JPH03227529A - Semiconductor device structure using gaas - Google Patents

Semiconductor device structure using gaas

Info

Publication number
JPH03227529A
JPH03227529A JP2411290A JP2411290A JPH03227529A JP H03227529 A JPH03227529 A JP H03227529A JP 2411290 A JP2411290 A JP 2411290A JP 2411290 A JP2411290 A JP 2411290A JP H03227529 A JPH03227529 A JP H03227529A
Authority
JP
Japan
Prior art keywords
gaas
barrier
type
amorphous
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2411290A
Other languages
Japanese (ja)
Inventor
Shinji Fujieda
信次 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2411290A priority Critical patent/JPH03227529A/en
Publication of JPH03227529A publication Critical patent/JPH03227529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a Schottky barrier having high barrier height on a GaAs(111) substrate by forming a p-type amorphous Si thin layer on an n-type GaAs(111)A plane. CONSTITUTION:A structure in which a p-type amorphous Si thin layer is deposited on an n-type GaAs(1110)A plane is formed. Generation of excess As is suppressed by forming the thin layer, and heat resistance of a Schottky barrier can be enhanced. If the Si layer is made crystalline, the heat resistance of the barrier is deteriorated, and it is made amorphous. The Si layer is made p-type thereby to enhance the barrier. Thus, the barrier having high barrier height can be formed on an n-type GaAs(111) substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、GaAsを材料に用いた半導体デバイスの構
造、更に詳しくはショットキ障壁の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a semiconductor device using GaAs as a material, and more particularly to the structure of a Schottky barrier.

(従来の技術) GaAsを材料に用いたMESFET(金属・半導体接
合電界トランジスタ)は、従来、(100)基板上に作
成されてきたが、(ioo)基板にはトランジスタ特性
がゲート方向によって変わってしまうという難点がある
。基板方位として(100)の代わりに(111)を用
いることによりこの問題が解消されうろことは、すでに
指摘されている(K、 Ueno (上野)他、アイ・
イ町ディーーエム予稿集(Technical Dig
est of IEDM) 1988(San Fra
ncisco)846)、この異方性の解消はMESF
ETの集積化において大きな利点となる。
(Prior art) MESFETs (metal-semiconductor junction field transistors) using GaAs as a material have conventionally been fabricated on (100) substrates, but (ioo) substrates have transistor characteristics that vary depending on the gate direction. There is a problem with storing it away. It has already been pointed out that this problem can be solved by using (111) instead of (100) as the substrate orientation (K, Ueno et al., I.
Technical Dig Proceedings
est of IEDM) 1988 (San Fra
ncisco) 846), this anisotropy can be resolved by MESF
This is a great advantage in ET integration.

(発明が解決しようとする課題) 一方、MESFET製作においては、ショットキ障壁を
高くすることが望まれる。しかし、GaAs(111)
面と金属との界面に形成されるショットキ障壁に関する
知見は少ない。
(Problems to be Solved by the Invention) On the other hand, in MESFET manufacturing, it is desired to increase the Schottky barrier. However, GaAs(111)
There is little knowledge regarding the Schottky barrier formed at the interface between a surface and a metal.

本発明の目的は、GaAs(111)基板上に高い障壁
高(バリアハイド)を持つショットキ障壁を形成するた
めの半導体デバイス構造を提供することである。
An object of the present invention is to provide a semiconductor device structure for forming a Schottky barrier with a high barrier height (barrier hide) on a GaAs (111) substrate.

(課題を解決するための手段) 本発明では、高い障壁高を持つショットキ障壁を形成す
るため、n型GaAs(111)A面上にp型アモルフ
ァスSi薄層を堆積した構造を作製する。p型ドーパン
トとしてはB、 AI、 Gaなどが考えられる。
(Means for Solving the Problems) In the present invention, in order to form a Schottky barrier with a high barrier height, a structure in which a p-type amorphous Si thin layer is deposited on an n-type GaAs (111) A plane is fabricated. Possible p-type dopants include B, AI, and Ga.

