the heat shrinkage rate in the width direction is 0.3% or less. If a magnetic layer is formed on a base film with a larger heat shrinkage rate in both the direction and the width direction, the base film will shrink when left at a relatively high temperature, and the heat resistance will not be improved. Thermal deformation occurs, resulting in loss of reproduced signals.

好ましいベースフィルムとしては、80°Cで60分間
加熱後の長手方向の熱収縮率が063%以下で幅方向の
熱収縮率が0.25%以下のポリエチレンテレフタレー
トフィルムあるいはポリエチレンナフタレートフィルム
などのプラスチンクフィルムなどが使用され、具体例と
しては、日本マグファン社製;  5.5RWO3H1
6RWO3H1帝人社製ポリエチレンナフタレートフィ
ルムなどが挙げられる。
A preferable base film is a polyethylene terephthalate film or a polyethylene naphthalate film, which has a heat shrinkage rate of 0.63% or less in the longitudinal direction and 0.25% or less in the width direction after heating at 80°C for 60 minutes. Tinku film is used, and a specific example is Nippon Magfan Co., Ltd.; 5.5RWO3H1.
Examples include 6RWO3H1 polyethylene naphthalate film manufactured by Teijin.

また、80℃で60分間加熱後の長手方向の熱収縮率が
0.4%以下で幅方向の熱収縮率が0.3%以下のベー
スフィルムは、厚さを5μm以上にするのが好ましく、
ベースフィルムの厚さが5μmより薄くては、得られる
磁気記録媒体の耐熱性が充分に改善されず、熱変形が生
じて再生信号の欠落が生じる。
Furthermore, it is preferable that the base film has a heat shrinkage rate of 0.4% or less in the longitudinal direction and 0.3% or less in the width direction after heating at 80°C for 60 minutes to have a thickness of 5 μm or more. ,
If the thickness of the base film is thinner than 5 μm, the heat resistance of the obtained magnetic recording medium will not be sufficiently improved, and thermal deformation will occur, resulting in loss of reproduced signals.

ベースフィルム上に形成される磁性層は、前記の80°
Cで60分間加熱後の長手方向の熱収縮率が0.4%以
下で幅方向の熱収縮率が0.3%以下のベースフィルム
上に、Co、Ni、Fe、Co−Ni合金、Co−Cr
合金、Co−Fe合金、co−Fe−Cr合金など、通
常、磁気記録媒体に使用される強磁性材を、真空蒸着、
イオンブレーティング、スパッタリング、メツキ等の手
段で被着して形成するか、あるいは、磁性粉末、結合剤
樹脂、有機溶剤等をその他の必要成分とともに混合分散
して磁性塗料を調製し、この磁性塗料を前記のベースフ
ィルム上に、塗布、乾燥して形成され、全厚が10um
以下の磁気記録媒体が形成される。
The magnetic layer formed on the base film is
Co, Ni, Fe, Co-Ni alloy, Co -Cr
Ferromagnetic materials commonly used in magnetic recording media, such as alloys, Co-Fe alloys, and co-Fe-Cr alloys, are vacuum-deposited,
The magnetic paint can be formed by applying it by means such as ion blasting, sputtering, plating, etc., or by mixing and dispersing magnetic powder, binder resin, organic solvent, etc. with other necessary components to prepare a magnetic paint. was formed by coating and drying on the base film, and the total thickness was 10um.
The following magnetic recording medium is formed.

ここで、磁性粉末としては、7−Fe2O,粉末、Fe
、O,粉末、CO含有1−Fe2O,粉末、Co含有F
e、O,粉末、Fe粉末、CO粉末、Fe−Ni粉末な
ど従来公知の各種磁性粉末が広く包含される。また、結
合剤樹脂としては、塩化ビニル−酢酸ビニル系共重合体
、ポリビニルブチラール系樹脂、ポリウレタン系樹脂、
繊維素系樹脂、イソシアネート化合物など従来汎用され
ている結合剤樹脂が広く用いられ、有機溶剤としては、
メチルイソブチルケトン、メチルエチルケトン、シクロ
ヘキサノン、トルエン、酢酸エチル、テトラヒドロフラ
ン、ジメチルホルムアミド、ジオキサンなど、一般に磁
気記録媒体に使用される有機溶剤が、単独であるいは二
種以上混合して使用される。
Here, as the magnetic powder, 7-Fe2O, powder, Fe
, O, powder, CO-containing 1-Fe2O, powder, Co-containing F
A wide variety of conventionally known magnetic powders are included, such as e, O, powder, Fe powder, CO powder, and Fe-Ni powder. In addition, binder resins include vinyl chloride-vinyl acetate copolymers, polyvinyl butyral resins, polyurethane resins,
Conventional binder resins such as cellulose resins and isocyanate compounds are widely used, and as organic solvents,
Organic solvents commonly used in magnetic recording media, such as methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, toluene, ethyl acetate, tetrahydrofuran, dimethylformamide, and dioxane, are used alone or in a mixture of two or more.

以上のように、80°Cで60分間加熱後の長手方向の
熱収縮率が0.4%以下で幅方向の熱収縮率が0.3%
以下のベースフィルム上に、磁性層を形成して全厚が1
0μm以下の磁気テープなどの磁気記録媒体を製造する
と、カートリッジケースに組み込んで、真夏の太陽で加
熱された車のダツシュボード等に放置し、高温下にさら
しても、磁気テープの熱収縮による熱変形がなく、耐熱
性が充分に向上されて、再生信号の欠落が防止される。
As mentioned above, after heating at 80°C for 60 minutes, the heat shrinkage rate in the longitudinal direction is 0.4% or less and the heat shrinkage rate in the width direction is 0.3%.
A magnetic layer is formed on the following base film so that the total thickness is 1
When a magnetic recording medium such as a magnetic tape of 0 μm or less is manufactured, even if it is assembled into a cartridge case and left on a car dash board heated by the midsummer sun and exposed to high temperatures, the magnetic tape will undergo thermal deformation due to thermal contraction. The heat resistance is sufficiently improved, and reproduction signal loss is prevented.

〔実施例] 次に、この発明の実施例について説明する。〔Example] Next, embodiments of the invention will be described.

実施例I Co含有7−Fe、03粉末   80重量部VAGH
(U、C,C社製;塩化ビ  10〃ニル−酢酸ビニル
−ビニルア ルコール共重合体) クリスボン7209 (大日本イ  8 〃ンキ化学工
業社製;ウレタン エラストマー) コロネートしく日本ボリウレタ   2 〃ン工業社製
;三官能性低分子 量イソシアネート化合物) ステアリン酸−n−ブチル    0.5〃カーボンブ
ラツク        4 〃シクロヘキサノン   
     50  lメチルエチルケトン      
 50〃この組成物をボールミルで70時間混合分散し
て磁性塗料を調製した。次いで、この磁性塗料を80°
Cで60分間加熱後の長手方向の熱収縮率が0.14%
で、幅方向の熱収縮率が0.22%のポリエチレンナフ
タレートからなる厚みが6.3μmのベースフィルム上
に、乾燥厚が1.7μmとなるように塗布、乾燥し、表
面処理を行った後、所定の幅に裁断して磁気テープをつ
くった。
Example I Co-containing 7-Fe, 03 powder 80 parts by weight VAGH
(manufactured by U, C, C; vinyl chloride 10-vinyl acetate-vinyl alcohol copolymer) CRYSBO 7209 (manufactured by Dainippon Ink Chemical Co., Ltd.; urethane elastomer) Coronate Nippon Polyurethane 2. trifunctional low molecular weight isocyanate compound) n-butyl stearate 0.5 Carbon black 4 Cyclohexanone
50 l methyl ethyl ketone
50 This composition was mixed and dispersed in a ball mill for 70 hours to prepare a magnetic paint. Next, apply this magnetic paint to 80°
The longitudinal heat shrinkage rate after heating at C for 60 minutes is 0.14%.
Then, on a base film with a thickness of 6.3 μm made of polyethylene naphthalate with a heat shrinkage rate of 0.22% in the width direction, it was applied to a dry thickness of 1.7 μm, dried, and surface treated. Afterwards, it was cut to a specified width to create magnetic tape.