GaAsを構成する元素であるGaをドープすると耐熱
性が向上する。
Doping Ga, which is an element constituting GaAs, improves heat resistance.

(作用) 2種の(111)面のうちA面(Ga)を用いることに
より、界面過剰Asの生成を抑制する。n型GaAs表
面のショットキ障壁の形成に関して、確定的な機構の理
解はなされていないが、界面過剰Asは高い障壁を実現
する上で障害となると考えられる。本発明では、さらに
、(111)A面上にアモルファスSi薄層を形成する
。アモルファスSi薄層の形成により、過剰Asの生成
はさらに抑制され、ショットキ障壁の耐熱性を高めるこ
とが可能になる。Slは、結晶性にした場合には障壁の
耐熱性が劣るのでアモルファスとした。アモルファスS
i薄層をp型とすることによりショットキ障壁が高くな
ることは、本発明者の実験により見出された事実である
。この機構としては、界面でのpn接合形成、アモルフ
ァスSi中のアクセプター準位によるGaAs表面ポテ
ンシャルのピンニング等が考えられる。また、QaAs
上に直接電極金属を堆積するのではないため、電極金属
堆積によるGaAs表面の欠陥生成が抑制されることも
、本発明の有効性につながっていると考えられる。
(Function) By using the A-plane (Ga) of the two types of (111) planes, the generation of excess As at the interface is suppressed. Regarding the formation of a Schottky barrier on the n-type GaAs surface, the mechanism is not definitively understood, but excess As at the interface is considered to be an obstacle to realizing a high barrier. In the present invention, an amorphous Si thin layer is further formed on the (111)A plane. Formation of the amorphous Si thin layer further suppresses the generation of excess As, making it possible to improve the heat resistance of the Schottky barrier. Since the heat resistance of the barrier would be poor if Sl was made crystalline, it was made amorphous. Amorphous S
It is a fact discovered through experiments by the present inventors that the Schottky barrier becomes higher by making the i-thin layer p-type. Possible mechanisms for this include formation of a pn junction at the interface and pinning of the GaAs surface potential due to acceptor levels in amorphous Si. Also, QaAs
Since the electrode metal is not directly deposited on the GaAs surface, the generation of defects on the GaAs surface due to the electrode metal deposition is suppressed, which is also thought to contribute to the effectiveness of the present invention.

また、アモルファスSi薄層にGaをドープすると、G
aAsからのGa拡散、積層構造の界面の熱的劣化が抑
制されて耐熱性が向上すると考えられる。
Also, when doping Ga into an amorphous Si thin layer, G
It is thought that heat resistance is improved by suppressing Ga diffusion from aAs and thermal deterioration of the interface of the laminated structure.

(実施例) 本実施例においては、LPE(液相エピタキシャル成長
)法によりn+基板上に成長した(111)An型Ga
As層(キャリア濃度n=2X1017cm−3)を用
いた。洗浄、化学的エツチング後、GaAs基板をCV
D(化学気相成長)反応管に導入した。CVD装置はH
2圧0.1気圧で運転され、基板温度制御はカーボンサ
セプタの誘導加熱によって行われた。H2中で基板を5
00°Cに昇温し、5i2H6(ジシラン)およびB2
H6(ジボラン)を供給してp型アモルファスSi層(
不純物濃度3 X 101910l9を2nm形成した
(Example) In this example, (111) An-type Ga grown on an n+ substrate by LPE (liquid phase epitaxial growth) method
An As layer (carrier concentration n=2×10 17 cm −3 ) was used. After cleaning and chemical etching, CV
D (chemical vapor deposition) was introduced into a reaction tube. CVD equipment is H
It was operated at 2 pressures and 0.1 atm, and the substrate temperature was controlled by induction heating of the carbon susceptor. 5. Place the substrate in H2
5i2H6 (disilane) and B2
H6 (diborane) is supplied to form a p-type amorphous Si layer (
An impurity concentration of 3×101910l9 was formed to a thickness of 2 nm.