実施例2 実施例1において、so’cで60分間加熱後の長手方
向の熱収縮率が0.14%で、幅方向の熱収縮率が0.
22%のポリエチレンナフタレートからなる厚みが6.
3μmのベースフィルムに代えて、80°Cで60分間
加熱後の長手方向の熱収縮率が0.25%で、幅方向の
熱収縮率が0.05%のポリエチレンテレフタレートか
らなる同じ厚みのベースフィルムを使用した以外は、実
施例1と同様にして磁気テープをつくった。
Example 2 In Example 1, the heat shrinkage rate in the longitudinal direction after heating in SO'C for 60 minutes was 0.14%, and the heat shrinkage rate in the width direction was 0.14%.
The thickness is 6. Made of 22% polyethylene naphthalate.
Instead of a 3 μm base film, a base of the same thickness made of polyethylene terephthalate with a heat shrinkage rate of 0.25% in the longitudinal direction and 0.05% in the width direction after heating at 80°C for 60 minutes. A magnetic tape was produced in the same manner as in Example 1 except that the film was used.

比較例1 実施例1において、80°Cで60分間加熱後の長手方
向の熱収縮率が0.14%で、幅方向の熱収縮率が0.
22%のポリエチレンナフタレートからなる厚みが6.
3μmのベースフィルムに代えて、長手方向および幅方
向に延伸強化した80°Cで60分間加熱後の長手方向
の熱収縮率が0.34%で、幅方向の熱収縮率が0.3
5%のポリエチレンナフタレートからなる同じ厚みのベ
ースフィルムを使用した以外は、実施例1と同様にして
磁気テープをつくった。
Comparative Example 1 In Example 1, the heat shrinkage rate in the longitudinal direction after heating at 80°C for 60 minutes was 0.14%, and the heat shrinkage rate in the width direction was 0.14%.
The thickness is 6. Made of 22% polyethylene naphthalate.
Instead of a 3 μm base film, the film was stretched in the longitudinal and width directions, and after heating at 80°C for 60 minutes, the heat shrinkage in the longitudinal direction was 0.34%, and the heat shrinkage in the width direction was 0.3.
A magnetic tape was made in the same manner as in Example 1, except that a base film of 5% polyethylene naphthalate of the same thickness was used.

比較例2 実施例2において、80°Cで60分間加熱後の長手方
向の熱収縮率が0.25%で、幅方向の熱収縮率が0.
05%のポリエチレンテレフタレートからなる厚みが6
.3μmのベースフィルムに代えて、長手方向および幅
方向に延伸強化した80°Cで60分間加熱後の長手方
向の熱収縮率が0.51%で、幅方向の熱収縮率が0.
15%のポリエチレンテしフタレートからなる同じ厚み
のベースフィルムを使用した以外は、実施例2と同様に
して磁気テープをつくった。
Comparative Example 2 In Example 2, the heat shrinkage rate in the longitudinal direction after heating at 80°C for 60 minutes was 0.25%, and the heat shrinkage rate in the width direction was 0.25%.
05% polyethylene terephthalate with a thickness of 6
.. Instead of a 3 μm base film, the film was stretched and strengthened in the longitudinal direction and the width direction, and after heating at 80°C for 60 minutes, the heat shrinkage rate in the longitudinal direction was 0.51%, and the heat shrinkage rate in the width direction was 0.51%.
A magnetic tape was made as in Example 2, except that a base film of the same thickness consisting of 15% polyethylene terephthalate was used.

実施例2および比較例2で得られた磁気テープを、カー
トリッジケースに組み込んで、60°C180%RHの
条件下で72時間放置し、放置後の磁気テープについて
、オシロスコープを使用して磁気テープの出力波形を調
べた。第1図は実施例2で得られた磁気テープの出力波
形を図示したものであり、出力波形1は正常であった。
The magnetic tapes obtained in Example 2 and Comparative Example 2 were assembled into a cartridge case and left for 72 hours at 60°C and 180% RH. I checked the output waveform. FIG. 1 illustrates the output waveform of the magnetic tape obtained in Example 2, and output waveform 1 was normal.

また、第2図は比較例2で得られた磁気テープの出力波
形を図示したものであり、正常な出力波形2の途中で信
号欠落部3が認められた。
Further, FIG. 2 illustrates the output waveform of the magnetic tape obtained in Comparative Example 2, and a signal dropout portion 3 was observed in the middle of the normal output waveform 2.

また、各実施例および比較例で得られた磁気テプを、カ
ートリッジケースに組み込んで、60°C180%RH
の条件下で72時間放置し、放置後の磁気テープの熱変
形を目視で観察して、熱変形が全(ないものを(○)、
わずかに熱変形が認められるものを(△)、再生不能な
ほどに熱変形したものを(×)として評価した。
In addition, the magnetic tape obtained in each example and comparative example was assembled into a cartridge case at 60°C, 180% RH.
The magnetic tape was left for 72 hours under the following conditions, and the thermal deformation of the magnetic tape after being left was visually observed.
Those with slight thermal deformation were evaluated as (△), and those with irreproducible thermal deformation were evaluated as (x).

下記第1表はその結果である。Table 1 below shows the results.

第1表 〔発明の効果〕 第1図および第2図から明らかなように、比較例2で得
られた磁気テープは信号欠落が認められるが、実施例2
で得られた磁気テープは信号欠落が認められず、また、
上記第1表から明らかなように、比較例1および2で得
られた磁気テープは熱変形が認められるが、実施例1お
よび2で得られた磁気テープは熱変形が全く認められず
、これらのことからこの発明によって得られる全厚10
μm以下の磁気記録媒体は耐熱性に優れていることがわ
かる。
Table 1 [Effects of the Invention] As is clear from FIGS. 1 and 2, signal loss is observed in the magnetic tape obtained in Comparative Example 2, but in Example 2, signal loss is observed.
The magnetic tape obtained by
As is clear from Table 1 above, thermal deformation was observed in the magnetic tapes obtained in Comparative Examples 1 and 2, but no thermal deformation was observed in the magnetic tapes obtained in Examples 1 and 2. Therefore, the total thickness obtained by this invention is 10
It can be seen that magnetic recording media with a diameter of μm or less have excellent heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例2で得られた磁気テープの出力波形図、
第2図は比較例2で得られた磁気テープの出力波形図で
ある。
FIG. 1 is an output waveform diagram of the magnetic tape obtained in Example 2,
FIG. 2 is an output waveform diagram of the magnetic tape obtained in Comparative Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1、80℃で60分間加熱後の長手方向の熱収縮率が0
.4%以下で幅方向の熱収縮率が0.3%以下のベース
フィルム上に、磁性層を設けてなる全厚10μm以下の
磁気記録媒体
1. Thermal shrinkage rate in the longitudinal direction after heating at 80℃ for 60 minutes is 0.
.. A magnetic recording medium with a total thickness of 10 μm or less, comprising a magnetic layer on a base film with a heat shrinkage rate of 4% or less and a widthwise heat shrinkage rate of 0.3% or less.
JP2299290A 1990-01-31 1990-01-31 Magnetic recording medium Pending JPH03228215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2299290A JPH03228215A (en) 1990-01-31 1990-01-31 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2299290A JPH03228215A (en) 1990-01-31 1990-01-31 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03228215A true JPH03228215A (en) 1991-10-09

Family

ID=12098033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2299290A Pending JPH03228215A (en) 1990-01-31 1990-01-31 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03228215A (en)

Similar Documents

Publication Publication Date Title
US4654260A (en) Magnetic recording medium
US4496626A (en) Magnetic recording medium
US4781965A (en) Magnetic recording medium
JPH0770047B2 (en) Magnetic recording medium
JPH0719360B2 (en) Magnetic recording medium
US4780366A (en) Magnetic recording medium for image recording
JPH04255910A (en) Magnetic recording tape
JPH03228215A (en) Magnetic recording medium
JPH0473214B2 (en)
JPH03256223A (en) Magnetic transfering method
US6627293B1 (en) Magnetic recording medium
KR100263679B1 (en) Catridge for magnetic tape
US4621027A (en) Magnetic recording medium
US4946534A (en) Process for the preparation of magnetic recording disk
JP2809528B2 (en) Method for manufacturing flexible magnetic disk
US4699844A (en) Magnetic recording medium
JPH0444324B2 (en)
US5182153A (en) Flexible magnetic disc
JPH0743824B2 (en) Magnetic recording medium and manufacturing method thereof
US4728563A (en) Magnetic recording medium
JPH0550048B2 (en)
JP3053950B2 (en) Magnetic recording tape
JPH0715750B2 (en) Magnetic recording medium
JPH0442727B2 (en)
JPH05128487A (en) Magnetic recording medium