アモルファスSi層を堆積した基板に、WSix(けい
化タングステン)を1100n厚スパッタ蒸着し、イオ
ンエツチングにより400pm径の円形電極を形成した
。裏面にAuGeを蒸着し450°Cで基板をアニール
して、オーミック接触を形成した。ショットキダイオー
ドの電流−電圧特性から求めた接合の障壁高は0.96
eVであり、p型アモルファスSi層を含まない場合(
0,87eV)に対し向上が認められた。
On the substrate on which the amorphous Si layer was deposited, WSix (tungsten silicide) was sputter-deposited to a thickness of 1100 nm, and a circular electrode with a diameter of 400 pm was formed by ion etching. AuGe was deposited on the backside and the substrate was annealed at 450°C to form an ohmic contact. The junction barrier height determined from the current-voltage characteristics of the Schottky diode is 0.96.
eV and does not include a p-type amorphous Si layer (
0.87 eV).

ドーパントとしてA1を用いる場合は上述のB2H6の
代ワリにTMA()リメチルアルミニウム)を用いて同
様にp型アモルファスSi層(不純物濃度I X 10
’cm−3) t 2nm形成する。Bをドープした場
合と同様にして接合を形成して障壁高さを測定したとこ
ろ、Bの場合と同じ< 0.96eVであり向上が認め
When A1 is used as a dopant, TMA (remethylaluminum) is used in place of B2H6 mentioned above, and a p-type amorphous Si layer (impurity concentration I x 10
'cm-3) t 2nm is formed. When a junction was formed in the same manner as when B was doped and the barrier height was measured, it was <0.96 eV, the same as in the case of B, indicating an improvement.

られな。Rarena.

またドーパントとしてGaを用いる場合は上述のB2H
5の代わりにTMG()リメチルガリウム)を用いて同
様にp型アモルファスSi層(不純物濃度2刈019c
m−3)を2nm形成する。Bをドープした場合と同様
にして接合を形成して障壁高さを測定したところ0.9
7eVであり向上が認められた。耐熱性評価のため、N
2H4(ヒドラジン)・TMA(トリメチルアルミニウ
ム)を原料とするCVD法によりAIN(窒化アルミニ
ウム)表面保護膜を350°Cで1100n堆積し、H
2中500°Cから850°Cにおいて20分間熱処理
を行った。熱処理後AIN膜をHF(弗酸)で除去し、
ショットキダイオードの電流−電圧特性を測定した。シ
ョットキ障壁高の劣化は700°Cまでは認められず、
750’Cにおいて0.80eVとなった。この障壁高
が0.80eVまで劣化する温度は、アモルファスMへ
のドープ原子種をAI(アルミニウム)、B(はう素)
等にした他の場合にくらべ50’C以上高くなった。
In addition, when using Ga as a dopant, the above-mentioned B2H
Similarly, a p-type amorphous Si layer (impurity concentration 2, 019c
m-3) with a thickness of 2 nm. When a junction was formed and the barrier height was measured in the same manner as when B was doped, it was 0.9.
It was 7 eV, and an improvement was recognized. For heat resistance evaluation, N
A 1100 nm AIN (aluminum nitride) surface protective film was deposited at 350°C by the CVD method using 2H4 (hydrazine) and TMA (trimethylaluminum) as raw materials, and H
Heat treatment was performed at 500°C to 850°C for 20 minutes in No. 2. After heat treatment, remove the AIN film with HF (hydrofluoric acid),
The current-voltage characteristics of a Schottky diode were measured. No deterioration of Schottky barrier height was observed up to 700°C.
It became 0.80 eV at 750'C. The temperature at which this barrier height deteriorates to 0.80 eV is the temperature at which the doping atomic species to amorphous M are AI (aluminum) and B (boron).
The temperature was more than 50'C higher than in other cases where the temperature was set to 1.

上記3つの実施例では、高融点金属でありMESFET
の自己整合形成のため一般に用いられているという理由
でWSixを用いたが、p型アモルファスSi層形成に
よるショットキ障壁高の改善は、WN−(m化タングス
テン)、A1等の電極金属に対しても認められた。これ
により、本発明が電極金属種に依らないことは明らかで
ある。
In the above three embodiments, the high melting point metal is MESFET.
WSix was used because it is commonly used for the self-aligned formation of a p-type amorphous Si layer. was also recognized. From this, it is clear that the present invention does not depend on the type of electrode metal.

(発明の効果) 本発明により、高い障壁高を持つショットキ障壁をGa
As(111)基板上に形成することができ、例えばG
aAs(111)基板上のMESFETの動作向上が可
能になる。
(Effect of the invention) According to the present invention, a Schottky barrier with a high barrier height can be
It can be formed on an As(111) substrate, for example, G
It becomes possible to improve the operation of MESFETs on aAs (111) substrates.

Claims (1)

【特許請求の範囲】[Claims] n型GaAs(111)_A面上にp型アモルファスS
i薄層を形成した半導体デバイス構造。
p-type amorphous S on n-type GaAs(111)_A surface
Semiconductor device structure with i thin layer formed.
JP2411290A 1990-02-01 1990-02-01 Semiconductor device structure using gaas Pending JPH03227529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411290A JPH03227529A (en) 1990-02-01 1990-02-01 Semiconductor device structure using gaas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411290A JPH03227529A (en) 1990-02-01 1990-02-01 Semiconductor device structure using gaas

Publications (1)

Publication Number Publication Date
JPH03227529A true JPH03227529A (en) 1991-10-08

Family

ID=12129247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411290A Pending JPH03227529A (en) 1990-02-01 1990-02-01 Semiconductor device structure using gaas

Country Status (1)

Country Link
JP (1) JPH03227529A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182574A (en) * 1983-04-01 1984-10-17 Nippon Telegr & Teleph Corp <Ntt> Field-effect transistor
JPS61129878A (en) * 1984-11-29 1986-06-17 Fujitsu Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182574A (en) * 1983-04-01 1984-10-17 Nippon Telegr & Teleph Corp <Ntt> Field-effect transistor
JPS61129878A (en) * 1984-11-29 1986-06-17 Fujitsu Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US11495459B2 (en) Methods for selective deposition using a sacrificial capping layer
US11594600B2 (en) Structures with doped semiconductor layers and methods and systems for forming same
US10236177B1 (en) Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
US11018002B2 (en) Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US6426265B1 (en) Incorporation of carbon in silicon/silicon germanium epitaxial layer to enhance yield for Si-Ge bipolar technology
US7919791B2 (en) Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
US20040119063A1 (en) Gallium nitride-based devices and manufacturing process
US5296258A (en) Method of forming silicon carbide
US6660393B2 (en) SiGeC semiconductor crystals and the method producing the same
US8502347B1 (en) Bipolar junction transistor with epitaxial contacts
WO2002097861A2 (en) Semiconductor device, semiconductor layer and production method thereof
JP4429459B2 (en) Method for producing high-resistance GaN crystal layer
US10312096B2 (en) Methods for titanium silicide formation using TiCl4 precursor and silicon-containing precursor
KR100698088B1 (en) Method for Fabricating Semiconductor Device
US5668402A (en) Semiconductor device
JPH03227529A (en) Semiconductor device structure using gaas
US5674777A (en) Method for forming silicon-boron binary compound layer as boron diffusion source in silicon electronic device
JPH0770695B2 (en) Method for manufacturing silicon carbide semiconductor device
JP3592922B2 (en) Compound semiconductor substrate
JP2936617B2 (en) Vapor phase growth of compound semiconductor crystals
Hirayama et al. Bipolar transistor fabrication using selective epitaxial growth of P-and B-doped layers in gas-source Si molecular beam epitaxy
JP2023039743A (en) Method for manufacturing nitride semiconductor substrate
CN114141622A (en) Preparation method of GAAFET gallium nitride field effect transistor
JPH05275467A (en) Manufacture of compound semiconductor device
Paisley 7287. Growth of boron nitride films by gas molecular-beam epitaxy